Oscillation results for matrix differential systems with damping

Oscillation results for matrix differential systems with damping

Applied Mathematics and Computation 170 (2005) 545–555 www.elsevier.com/locate/amc Oscillation results for matrix differential systems with damping Yu...

153KB Sizes 0 Downloads 91 Views

Applied Mathematics and Computation 170 (2005) 545–555 www.elsevier.com/locate/amc

Oscillation results for matrix differential systems with damping Yuan Gong Sun *, Fan Wei Meng Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China

Abstract By introducing a class of new parameter functions U(t, s, r), we establish some new oscillation criteria in terms of the coefficients for the matrix differential system with damping (P(t)Y 0 ) 0 + R(t)Y 0 + Q(t)Y = 0 under the hypothesis H: P(t) = P*(t) > 0, Q(t) = Q*(t) and R(t) = R*(t) are n · n matrices of real valued continuous functions on the interval [t0, 1). Our results are not contained in known ones.  2005 Elsevier Inc. All rights reserved. Keywords: Oscillation; Matrix differential system; Damping

1. Introduction Consider the second order linear matrix differential system with damped term ðP ðtÞY 0 Þ0 þ RðtÞY 0 þ QðtÞY ¼ 0;

t P t0 ;

*

Corresponding author. E-mail address: [email protected] (Y.G. Sun).

0096-3003/$ - see front matter  2005 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2004.12.012

ð1Þ

546

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

where P(t) = P*(t) > 0 (i.e., P(t) is positive definite), Q(t) = Q*(t) and R(t) = R*(t) are n · n matrices of real valued continuous functions on the interval [t0, 1). By M* we mean the transpose of the matrix M. In the absence of damping, i.e., R(t)  0, (1) reduces to the following matrix differential system 0

ðP ðtÞY 0 Þ þ QðtÞY ¼ 0;

t P t0 ;

which is the particular case of the matrix Hamiltonian system  0 U ðtÞ ¼ AðtÞU ðtÞ þ BðtÞV ðtÞ; V 0 ðtÞ ¼ CðtÞU ðtÞ  A ðtÞV ðtÞ;

ð2Þ

ð3Þ

with A(t)  0, B1(t) = P(t) and C(t) = Q(t). When R(t) f 0, (1) in general cannot be rewritten to system (3). Therefore, all the existing oscillation results for (2) and (3) generally cannot be applied to (1). By now, there have been many papers (see, for example, [1–22] and the references quoted therein) devoted to the oscillation of systems (2) and (3). It is well known that a successful oscillation theory for matrix differential system can be carried out only for the class of prepared solutions. As usual, a nontrivial solution Y(t) (i.e., detY(t) 5 0 for at lease one t 2 [t0, 1)) of (2) is said to be prepared if for t 2 [t0, 1), 0

Y ðtÞP ðtÞY 0 ðtÞ  ðY ðtÞÞ P ðtÞY ðtÞ:

ðaÞ

A nontrivial solution (U(t),V(t)) (i.e., det U(t) 5 0 for at lease one t 2 [t0, 1)) of (3) is said to be prepared if for t 2 [t0, 1), U ðtÞV ðtÞ  V ðtÞU ðtÞ  0:

ðbÞ

To best of our knowledge, it seems to us that little has been known about the oscillation of (1) except [21]. In [21], the author studied the particular case of (1) with R(t) = r(t)P(t), where r(t) 2 C([t0, 1),R). The purpose of this paper is to deal with the oscillation of the more general system (1). In this paper, we say a nontrivial solution Y(t) of (1) is prepared if for t 2 [t0, 1), ( Y ðtÞP ðtÞY 0 ðtÞ  ðY ðtÞÞ0 P ðtÞY ðtÞ  0; ð4Þ 0 Y ðtÞRðtÞY 0 ðtÞ  ðY ðtÞÞ RðtÞY ðtÞ  0; i.e., Y*(t)P(t)Y 0 (t) and Y*(t)R(t)Y 0 (t) are symmetric. A prepared solution Y(t) of (1) is said to be oscillatory, if det Y(t) has arbitrarily large zeros on [t0, 1). As we can see, the important tool in the study of oscillatory behavior of solutions for the scalar equation (as a special case of (1) or (2)) is the averaging technique, which involves a function class X. Say a function H = H(t, s) belongs to the function class X, if H 2 C(D, R+), where D = {(t, s) : t0 6 s 6 t}, which satisfies H(t, t) = 0, H(t, s) > 0 for t > s, and has partial derivative oH/os and oH/ot on D such that

