C H A P T E R
I
Oxidations with Lead Tetraacetate GEORGE
M.
RUBOTTOM
I. Introduction II. LTA Reactions with Hydroxyl Groups A. Alcohols B. 1,2-Diols and Related Systems C. Enols and Related Systems D. Phenols E. Monocarboxylic Acids F. Dicarboxylic Acids III. LTA Reactions with Nitrogen-Containing Compounds A. Amines and Related Compounds B. Amides C. Hydrazines and Related Compounds D. Azomethines IV. LTA Reactions with Hydrocarbons A. Alkanes B. Aromatic Hydrocarbons C. Alkenes V. LTA Reactions with Organometallics
1 2 2 27 37 5 5
61 81 89 89 98 101 118 122 122 127 131 140
I. Introduction Lead tetraacetate [(LTA), m p 175°C] was first isolated in 1851 and has been used extensively as an oxidant by organic chemists since 1920. Although L T A can be produced in the laboratory by the reaction of red lead oxide ( P b 0 ) with acetic acid in the presence of acetic a n h y d r i d e , the reagent is commercially available at moderate cost. The commercial L T A contains 10% acetic acid to retard decomposition due to reaction with water. This acetic acid is readily removed either by washing the L T A with anhydrous 1
2
3
1
2
4
A. Jacquelain, J. Praku Chem. 53, 151 (1851). J. C. Bailar, Inorg. Synth. 1, 47 (1939). 1 Oxidation in Organic Chemistry, Part D Copyright © 1982 by A c a d e m i c Press, Inc. All rights of reproduction in any form reserved I S B N 0-12-697253-2
2
GEORGE Μ. RUBOTTOM
ether or by azeotropic distillation with benzene just prior to use. L T A is compatible with a number of c o m m o n solvents including acetic acid, ben zene, methylene chloride, chloroform, nitrobenzene, pyridine, D M F , and DMSO. L T A exists as a m o n o m e r in the solid state and in both benzene and acetic acid solution. A distorted cubic geometry has been proposed with both oxygen atoms of each acyloxy group coordinated with l e a d . Infrared mea surements support this a r r a n g e m e n t . The solubility and conductance properties of L T A suggest that the c o m p o u n d is covalent, but in acetic acid or carboxylic acid solvents, in general, rapid ligand exchange occurs between L T A and the solvent. Oxidation of inorganic compounds by L T A is facilitated by the high redox potential, 1.6 V in perchloric acid, of the reagent. With organic c o m p o u n d s L T A is normally reduced to lead(II) acetate in reactions involving both homolytic and heterolytic mechanisms. Photolysis of L T A affords lead(II) acetate and acetoxy radicals as primary p r o d u c t s . The basic properties of L T A as an oxidizing agent have been reviewed and several excellent general reviews on the reactions of L T A with organic substrates are e x t a n t . Reviews concerning the behavior of L T A toward specific functional groups are cited where appropriate in the text. The primary literature included in this chapter covers mainly the period of 1970 through January, 1980. 3
4
5
4
6
7
8
7
9-
1
2
II. LTA Reactions with Hydroxyl Groups A. ALCOHOLS
The treatment of alcohols with L T A leads to the formation of acetates, oxidation to the corresponding aldehyde or ketone, fragmentation, and 3 4 5 6 7
9
1 0
G. Rudakoff, Z. Naturforsch. B. Anorg. Chem., Org. Chem. 17, 623 (1962). R. Partch and J. Monthony, Tetrahedron Lett., 4427 (1967). K. Huesler and H. Loeliger, Helv. Chim. Acta 52, 1495 (1969). E. A. Evans, J. L. Huston, and Τ. H. Norris, J. Am. Chem. Soc. 74, 4985 (1952). J. Zyka, Pure Appl. Chem. 13, 569 (1966). V. Franzen and R. Edems, Angew. Chem. 73, 579 (1961). R. N. Butler, in "Synthetic Reagents" (J. S. Pizey, ed.), p. 277, Ellis Horwood, Chichester, England, 1977. L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis," p. 537; Vol. 2, p. 234; Vol. 3, p. 168; Vol. 4, p. 278; Vol. 5, p. 365; Vol. 6, p. 313; Vol. 7, p. 185. Wiley, New York, 1967. G. W. Rotermund, in "Houben-Weyl, Methoden der Organischen Chemie" (E. Muller, ed.), 4th ed., Vol. IV/lb, p. 167. Thieme, Stuttgart, 1975. H. O. House, "Modern Synthetic Reactions," 2nd ed., p. 359. Benjamin, California, 1972. R. Criegee, in "Oxidation in Organic Chemistry" (Κ. B. Wiberg, ed.), Part A, p. 277. Academic Press, New York, 1965.
