Tcuahcdr.x~ Letters, Vol. 33, No. 29, pp. 42254228.1992 Printed in Great Britain
OXIDATION
CMO-4039/92 $5.00 + .oO Pcr&%non Press Ltd
OF ACETALS, DIOXIRANES
AN ORTHOESTER,
THROUGH
AND
ETHERS
BY
IX-CH INSERTlON
Ruggero Curci, *8 Lucia D’Accolti, Michele Fiorentino, Caterina Fusco Cenrro CNN. “M,I.S.U.“, Diportimen:u
di Chinka,
Unir~mitb r/i Rat-i, via Aswr~kda
17.3, l-70126
Bari. 110/y
and Waldemar Adam,* Maria E. GonzBlez-Nuiiez, Rossella Mello Imtirrt/j’iir
Key Work
Orgonrsche Chmic.
- Dioxiranes.
CH insertion,
U~rivernriil
Wiirzbwg. am Hublund, D-8700
Wiiribwg,
Oxygen transfer. AcetaJs. Ethers, Orthoesters,
F. R. G
Oxidation,
Cleavage.
Abstract. Dimethyldiorirane (la) and methyl(rrifluorometh~I)dlo\lrane (lb) effurntly itffurd cledvqc of acztala and of ke~als to c~rbanyl products under mild. neutml conditions Diakyl ethers arc cleaved IU alcohols. aldrhydcs and/
Using conventional the oxyfunctionalization
oxidation reagents, such as lead tetraacetate.1” dioxygen.lb
hydroperoxides.lc
or ozone,2
of ethers and acetals are rarely selective, as they often yield quite complex mixtures of
products; with cyclic ethers. products of oxidative cleavage often arise (Scheme l).* Scheme
1
Metal oxides in their high oxidation states.’ or LiOCl and catalytic amounts of Ru(I1) complexes4 count among the few reagents which are effective for the selective transformation of primary ethers into esters, without further oxidation of the esters to anhydrides and/or carboxylic acids. Also, metal nitrates - e.g., Cu(11) or Zn(I1) nitrate supported on silicagel have been employed to oxidize ethers under mild conditions to the corresponding
ketones
or aldehydes. with no further oxidation of the latter;” with this method. however. in some cases alkyl nitrites are formed as by-products5 Compared to oxidation methods which use metal oxides stoichiometrically oxidations employing
or metal complexes
catalytically,
either i/? sirlc h or isolated’ dioxiranes R’R*CO, (I), a new class of powerful oxidants,8
often have the advantages of simple procedures. mild reaction conditions, ease of product isolation, and increased yields. Thus, dimethyldioxirane
(la:
R1=R2=CH3)7a.9 and methyl(trifluoromethyl)dioxirane
(lb: R’=CH3,
R2=CF,)10 have been applied to perform an impressive variety of useful synthetic uar~sforlnations.6-13
4225
4226
Table
1. Oxidation of acetals and ethers by dioxiranes (la,b).
ItId
CH2CI?/acetone (30:70)
0
24 II
35
lbd
CH2ClflFP
(60:40)
0
2h
98
lbd
CH$&/TFP
(60:40)
0
30 111l.n
0
0
80
(95J ( >9.5)
0
(83) E
H&-W, (3)
18
lac
9611
50
(4) YCzH, C,H,O-7-H
lad
CH~CIZlacekm
(30:70)
0
2 11
95
la’
CH2Cl?/acelO1Ie (30:7O)
0
3 I1
50
M_tO-CH3 (7)
1 br
CClJ
0
IOmm
98
Q
la=
CHZCIZ/acetme (50~50)
0
7011
65
lbC
CH$lflFP
0
10 InhI
98
DC,& (5)
(60:4O)
Q.
(-Jo,
(9)
(8)
lb’
CH?C12iTFP i5O:SO)
0
15min
94
a, (12)
la< lb’
CH2Cltiacetone (40:60) CH2CIflFP (60:40)
18 10
9611 15mitl
(9:10=50 (9:10=65
(10)
~oH(12:13=8~ :a) (13)
30 85
In the course of a recent study on the oxidation of alcohols to carbonyl compounds observed that acetals and hemiacetals”
by dioxiranes,r’~r*
undergo easily oxidative cleavage to carbonyl-containing
these reagents. We present herein some further examples concerning the latter transformation, oxyfunctionalization
:20 )B JO )
of simple ethers. Representative results are shown in Table 1.