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi oH ¼ h1 ðt; sÞ H ðt; sÞ and ot

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi oH ¼ h2 ðt; sÞ H ðt; sÞ; os

547

ð5Þ

where h21 ; h22 are locally integrable in D. In this paper, we define another function class Y. We say that a function U = U(t, s, r) belongs to the function class Y, denoted by U 2 Y, if U 2 C(E, R), where E = {(t, s, r) : t P s P r P t0}, which satisfies U(t, t, r) = 0, U(t, r, r) = 0 and has the partial derivative oU on E such that (oU/os)2 is locally integrable os in E. Remark 1. We can construct a function U(t, s, r) 2 Y in terms of two functions in X. For example, let U(t, s, r) = H1(t, s)H2(s, r), where H1, H2 2 X. It is easy to see that U(t, s, r) 2 Y. In Sections 2 and 3 of this paper, we will establish some new oscillation results for system (1) by using the auxiliary function U 2 Y. For the sake of convenience we define the operator T[Æ, Æ, Æ; r, t] in view of U 2 Y as the following: Z t T a ðD; E; F ; r; tÞ ¼ aðsÞ½U2 ðt; s; rÞDðsÞ þ Uðt; s; rÞU0s ðt; s; rÞEðsÞ r

 U02 s ðt; s; rÞF ðsÞ ds;

ð6Þ

where a(t) is a positive and continuously differentiable function on [t0, 1), D(t), E(t) and F(t) 2 Rn·n (n · n matrices of real valued continuous functions on the interval [t0, 1)).

2. Oscillation criteria of Kamenev type Now, let us give the main results of this paper. Theorem 1. If there exist U 2 Y and f 2 C1[t0, 1) such that for each r P t0 lim sup k1 ½T a ðD; R; P ; r; tÞ > 0;

t!1

where  Z s  aðsÞ ¼ exp 2 f ðtÞdt ;

DðsÞ ¼ ðM  RP 1 R=4ÞðsÞ

and 0

MðsÞ ¼ QðsÞ þ ðf 2 P ÞðsÞ  ðfP Þ ðsÞ  ðfRÞðsÞ; then system (1) is oscillatory.

ð7Þ

548

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

Proof. Suppose to the contrary that there exists a prepared solution Y(t) of (1) such that det Y(t) 5 0 on [r, 1) for some r > t0. Let V ðtÞ ¼ aðtÞ½ðPY 0 Y 1 ÞðtÞ þ f ðtÞP ðtÞ

ð8Þ

for t P r;

then V(t) is symmetric for t P r. From (1) we have 2

0

V 0 ðtÞ ¼ 2ðfV ÞðtÞ þ aðtÞ½RY 0 Y 1  Q  P ðY 0 Y 1 Þ þ ðfP Þ ðtÞ ¼ 2ðfV ÞðtÞ  ðaRP 1 ÞðtÞ½ða1 V ÞðtÞ  ðfP ÞðtÞ  aðtÞ½ða1 V ÞðtÞ  ðfP ÞðtÞ P 1 ðtÞ½ða1 V ÞðtÞ  ðfP ÞðtÞ  ðaQÞðtÞ ¼ ðRP 1 V ÞðtÞ  ða1 VP 1 V ÞðtÞ  aðtÞMðtÞ;

ð9Þ

where MðtÞ ¼ QðtÞ þ ðf 2 P ÞðtÞ  ðfP Þ0 ðtÞ  ðfRÞðtÞ: From (4) and noting that R(t) = R*(t) we get ðRP 1 V ÞðtÞ ¼ ½aRY 0 Y 1 ðtÞ þ ðafRÞðtÞ



¼ ½aðY 1 Þ ðY 0 Þ R ðtÞ þ ðafRÞðtÞ ¼ ðV P 1 RÞðtÞ ¼ ðVP 1 RÞðtÞ:

ð10Þ

1

Set A(t) = (P R)(t)/2. From (9) and (10) we have V 0 ðtÞ ¼ ðA V þ VAÞðtÞ  ða1 VP 1 V ÞðtÞ  aðtÞMðtÞ ¼ a1 ðtÞ½ðV þ aPAÞ P 1 ðV þ aPAÞ ðtÞ þ ðaA PAÞðtÞ  aðtÞMðtÞ ¼ a1 ðtÞ½ðV þ aPAÞ P 1 ðV þ aPAÞ ðtÞ þ ðaRP 1 R=4ÞðtÞ  aðtÞMðtÞ ¼ a1 ðtÞ½ðV þ aPAÞ P 1 ðV þ aPAÞ ðtÞ  aðtÞDðtÞ;

ð11Þ

where DðtÞ ¼ ðM  A PAÞðtÞ ¼ ðM  RP 1 R=4ÞðtÞ: Multiplying (11), with t replaced by s, by U2(t, s, r) and integrating it from r to t, we obtain Z t aðsÞU2 ðt; s; rÞDðsÞds r Z t U2 ðt; s; rÞV 0 ðsÞds ¼ r Z t  a1 ðsÞU2 ðt; s; rÞ½ðV þ aPAÞ P 1 ðV þ aPAÞ ðsÞds Z rt ¼2 Uðt; s; rÞU0s ðt; s; rÞV ðsÞds Zr t  a1 ðsÞU2 ðt; s; rÞ½ðV þ aPAÞ P 1 ðV þ aPAÞ ðsÞds: ð12Þ r

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

549

According to the direct computation, we see that

2Uðt; s; rÞU0s ðt; s; rÞV ðsÞ  a1 ðsÞU2 ðt; s; rÞ½ðV þ aPAÞ P 1 ðV þ aPAÞ ðsÞ 1 0 ¼ P 1 1 ðsÞW ðt; s; rÞW ðt; s; rÞP 1 ðsÞ  Uðt; s; rÞUs ðt; s; rÞEðsÞ

þ aðsÞU02 s ðt; s; rÞP ðsÞ; where 1=2 1=2 P ðsÞ; P 1 1 ðsÞ ¼ a

EðsÞ ¼ aðsÞðA P þ PAÞðsÞ ¼ aðsÞRðsÞ;

and

W ðt; s; rÞ ¼ Uðt; s; rÞ½P 1 ðV þ aPAÞP 1 ðsÞ  U0s ðt; s; rÞI n

ðan n  n matrixÞ:

Thus, from (12) and the above computation, we have Z

t 2

aðsÞU ðt; s; rÞDðsÞds ¼  r

Z

t 1 P 1 1 ðsÞW ðt; s; rÞW ðt; s; rÞP 1 ðsÞds

r

 

Z

t

aðsÞ½Uðt; s; rÞU0s ðt; s; rÞRðsÞ

r U02 s ðt; s; rÞP ðsÞ ds:

Therefore, Z t aðsÞ½U2 ðt; s; rÞDðsÞ þ Uðt; s; rÞU0s ðt; s; rÞRðsÞ  U02 s ðt; s; rÞP ðsÞ ds 6 0; r

ð13Þ i.e., T a ðD; R; P ; r; tÞ 6 0: This implies that lim sup k1 ½T a ðD; R; P ; r; tÞ 6 0;

t!1

which contradicts the assumption (7). This completes the proof of Theorem 1. h pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi If we choose Uðt; s; rÞ ¼ H ðt; sÞH ðs; rÞ, where H 2 X, then we have pffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffi h1 ðs; rÞ H ðt; sÞ h2 ðt; sÞ H ðs; rÞ 0  ; Us ðt; s; rÞ ¼ 2 2 where h1, h2 are defined by (5). From Theorem 1, we can easily obtain the following corollary:

550

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

Corollary 2. If there exist H 2 X and f 2 C1[t0, 1) such that for each r P t0, Z limt!1 sup k1

t

aðsÞH ðt; sÞH ðs; rÞ½DðsÞ þ /ðt; s; rÞRðsÞ  /2 ðt; s; rÞP ðsÞ ds

r

ð14Þ

> 0;

h1 ðs;rÞ h2 ðt;sÞ ffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffi, a(s) and D(s) are defined as in Theorem 1, where /ðt; s; rÞ ¼ p H ðs;rÞ