1 0 a
1 1 1 2
/. Oxidations
with Lead
Tetraacetate
3
cyclization. The parameters leading to each mode of behavior have been thoroughly discussed with respect to substrate structure and solvent effects. Comprehensive lists of examples have also been t a b u l a t e d . The formation of acetates is a process that accompanies most L T A oxidations. The retention of configuration encountered in the acetate has led to postulation of the generalized attack of the alcohol on the acetate carbonyl of a lead(IV) species and/or acetic acid (or anhydride) attack on an alkoxy lead(IV) i n t e r m e d i a t e . Although the use of benzene seems to maximize acetate production (when cyclization is not possible) whereas 1 3 , 1 4
13
ο
X Χ = Η, Pb(OAc) , or COCH3 3
pyridine minimizes it, generalizations are dangerous as shown by the p r o duction of l . 1 5
(ref. 15) 1 (62%)
The L T A oxidation of primary and secondary alcohols to the correspond ing aldehyde or ketone can be a moderately high yield p r o c e s s . With the 1 6 - 1 8
(ref. 16)
(74%) 1 3
1 4 1 5
1 6
M. Lj. Mihailovic and R. E. Partch, in "Selective Organic Transformations" (B. S. Thyagarajan, ed.), Vol. II, p. 97. Wiley (Interscience), New York, 1972. M. Lj. Mihailovic and 1. Cekovic, Synthesis, 209 (1970). Β. M. Trost, R. M. Cory, P. H. Scudder, and Η. B. Neubold, J. Am. Chem. Soc. 95, 7813 (1973). D. J. Ward, W. A. Szarek, and J. Κ. N. Jones, Carbohydr. Res. 21, 305 (1972).
4
GEORGE Μ. RUBOTTOM
3 4
33 55
co-(2-adamantyl)alkan-l-ols, the production of aldehyde was accompanied by acetate formation as w e l l . As noted by the examples, the use of pyridine gives maximum yields of carbonyl derivatives. This is in sharp contrast to the role of acidic or apolar solvents such as acetic acid or benzene wherein products of substitution, fragmentation, and cyclization become para m o u n t . This dramatic shift in reaction pathway can be attributed to the occurrence of a heterolytic mechanism in pyridine while homolytic routes prevail in both acetic acid and b e n z e n e . It has been suggested that the carbonyl formation that does occur in the absence of pyridine arises from heterolytic disproportionation of the dialkoxylead(IV) derivative 2 ' " 18
1 7
1 3 , 1 4
1 4
Η
1 9
2 1
V OCHRR'
RR'Cv> £Pb(OAc)
2
2
in line, for instance, with studies on the oxidation of benzyl alcohol and 1-phenylethanol in which the reaction is first order with respect to L T A and second order with respect to a l c o h o l . The role of pyridine is generally believed to involve [ R O P b ( O A c ) · py] f o r m a t i o n , and the suggestion has been made that P b — Ν bond formation increases the electrophilicity of 20
1 4 , 2 0
3
1 7
1 8 1 9 2 0 2 1
J. Burkhard, J. Janku, V. Kubelka, J. Mitera, and S. Landa, Collect. Czech. Chem. Commun. 39, 1083 (1974). J. Burkhard, J. Janku, and S. Landa, Collect. Czech. Chem. Commun. 39, 1072 (1974). Y. Pocker and B. C. Davis, J. Chem. Soc. Chem. Commun., 803 (1974). Κ. K. Banerji, S. K. Banerjee, and R. Shanker, Indian J. Chem. Sect. A 15, 702 (1977). Κ. K. Banerji, S. K. Banerjee, and R. Shanker, Bull. Chem. Soc. Jpn. 51, 2153 (1978).