we
products by along with the
4227
Solutions of 0.06-0.09 M dimethyldioxirane (lb) in 1.l.l-trifluoropropanone
(la) in acetone or of 050.8
M methyl(trifluoromethyl)dioxirane
(its ketone precursor, hereafter TFP) were obtained by following the reported
protocol .7a*g~‘0The oxidations simply entailed addition of cold aliquots of standardized
9*10dioxirane solution
to the substrates (acetal, ether or otthoester) in dry CH,Cl, (kept at 0 “C, in the majority of cases). at the dioxirane excess and solvent composition
given in Table 1. The reaction progress was monitored by gc/ms; in some cases
(entries 2. 4,and 6, Table 1) ‘H NMR spectra were run periodically on the reaction mixture directly, in which case CD+& was employed in place of CH,Cl, as solvent. The first two entries in Table 1 estnbilish the dioxiranes as excellent agents for the oxidative cleavage of ethylene ketals 2 and 314 under mild conditions: as expected. tt the oxidation rates are much higher with dioxirane lb,loa which is several thousand-fold
more reactive15 than dimethyldioxirane
(la). This method should be synthetically
orthoesters) i/l the absence ofucid catalyst t
useful for the deprotection of masked carbonyl compounds (ace&,
Most likely. the oxidative cleavage is initiated by O-atom insertion into C-H bonds of the 1,3-dioxolane moiety of ketals 2 and 3. Similarly, dimethylacetal
initial O-insertions
(4) and of triethylorthoformate
substrates into methylbenzoate
by the dioxirane
into the methyne
C-H of benzaldehyde
(5) are also involved in the high yield transformation
and diethylcarbonate.
of these
respectively (entries 3 and 4, Table 1).
The products which arise from the cleavage of the simple. unbranched dialkyl ether such as 6 (Table 1) are also envisaged to derive from preliminary U-insertion selecti\x$~at methylene C-H Q to the ether moiety (Scheme 1). In accordance with these results. exposure of t-butyl methyl ether (7) to the action of the more powerful dioxirane lb brings about cleavage into formic acid and tert-butanol (which is resistant to further oxidation”). Interestingly,
ethers 8, 11, and 14
cleavage is not the main course of the dioxirane oxidation of medium-ring
(entries 7-9. Table 1). Rather. by using carefully dried dioxirane solutions (molecular sieves 5A), an alternative route - i.e.. oxidation to lactones (path ii , Scheme 1) - becomes the main process. lactones are accompanied
by variable amounts of the corresponding
(Table 1). Of interest is 3-methyltetrahydropyran place exclusively regioisomer
at the two a-CH2 positions
In most of the cases, the
acetals, the intermediate oxidation products
(14) as substrate (entry 9. Table I), for which insertion takes to afford a-methyl
&valerolactone
(1~5)‘~and its y-methyl
(16).*’ for the observed a functionalization
The high selectivity
speaks for a non-radical C-H insertion. akin to that
of alcohols. ’ ’ In fact, also some p attack would be expected in a
envisaged for the dioxirane oxyfunctionalization
classical radical pathway involving RO’ radicals: for instance. approximately 13% attack at P-CH, was found for the
reaction
of
tetrahydrofuran
3-methyltetrahydropyran
(8)
with
HO’.‘”
Concerning
this,
it should
be noted
that
for
(14) insertion at the p position should be encouraged by the presence of a tertiary C-H;
however, even in this case no product derived from @oxidation was detected. The results reported herein on the oxidations with dioxiranes provide a new entry into the cleavage of acetals to the corresponding
carbonyl products under mild conditions. as well as the direct conversion of cyclic ethers into
lactones, In view of the synthetic utility of these transformations.
further studies concerning
the elucidation of
mechanistic details of these C-H insertions are warranted.
Acknowledgement.
This work was supported
by the Italian National Research Council (C.N.R.) and by the “Progetto
Finalizzato _ C.F.“(C.N.R.). The work in Wiimburg was supported by the Deutsche Forschungsgemcinschaft Reuktiorw~
Meld-okfiricrl
Malrkiiie
at Universiry of Wiirzburg (F.R.G.).
(SFB 347, Se/eLlive
): R.M. and M. 8. G.-N. thank tie Alexander van Humboldt Foundation for fellowships spent
4228
References
and
Notes
1.
(a) Franze, V.: Edens, R. J~s/ns liebig Awt Chrm. 1970. 7.75. 47. (b) Heyns, K.: Buchholz. H. Chem. BL’T1976, 109, 3707. (c) Hosokawa, I.: Imuda. Y.: Murahashi. S.-I. J. Chetn Sot., Chem. Cojn~i. 1983. 1245.
2.
For a review, see: Keinan. E.: Varkony. H. T. in The Chemist OJ Fum-rwwl New York. 1983: Chapter 19, pp 649 ff : see also references therein.
3.
Schmidt, H.; Scheafer. H. Anger.
4.
(a) Bressan, M.: Morvillo. A. J. Chenr. kc.. Iriur-g. Chem. 1990.29, 2976.
5
Nishiguchi. T.: Bougauchi. M. J. Org. Chevi. 1990,55,
6.
(a) Edw~ards. J. 0.; Pater. R. H.; Curci, R.: Di Furia. F. Phntorhenr. Photobial. 1979. .lO, 63. (b) Curci. R.; Fiorentino, M.; Troisi. L.; Edwards. J. 0.: Parer. R. H. J Org. Chm. 1980.45, 475. (c) Cicala, G.: Cut-ci. R.; Fiorentino, M.: Laricchiuta, 0. J Org. Chew. 1982.47, 2679. (d) Curci. R.; Fioremino. M.; Serio. M. R. .I. Chctv. Sot.. Clovn. Co,nm. 1984, 1.55.
7.
(a) Murray,
R. W.; Jeyaraman.
Chm
Ir,t.Ed.