2

H ðt;sÞ

2

then (1) is oscillatory. Remark 2. Under the appropriate choice of the functions U(t, s, r) and f(t), we can derive many new oscillation criteria for the system (1) from Corollary 2. Because of the limited space, we omit them here. In the sequel, we choose the function U(t, s, r) = (t  s)(s  r)a or U(t, s, r) = (t  s)a(s  r) for a > 1/2. then we have the following interesting oscillation results: Theorem 3. Assume that there exist a function f(t) 2 C1[t0, 1) and a constant a > 1/2 such that a(t)P(t) 6 In for t P t0, and for each r P t0, lim sup

t!1

Z

1 ðt  rÞ

 DðsÞ þ

2aþ1

k1

t 2

aðsÞðt  sÞ ðs  rÞ

2a

r

 at  ða þ 1Þs þ r a RðsÞ ds > ; ðt  sÞðs  rÞ ð2a  1Þð2a þ 1Þ

ð15Þ

where a(s) and D(s) are defined as in Theorem 1, then (1) is oscillatory. Proof. Suppose to the contrary that there exists a prepared solution Y(t) of (1) such that detY(t) 5 0 on [r, 1) for some r > t0. Let V(t) be defined by (8). Similar to the proof of Theorem 1, we have that (13) holds. Noting that a(t)P(t) 6 In for t P t0, we get from (13) Z

t

U2 ðt; s; rÞ½DðsÞ þ Uðt; s; rÞU0s ðt; s; rÞRðsÞ ds 6 r

Z

t

U02 s ðt; s; rÞI n ds;

r

where U(t, s, r) = (t  s)(s  r)a. It follows that Z

t

  at  ða þ 1Þs þ r RðsÞ ds aðsÞðt  sÞ ðs  rÞ DðsÞ þ ðt  sÞðs  rÞ 2

k1 r

Z

6 r

2a

t

U02 s ðt; s; rÞds:

ð16Þ

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

Since Z t r

U02 s ðt; s; rÞds

Z

551

t

½aðt  sÞðs  rÞa1  ðs  rÞa 2 ds Z t Z t 2 2ða1Þ 2a1 ds  2a ðt  sÞðs  rÞ ds ¼ a2 ðt  sÞ ðs  rÞ r r Z t 2a ðs  rÞ ds þ r Z t Z t 2a2 2a1 ¼ ðt  sÞðs  rÞ ds  ðs  rÞ2a ds 2a  1 r r Z t Z t a 2a 2a ðs  rÞ ds ¼ ðs  rÞ ds þ 2a  1 r r a ðt  rÞ2a1 : ¼ ð2a  1Þð2a þ 1Þ ¼

r

Thus, from (16) and the above equalities we have Z t   1 at  ða þ 1Þs þ r 2 2a RðsÞ ds k aðsÞðt  sÞ ðs  rÞ DðsÞ þ 1 ðt  sÞðs  rÞ ðt  rÞ2aþ1 r a 6 ; ð2a  1Þð2a þ 1Þ which contradicts the assumption (15) when we take the sup limit in the above inequality. This completes the proof of Theorem 3. h Let U(t, s, r) = (t  s)a(s  r) for a > 1/2 and note that Z t Z t a a1 2 02 Us ðt; s; rÞds ¼ ½ðt  sÞ  aðt  sÞ ðs  rÞ ds r Z t Zr t 2a 2a1 ðt  sÞ ds  2a ðt  sÞ ðs  rÞds ¼ r r Z t þ a2 ðt  sÞ2ða1Þ ðs  rÞ2 ds Z t Z t r 2a 2a ðt  sÞ ds  ðt  sÞ ds ¼ r r Z t 2a2 þ ðt  sÞ2a1 ðs  rÞds 2a  1 r Z t a a 2a 2aþ1 ðt  rÞ ðt  sÞ ds ¼ : ¼ 2a  1 r ð2a  1Þð2a þ 1Þ Similar to the proof of Theorem 3, the following theorem is immediate. Theorem 4. Assume that there exist a function f(t) 2 C1[t0, 1) and a constant a > 1/2 such that a(t)P(t) 6 In for t P t0, and for each r P t0,

552

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

limt!1 sup 

Z

1 2aþ1

k1

t

aðsÞðt  sÞ2a ðs  rÞ2

ðt  rÞ r  t  ða þ 1Þs þ ar a RðsÞ ds > ; DðsÞ þ ðt  sÞðs  rÞ ð2a  1Þð2a þ 1Þ

ð17Þ

where a(s) and D(s) are defined as in Theorem 1, then (1) is oscillatory.