/. Oxidations
with Lead
Tetraacetate
5
the complex and thus favors α-hydrogen removal over the homolysis which occurs when neutral or acidic conditions p e r t a i n . The rate-determining nature of the p r o t o n removal step has been shown by isotope s t u d i e s , ' and transition state 3 has been proposed for the carbonyl forming oxidation of both benzyl alcohol and 1-phenylethanol. 20
1 4
2 0 , 2 1
20
3
In cases where either 1,4- or 1,5-hydrogen transfer is possible, another m o d e of carbonyl formation becomes important when benzene (homolytic conditions) is used as s o l v e n t . 2 2 , 2 3
OPb(OAc),
«.
D l o s s
NCHJ<°
" γ ( C H ^ R
homolysis
1. -e; Ό' or "(CHJP^
2.-H
+
Ο (CH )^ ^ S
2
R
As noted above, although the reactions of alcohols with L T A to form esters and to undergo heterolysis in pyridine have received attention, a great deal more work has been devoted to the study of homolytic fragmentation and cyclization of alcohols by L T A in neutral a n d / o r acidic m e d i a . Scheme 1 indicates the generally accepted pathway leading to b o t h cycliza tion and f r a g m e n t a t i o n . Fragmentation occurs best when substituents favor the stabilization of 4 and when ring strain can be released. Radical 4 then is oxidized to the corresponding carbocation 5 that undergoes typical 1 3 , 1 4
14,233
2 2
2 3 2 3 a
D. Jeremic, S. Milosavljevic, V. Andrejevic, M. Jakovljevic-Marinkovic, 2. Cekovic, and M. Lj. Mihailovic, J. Chem. Soc. Chem. Commun., 1612 (1971). S. Milosavljevic, D. Jeremic, and M. Lj. Mihailovic, Tetrahedron 29, 3547 (1973). W. S. Trahanovsky, in "Methods in Free-Radical Chemistry" (E. S. Huyser, ed.), Vol. 4, p. 133. M. Dekker, New York, 1973.
6
GEORGE Μ. RUBOTTOM
+ Pb(OAc)
2
SCHEME 1
carbonium ion r e a c t i o n s . ' Production of 6 , 7 , and 8 reflects the importance of radical stabilization as does the increased a m o u n t of frag mentation noted from irafls-2-methylcyclohexanol as opposed to cycloh e x a n o l . The preparative cleavage of both a- and jS-amyrin to give the corresponding seco aldehyde is another case in p o i n t . 1 4
2 3 3
2 4
2 5
2 5 a
26
2 6 3
(ref. 24)
6 (99%) 2 4 2 5 2 5 a 2 6 2 6 a
H. Kakisawa, T. Horie, and T. Kusumi, Bull. Chem. Soc. Jpn. 48, 727 (1975). W. P. Schneider and R. A. Morge, Tetrahedron Lett., 3283 (1976). K. Shankaran and A. S. Rao, Indian J. Chem. Sect. Β 18, 507 (1979). J. Bosnjak, V. Andrejevic, £. Cekovic, and M. Lj. Mahailovic, Tetrahedron 28, 6031 (1972). A. K. Devi, G. K. Trivedi, and S. C. Bhattacharyya, Indian J. Chem. Sect. Β 16, 8 (1978).
/. Oxidations with Lead
α-amyrin β-amyrin
Η Me
1
Tetraacetate
Me Η
The effect of relieving ring strain can be seen in the oxidation of a series of steroidal and triterpenoidal cyclobutanols to give either the corresponding hydroxyketones or h e m i a c e t a l s . " Arguments involving substituent steric interactions have been advanced to explain the predominance of both types of p r o d u c t . Patchouli alcohol fragments when treated with L T A in 2 7
2 9
29
(ref. 27)
2 7 2 8 2 9
H. Wehrli, M. S. Heller, K. Schaffner, and O. Jeger, Helv. Chim. Acta 44, 2162 (1961). R. Imhof, W. Graf, H. Wehrli, and K. Schaffner, J. Chem. Soc. Chem. Commun., 852 (1969). W. Herz and D. H. White J. Org. Chem. 39, 1 (1974).