Engl. 1979, 18, 69
; and
Gwr/pps. Pem~ides
references
Chrr~r. Conmt. 1989. 421.
, Patai, S.,Ed.; Wiley:
quoted
(b) Bressan. M.; Morvillo, A.; Romanello, G.
5606.
R. J. Org. Chon. 1985, 50. 2847.
(b) Munay.
R. W.: Singh. M: Jeyaraman.
R.
J. Am. Chew. Sm. 1992. 114, 1346.
a.
For reviews. see: (a) Adam, W.; Curci. R.: Edwards, J. 0. Ace. Chem. Res lY8Y, 22, 205. (b) Murray, R. W. Chem Rev. 1989,89, 1187. (c) Curci. R. in Adwrrces irr O.tygtwared Processes: Baumstark, A. L., Ed.: JAI: Greenwich, CT, 1990: Vol 2, Chapter I. (d) Adam. W.: Hadjiarapoglou. L. P.; Curci, R.; Mello, K. in Urgariir Perodes; Ando, W., Ed.; Wiley, New York: Chapter4. in press. (e) Adam. W.: Hadjiarapoglou. L. P. Topics Cur-r. Chew. in press.
9.
(a) Cassidei. L.: Fiorentino, M.: Mello. R.: Sciacovelli. 0.: Curci, R. J Org. Chern. 1987, (b) Adam. W.: Chair, Y.-Y: Cremer. D.; Gauss, J.: Scheutzow, D.; Schindler. M. J Org. Chem. 1987.52, 2800.
10.
(a) Mello. R.: Fiorentino. M.: Sciacovelli. 0.: Curci. R. J. 0,g C‘hcn 1988. 53. 3890. (b) Mello. R.; Fiorentino, M.: Fusco. C.; Curci. R. J. Am Chen? Sm. 1989. J II, 6749. (c) Adam. W.: Curci, R.: Gonzalez-Nufiez. M. E.: Mello, R. J. Ant Chem. Sm. 1991. 113. 7654.
11.
Mello, R.: Cassidei, L.; Fiorentino. M.; Fusco. C.: Htimmer. W.: JBger. V.; Curci, R. J. Am. Chem. Sm. 1991, 113. 2205.
12.
Abou-El&tab,
13.
For some recent examples, see: (a) Adam, W.: Asensio. G.: Curci, R.; Gonzales-Nuiiez, M. E.; Mello, R. J. 01%. Chem. 1992,57, 953. (b) Brown, D. S.: Marples. B. A.: Muxworthy. J. P.: Baggaley, K. H. d. Chcm. Resrmch /S) 1992, 28. (c) Bovicelli. E Lupattelli. P.: Mincione, E.: Prencipe. T.; Curci. R. J. 0~ Chest. 1992,57. in press.
14.
Dauben. H. J.: Loren. B.; Ringold, H. J. J. A m Chent. Sot. 1954. 76. 1359.
1.5.
Mello, R.: Cassidei. L.; Fiorentino. M.: Fusco. C.: Curci, R. Tetrahckorf
16.
(a) 3-Methyl-tetrahydropyran-(2H).2-one (15): bp 71-75 “C (6 mmHg) 16b; ft-ir: 1776 (C=O str.). 1141 (C-O str.) cm-l, etc.; 1H nmr (CDC13, 200 MHz) 8 1.22 (d, 3 H. CH3. J = 6.9 Ha), 1.3 - 2.2 (camp’?x m, 3 I-I). 2.55 (m, 2 H. CH2), 4.25 (m. 2 H); ms (70 eV) TX/Z (I’. i.) 114 (28. M+), 99 (4), 70 (15, ‘CH2CH(CH3)CrOf 1. 55 (100, [jnlz 70-CH3] ), 42 (98). etc.. (b) Kurata, K.; Tanaka. S.; Takthashi. K. Chem Phorm. Bull. (Tdioi 1976.24, 538.
17.
(a) S-Methyl-tetrahydropyran-(ZH).Z-one (16): bp 86 ‘C (2 nnnI-Ig) t’b; ft-ir: 1781 (C=O str.), 1144 (C-O str.) cm-t, etc.: 1H nmr (CDC13. 200 MHz) 6 0.98 (d. 3 H. CHJ. J = 6.6 Hz). 1.2 - 2.2 (m. 3 H). 2.40 (m. 2 H. CH2). 3.90 (m ,2 H,
M.; Adam, W.: Saha-Miiller. C. R. Liebig.r Auu Chm
(a) C. Walling. G. M. El-Taliawi and R. A. Johnson. /. Am. Chm 1975,8. 125.
(Received in UK 13 April 1992)
699.
1991. 44.5.
L&I. 1990.31.
3067
CH2); ms (70 eV) m/z (r. i.) 114 (14. M+). 84 (16). 70 (17). 56 (81. ‘CH2CH2C=O+ (b) Surzur, J.-M.: Teissier, P. 8~11. Snc. Chum. Fru~~ce 1970. 653.
18.
52,
1. 55 (51). 42 (loo),
etc..
Ser. 1974, 96. 133. (b) C. Walling. Arc. Chcm. Res.