3. Interval oscillation criteria In this section, we give several interval criteria for the oscillation of system (1), that is, criteria given by the behavior of system (1) (or of P, Q and R) only on a sequence of subintervals of [t0, 1), rather than on the whole half-line. Therefore, our results can be applied to extreme cases such as R1 k1 ½ t0 QðsÞds ¼ 1. Theorem 5. Suppose that for each T P t0, there exist constants b > c P T, f(t) 2 C1[t0, 1) and U 2 Y such that k1 ½T a ðD; R; P ; c; bÞ > 0;

ð18Þ

where a(s) and D(s) are defined as in Theorem 1, then (1) is oscillatory. Proof. In fact, if we replace t, r by b, c, respectively, repeat the proof of Theorem 1, we can show that for every prepared solution Y(t) of (1), detY(t) has at least one zero in [c, b], i.e., detY(t) has arbitrarily large zero on [t0, 1). This completes the proof of Theorem 5. h The following oscillation result is evident. Corollary 6. Assume that for each T P t0, there exist constants b > c P T, f(t) 2 C1[t0, 1) and H 2 X such that Z b k1 aðsÞH ðb; sÞH ðs; cÞ½DðsÞ þ /ðb; s; cÞRðsÞ  /2 ðb; s; cÞP ðsÞ ds > 0; c

ð19Þ where a(s) and D(s) are defined as in Theorem 1, then (1) is oscillatory. 4. Examples Example 1. Consider the following Euler matrix differential system l m Y 00 þ Y 0 þ 2 Y ¼ 0; t t

t P 1;

ð20Þ

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

553

where l, m are constants, P(t) = In, QðtÞ ¼ tm2 I n and RðtÞ ¼ lt I n . Using Theorem 3 of this paper, we will prove that (20) is oscillatory when (l  1)2 < 4m. In fact, let f(t)  0, then for any constant a > 1/2 and for each r P 1, the left-hand side of (15) takes the form lim sup t!1

Z

1 ðt  rÞ

2aþ1

t 2

ðt  sÞ ðs  rÞ

r

m  l2 =4 þ l=2 ds s2

2a

2

¼

2a

m  l =4 þ l=2 ðt  rÞ m  l2 =4 þ l=2 lim : ¼ 2a að2a  1Þð2a þ 1Þ t!1 að2a  1Þð2a þ 1Þ t

Since (l  1)2 < 4m, i.e., 4m  l2/4 + l/2 > 1/4, we can choose an appropriate constant a > 1/2 such that 4m  l2/4 + l/2 > a2, and hence 4m  l2 =4 þ l=2 a > : að2a  1Þð2a þ 1Þ ð2a  1Þð2a þ 1Þ Thus, (15) holds. By Theorem 3, we have that (20) is oscillatory when 2 (l  1)2 < 4m. On the other hand, if (l p1)ffiffiffiffiffiffiffiffiffiffiffiffi P 4m, evidently, (20) has an nonosffi cillatory prepared solution Y ðtÞ ¼ t our results are sharper.

1lþ

ðl1Þ2 4m 2

I n . In this sense, we know that

Example 2. Consider the following matrix differential system Y 00 þ Y 0 þ QðtÞY ¼ 0;

ð21Þ

t P 0;

where Q(t) = q(t)In and 8 3k 6 t 6 3k þ 1; > < cðt  3kÞ; qðtÞ ¼ cðt þ 3k þ 2Þ; 3k þ 1 < t 6 3k þ 2; > : nðt  3k  2Þð3k þ 3  tÞ; 3k þ 2 < t 6 3k þ 3; where c is a constant and k 2 K = {0, 1, 2, . . .}. For any constant T P t0, there exists k 2 K such that 3k P T. Let c = 3k, b = 3k + 1, f(t)  0 and U(t, s, r) = (t  s)(s  r), then we have Z 3kþ1 2 2 k1 ½T a ðD; R; P ; c; bÞ ¼ ½ð3k þ 1  sÞ ðs  3kÞ ðcðs  3kÞ  1=4Þ 3k

þ ð3k þ 1  sÞðs  3kÞð6k þ 1  2sÞ 2

 ð6k þ 1  2sÞ ds: It is easy to see that condition (18) holds for sufficiently large c, and hence, the system (21) is oscillatory for sufficiently large c by Theorem 5. However, in R1 this case we have k1 ½ 0 QðtÞdt ¼ 1.