8
GEORGE Μ. RUBOTTOM
Λ
OH
AcO LTA (ref. 29)
benzene **C0 Me 2
benzene/calcium carbonate, give a 40% yield of 9 in a reaction that may well be c o n c e r t e d . ' Fragmentation of bridged steroidal alcohols has been 3 0
3 0 3
r-.B (refs. 30, 30a)
9(40%)
used as part of a scheme directed toward the study of photolytically mediated remote o x i d a t i o n . 31
K>
Although treatment of 10 with L T A led to no useful cleavage p r o d u c t s , recent studies have shown that, in general, cyclopropanols fragment readily when treated with L T A . ' Cleavages of both 11 and 12 are stereospecific. Comparisons of the products obtained from L T A ^-fragmentation of alcohols with those obtained from L T A decarboxylation of analogous carboxylic acids (Section ΙΙ,Ε) point to the intervention of similar, if not 32
3 3
3 0 3 0 a 3 1
3 2 3 3
3 4 3 5
3 4
35
A. F. Thomas and M. Ozainne, J. Chem. Soc. Chem. Commun., 120 (1977). A. F. Thomas and M. Ozainne, Helv. Chim. Acta 62, 361 (1979). R. Breslow, S. Baldwin, T. Flechtner, P. Kalicky, S. Liu, and W. Washburn, J. Am. Chem. Soc. 95, 3251 (1973). E. J. Corey, Z. Arnold, and J. Hutton, Tetrahedron Lett., 307 (1970). G. M. Rubottom, R. Marrero, D. S. Krueger, and J. L. Schreiner, Tetrahedron Lett., 4013 (1977). T. L. Macdonald, Tetrahedron Lett., 4201 (1978). G. M. Rubottom, unpublished results.
/. Oxidations with Lead
Tetraacetate
1. LTA HOAc 2.H 0
9
(ref. 33)
2
(62-92%)
(ref. 35)
identical, reaction intermediates, presumably the alkyl r a d i c a l s . ' ' The case p r e s e n t e d is illustrative and similar findings have been noted for systems leading to the cyclopropylcarbinyl/cyclobutyl interface. Another interesting aspect of the fragmentation reaction involves the reversibility of the cleavage process that can lead to stereochemical changes 2 3 3
36
37
3 6
3 7
10
GEORGE Μ. RUBOTTOM I^N/^OH
OH
t-Bu
(ref. 36)
,CO H
COJJH
A
Products t-Bu
t-Bu
in 13. T h e examples given indicate that the p h e n o m e n o n is quite gen eral,
2 6
'
2 9
'
3 8
•o
Products
R
1
R
2
^R
4
R
R
3
4
R
13
R ^ R 1
S v
2
s
a n d the reader is directed to references 29 a n d 38 for m o r e examples. LTA
ΓΥ \ Μ
Other oxidation products
OR R
% yield
Η Ac
5.7 2.3
(ref. 26)
OMe
(ref. 38) CO M(: A
3 6
3 7
3 8
M. Lj. Mihailovic, J. Bosnjak, and 1. Cekovic, Helv. Chim. Acta 57, 1015 (1974). M. Lj. Mihailovic, J. Bosnjak, and 1. Cekovic, Helv. Chim. Acta 59, 475 (1976). J. J. Partridge, Ν. K. Chada, S. Faber, and M. R. Ushokovic, Synth. Commun. 1, 233 (1971).
/. Oxidations with Lead
Tetraacetate
11
(ref. 29)
(40%)
The products shown above reflect the other major pathway noted in alcohol oxidation with LTA, c y c l i z a t i o n . Table I contains the results of other recent studies involving cyclic a l c o h o l s . " The mechanism of cyclization has been extensively studied and these findings r e v i e w e d . The generally accepted pathway is shown below. 13,14
1 8 , 2 6 , 3 9
4 2
1 3 , 1 4
R
16 3 9
3 9 a 4 0
4 1 4 2
W. T. Borden, V. Varma, M. Cabell, and T. Ravindranathan, J. Am. Chem. Soc. 93, 3800 (1971). A. B. Crow and W. T. Borden, J. Am. Chem. Soc. 101, 6666 (1979). T. Kato, S. Kumazawa, C. Kabuto, T. Honda, and Y. Kitahara, Tetrahedron Lett., 2319 (1975). P. Brun and B. Waegell, Bull. Soc. Chim. Fr., 1825 (1972). P. Brun and B. Waegell, Tetrahedron 32, 1137 (1976).
12
/%
OH
/Of
OH
Τ
y
—
u
—OR
^OH
%V
Γ
R
OH
R
2
Γ Γ
.OH
Substrate
Benzene/CaC0
Benzene/CaC0
—
3
3
3
3
3
Benzene/CaC0
Benzene/CaC0
Benzene/CaC0
Conditions
> Η
^i\^"""Cl
o""
|o
V>·
o—*
o ^ /
1
*S
R
R2
)
Product
LTA-PROMOTED CYCLIZATION OF ALCOHOLS
TABLE I
Rf
Rf
0.8 1.5 Η
77
Η 25-28 Me 51
JR
44
60
Η
3 Η Η Me 9.5 Η Me Me 55 Η
t-Bu
Η
% Yield
42
41
40
39, 39a
26
26
Reference
13
υ
Benzene/CaC0 3
3
3
Benzene/CaC0
—
Benzene/CaC0
f n
0·*
c Ρ
0 gQ
Jg g 0
-(CH,)
rL
^ 1
2
57
1
29
1 67 2 1
2?. 1 — 2 21
18
18
18
14
GEORGE Μ. RUBOTTOM
As noted in Table I and the generalized mechanism, the product most commonly formed is a tetrahydrofuran derivative rather than a tetrahydropyran, a fact accounted for by the favorable transition state 14 for 1,5-hydrogen m i g r a t i o n . ' The optimal nonbonded distance between the 1 3
1 4
14
(5-carbon and oxygen has been determined to be 2.5-2.7 A 1 3 , 1 4 In general, alkyl substitution at the <5-center aids abstraction due to stabilization of 14, whereas substitution at the α-center slows the process. Since the radical 15 and/or carbonium ion 16 are intermediates, stereospecificity is not observed in the final cyclization s t e p . ' ' When rigid geometry offers close prox imity to a remote hydrogen, formation of rings other than those containing five members can o c c u r . On the other hand, geometry that can remove 1 3
1 4
4 3
4 4 - 4 6
(49%)
(19%)
M. Lj. Mihailovic, S. Gojkovic, and S. Konstantinovic, Tetrahedron 29, 3675 (1973). V. Pouzar and A. Vystr£il, Collect. Czech. Chem. Commun. 43, 2190 (1978).
/. Oxidations with Lead
No _LTA/CaCQ reaction benzene R=OH;R'=H
Tetraacetate
15
LTA/CaC0 benzene R= H; R' = OH 3
3
R
(ref. 46) (77%)
LTA/CaCQ benzene
3
No reaction
(ref. 42)
the oxygen from a remote hydrogen retards the r e a c t i o n . ' ' In one instance, rearrangement occurs prior to ether formation resulting, once again, in the production of a five-membered r i n g . 4 2
4 5
4 6
47
LTA cyclohexane
(ref. 47) AcO
AcO
Oxidation of 17 with L T A to give 18 as the major product has been interpreted to involve carbonium ion 19 since oxidation with both H g O / B r or A g C 0 / B r should not involve ionic i n t e r m e d i a t e s . 2
48
2
3
2
PhsC
[Ox]
OH
Ph
PhsC
Ph OH
18
17
LTA HgO/Br Ag C0 /Br 2
2
3
2
5.5 6 4
59 33 19
19
(ref. 48)
V. Pouzar, J. Protiva, E. Lisa, E. Klinotova, and A. Vystroil, Collect. Czech. Chem. Commun. 40, 3046 (1975). M. Fisch, S. Smallcombe, J. C. Gramain, M. A. McKervey, and J. E. Anderson, J. Org. Chem. 35, 1886(1970). P. Morand and A. Palakova-Paquet, Can. J. Chem. 51, 4098 (1973). M. Lj. Mihailovic, G. Misosevic, and A. Milovanovic, Tetrahedron 34, 2587 (1978).