554

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

Example 3. Consider the following matrix differential system Y 00 þ cos tY 0 þ c sin tY ¼ 0;

t P 0;

ð22Þ

where c is a constant, R(t) = cos tIn and Q(t) = csin tIn. For any constant T P t0, there exists k 2 K such that 2kp P T. Let c = 2kp, b = (2k + 1)p. pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Choose f(t)  0 and Uðt; s; rÞ ¼ j sinðt  sÞ sinðs  rÞj, then we have  cos2 s 2 2 sin s c sin s  k1 ½T a ðD; R; P ; c; bÞ ¼ þ sin scos s  cos s ds 4 0 4c 2 p p ¼    : 3 3 32 2   From Theorem 5, we see that (22) is oscillatory for c > 34 17p þ 23 . 32 Z

p



2



References [1] G.J. Butler, L.H. Erbe, Oscillation results for second order differential systems, SIAM J. Math. Anal. 17 (1986) 19–29. [2] G.J. Butler, L.H. Erbe, Oscillation results for self-adjoint differential systems, J. Math. Anal. Appl. 115 (1986) 470–481. [3] G.J. Butler, L.H. Erbe, A.B. Mingarelli, Riccati techniques and variational principles in oscillation theory for linear systems, Trans. Am. Math. Soc. 303 (1987) 263–282. [4] R. Byers, B.J. Harris, M.K. Kwong, Weighted means and oscillation conditions for second order matrix differential equations, J. Differen. Equat. 61 (1986) 164–177. [5] W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin, Heidelberg, New York, 1971. [6] L.H. Erbe, Q. Kong, S. Ruan, Kamenev type theorems for second order matrix differential systems, Proc. Am. Math. Soc. 117 (1993) 957–962. [7] P. Hartman, Self-adjoint, non-oscillatory systems of ordinary second order, linear differential equations, Duke Math. J. 24 (1957) 25–36. [8] D.B. Hinton, R.T. Lewis, Oscillation theory for generalized second order differential equations, Rocky MT. J. Math. 10 (1980) 751–766. [9] M.K. Kwong, H.G. Kaper, Oscillation of two-dimensional linear second order differential systems, J. Differen. Equat. 56 (1985) 195–205. [10] M.K. Kwong, H.G. Kaper, K. Akiyama, A.B. Mingarelli, Oscillation of linear second-order differential systems, Proc. Am. Math. Soc. 91 (1984) 85–91. [11] F.W. Meng, J. Wang, Z. Zheng, A note on Kamenev type theorems for second order matrix differential systems, Proc. Am. Math. Soc. 126 (1998) 391–395. [12] F.W. Meng, Y.G. Sun, Oscillation of linear Hamiltonian systems, Comput. Math. Appl. 44 (2002) 1467–1477. [13] F.W. Meng, Oscillation results for linear Hamiltonian systems, Appl. Math. Comput. 131 (2002) 357–372. [14] F.W. Meng, A.B. Mingarelli, Oscillation of linear Hamiltonian systems, Proc. Am. Math. Soc. 131 (2003) 897–904. [15] A.B. Mingarelli, On a conjecture for oscillation of second order ordinary differential systems, Proc. Am. Math. Soc. 82 (1981) 593–598.

Y.G. Sun, F.W. Meng / Appl. Math. Comput. 170 (2005) 545–555

555

[16] Y.G. Sun, New oscillation criteria for linear matrix Hamiltonian systems, J. Math. Anal. Appl. 279 (2003) 651–658. [17] Y.G. Sun, F.W. Meng, New oscillation criteria for linear matrix Hamiltonian systems, Appl. Math. Comput. 155 (2004) 259–268. [18] Y.G. Sun, New Kamenev type oscillation criteria for linear matrix Hamiltonian systems, Appl. Math. Comput. 158 (2004) 69–78. [19] Y.G. Sun, New Kamenev type theorems for second-order linear matrix differential systems, Appl. Math. Lett. 17 (2004) 875–880. [20] I. Sowjaya Kumari, S. Umanaheswaram, Oscillation criteria for linear matrix Hamiltonian systems, J. Differen. Equat. 165 (2000) 174–198. [21] Q.R. Wang, Oscillation theorems for second order matrix differential systems, Math. Nachr. 266 (2004) 92–105. [22] X. Yang, Oscillation criteria for certain second-order matrix differential equations, J. Math. Anval. Appl. 265 (2002) 285–295.