16
GEORGE Μ. RUBOTTOM
The cis/trans ratios obtained from the oxidation of 2 0 with L T A relative to those encountered with added F e ( C 1 0 ) or C u ( B F ) indicate that cationic cyclization predominates with LTA, whereas cyclization in the presence of Cu(II) or Fe(III) proceeds via intermediates such as 2 1 . 4
3
4
2
4 9
[OK]
OH 20
cis/trans LTA LTA/Fe(III) LTA/Cu(II)
3.9 2.0 0.2
(ref. 49)
Cu-
21
Isotope studies utilizing 2 2 and 2 3 have shown a 20-fold preference for trans-hydrogen abstraction via a chair (or "half-chair-like") transition
t-Bu
i-Bu
OH 22
OH 23
s t a t e . The process has also been found to parallel closely abstraction reactions induced by electron i m p a c t . ' Introduction of remote double bonds into alcohols oxidized with L T A gives the opportunity for neighboring group p a r t i c i p a t i o n . ~ In these 50
5 0
5 1
1 3 , 5 2
4 9 5 0 5 1 5 2
5 3 5 4 5 4 a 5 5 5 5 a 5 5 b
5 5 b
J. T. Groves, Tetrahedron Lett., 3113 (1975). G. Eadon, J. Am. Chem. Soc. 98, 7313 (1976). Μ. M. Green, J. G. McGrew, II, and J. M. Moldowan, J. Am. Chem. Soc. 93, 6700 (1971). R. M. Moriarty in "Selective Organic Transformations" (B. S. Thyagarajan, ed.), Vol. II, p. 183. Wiley (Interscience), New York, 1972. T. Sasaki, S. Eguchi, and T. Kiriyama, J. Org. Chem. 38, 2230 (1973). M. P. Zink, J. Ehrenfreund, and H. R. Wolf, Helv. Chim. Acta 57, 1116 (1974). N. Langlois and R. Z. Andriamialisoa, J. Org. Chem. 44, 2468 (1979). P. K. Grant, R. T. Weavers, and C. Huntrakul, Tetrahedron 29, 245 (1973). M. P. Bertrand, J. M. Surzur, M. Boyer, and M. Lj. Mihailovic, Tetrahedron 35, 1365 (1979). R. B. Gupta and R. N. Khanna, Indian J. Chem. Sect. Β 16, 35 (1978).
/. Oxidations
with Lead
Tetraacetate
17
(ref. 53)
(ref. 54) (61%)
(ref. 54a)
(ref. 55)
cases π-interaction with L T A can mediate p r o d u c t s ; however, " n o r m a l " alcohol fragmentation and cyclization can compete as w e l l . ' " An interesting example of epoxide formation occurs when the appropriate allylic alcohol is treated with either L T A or P b ( O C O C F ) . 5 4
5 8
5 7
5 8 5 9
5 8
5 9
3
5 6
5 6
4
Μ. Lj. Mahailovic, 2. Cekovic, J. Stankovic, S. Djokic-Mazinjanin, D. Marinkovic, and S. Konstantinovic, Glas. Hem. Drus., Beograd 43, 69 (1978). M. Lj. Mahailovic, 2. Cekovic, J. Stankovic, N. Pavlovic, S. Konstantinovic, and S. DjokicMazinjanin, Helv. Chim. Acta 56, 3056 (1973). J. Ehrenfreund, M. P. Zink, and H. R. Wolf, Helv. Chim. Acta 57, 1098 (1974). D. Westphal and E. Zbiral, Liebigs Ann. Chem., 2038 (1975).
GEORGE Μ. RUBOTTOM
18
(ref. 59) CH N0 3
*s<-^2
2
(12%) A c o m b i n a t i o n of L T A a n d iodine (the hypoiodite reaction) has also been used with varying degrees of success for the formation of cyclic ethers, especially in polycyclic s y s t e m s . A representative n u m b e r of examples are given in Table I I " a n d others can be found in reference 60. 60
6 1
6 7 c
?
6 0 6 1 6 2 6 3 6 3 a
6 3 b
6 4 6 5 6 6 6 7 6 7 a 6 7 b 6 7 c
J. Kaluoda and K. Heusler, Synthesis, 501 (1971). T. Nakano and A. K. Banerjee, Tetrahedron 28, 471 (1972). T. Nakano and A. K. Banerjee, Tetrahedron Lett., 165 (1971). H. Khan, A. Zaman, G. L. Chetty, A. S. Gupta, and S. Dev, Tetrahedron Lett., 4443 (1971). A. K. Banerjee, C. D. Ceballo, Μ. N. Vallejo, and Ε. H. Bolivar, Bull. Chem. Soc. Jpn. 52, 608 (1979). A. L. Campbell, Η. N. Leader, C. L. Spencer, and J. D. McChesney, J. Org. Chem. 44, 2746 (1979). J. Bull and C. Van Zyl, Tetrahedron 28, 3957 (1972). J. Wicha, Tetrahedron Lett., 2877 (1972). P. Roller, B. Tursch, and C. Djerassi, J. Org. Chem. 35, 2585 (1970). M. Kaufman, P. Morand, and S. A. Samad, J. Org. Chem. 37, 1067 (1972). P. Kooovsky and V. Cerny, Coll. Czech. Chem. Commun. 44, 2275 (1979). H. Suginome, N. Sato, and T. Masamune, Bull. Chem. Soc. Jpn. 52, 3043 (1979). P. K. Jadhav and U. R. Nayak, Indian J. Chem. Sect. Β 16, 952 (1978).
/\ Η
χ
c
i
]1
OH
i
OH
I
OH
1?I τ
Substrate
3
LTA/CaC0 /I cyclohexane
2
LTA/I /Av
2
2
1. L T A / C a C 0 cyclohexane 2. I /Av
Conditions
3
2
00%)
ΓΗΤ
6 3
^ \ ^ O R
^y^o (%) X w JJ
^-Ο
Η
Product
LTA/1 -PROMOTED CYCLIZATION OF ALCOHOLS
T A B L E II
(43%)
100
30
% Yield
(cont.)
63a
63
61,62
Reference
20
ρ
Τ
HOy Η
Substrate
=5
R
CH
17
2
LTA/I benzene
2
LTA/I benzene
2
LTA/I /Av benzene
Conditions
/ \
C
Ο
C)
\ ^
S
1
(
Product
CIV
9
TABLE II (cont.)
>
£ β
Η
1 7
'
10
68, mixture
% Yield
65
64
63b
Reference
21
RCT
AcO^
AcO^
^ \
Br 1 OH
c
R'O. /
1 Η J ΒJ
C
H
. 8 17
3
LTA/CaC0 /I benzene
2
3
2
1. LTA/CaC0 cyclohexane 2. l /hv
2
LTA/I /Av/HOAc cyclohexane
c ο
1
J κ1
RO^^^ Br
A c O ^ ^
C
1
°Y
<
D
Β J
1
ΤΗ jC '
/
17
Η
. 8 17
C«H
R R' (%) Ac Bz 43 Bz Bz 80 Bz Ac 25
43
—
67a
67
66
(cont.)
2
|^ Η
\/
OH
**CH OH
Oc
0
c
AcO
Substrate
\
Η
LTA/Ι,/Λν cyclohexane
2
LTA/I //zv cyclohexane
3
2
LTA/CaC0 /I Av/cyclohexane
Conditions
ΤΗ
/
c
^ £ ^
V Η
Η /
Product
^· ι—^
TABLE II (cont.)
J""H
\
73
~ 8 0 as 1/1 mixture
27
% Yield
67c
67c
67b
Reference
/. Oxidations
with Lead
Tetraacetate
23
The generally accepted mechanism of the r e a c t i o n involves initial trans formation of the alcohol to a hypoiodite 2 4 which then undergoes homolysis to afford 2 5 . Hydrogen abstraction followed by iodohydrin formation 2 6 and ring closure via an S 2 process produces 2 7 . In the presence of a second 60
N
OH
LTA
+
-I
25
24
R^ . / H
OH
Q/H
26
27
equivalent of L T A , the iodohydrin 2 6 can be diverted to 2 8 and thus to 2 9 . This reaction has been put to practical use as a lactone s y n t h e s i s . W h e n 29
Λ
OH
LTA
R
OPb(OAc)
"
26
3
28
29
access of iodine radical (or iodine) to the radical 3 0 is sterically blocked, HO,
^ \
1. LTA/I /CaCO h v/cyclohexane 2
s
Q-
Ο^^Ν***^
2. Jones Ox.
(ref. 29) HO
1. LTA/VCaC0 h ν /cyclohexane 3
°
:
2. Jones Ox. Me0 C 2
Me0 C 2
(40%)
24
GEORGE Μ. RUBOTTOM
or S 2 displacement from 31 is sterically or geometrically unfavored, the formation of 3 2 can p r e d o m i n a t e . ' Subsequent transformations of the N
2 9
6 8
u
31
alkene 3 2 with the LTA/iodine reagent led to the products isolated from the reaction. The product spectrum obtained from the LTA/iodine treatment of 16-e«M7-kauranol is illustrative. 68
LTA/Ia/CaCOjA^ cyclohexane
(ref. 68)
A. J. McAlees and R. McCrindle, Can. J. Chem. 51, 4103 (1973). C. Singh, J. Singh, and S. Dev, Tetrahedron 33, 1759 (1977). W. H. W. Lunn, J. Chem. Soc. C, 2124 (1970).
/. Oxidations
with Lead
Tetraacetate
25
Cyclic ether formation from straight-chain aliphatic alcohols has also been observed with the LTA/iodine r e a g e n t . ' With 3 3 cyclization is 4 3
6 9
(ref. 69)
(40%)
accompanied by f r a g m e n t a t i o n . This latter process becomes the major pathway when cyclization is impossible. This reaction has been put to excellent synthetic use in the fragmentation of a n u m b e r of a d a m a n t a n o i d systems. Fragmentation was also noted with both the enmein-type 69
7 0 - 7 2
(ref. 70, 70a)
(ref. 71)
(refs. 71a, 71b)
7 0 8 7 1 7 1 a 7 1 b 7 1 c 7 2
Z. Majerski and Z. Hamersak, Org. Synth. 59, 147 (1979). Z. Hamersak, D. Skare, and Z. Majerski, J. Chem. Soc. Chem. Commun., 478 (1977). Z. Majerski, Z. Hamersak, and D. Skare, Tetrahedron Lett., 3943 (1977). Z. Majerski, S. Djiga§, and V. Vinkovic, J. Org. Chem. 44, 4064 (1979). Z. Majerski and J. Janjatovic, Tetrahedron Lett., 3977 (1979). R. M. Black and G. B. Gill, J. Chem. Soc. Chem. Commun., 172 (1971).
26
GEORGE Μ. RUBOTTOM
compounds 3 4 and the cage molecule 3 5 . In each instance, the respec tive iodo formates 36 and 37 were obtained. Finally, a combination of 7 3
7 3 a
Η OMe Η
Η OAc OAc
37 (81%) 7 3 7 3 a
Ε. Fujita, I. Uchida, and T. Fujita, Chem. Pharm. Bull. 22, 1656 (1974). L. A. Paquette, W. J. Begley, D. Balogh, M. J. Wyvratt, and D. Bremner, J. Org. Chem. 44, 3630 (1979).
/. Oxidations with Lead
Tetraacetate
27
fragmentation, oxidation, and cyclization was observed with 3 8 .
2 9
B. 1,2-DIOLS A N D R E L A T E D S Y S T E M S
The cleavage of 1,2-diols to afford carbonyl c o m p o u n d s is one of the most commonly used L T A reactions. The ability of L T A to cleave trans-aioh and the compatibility of the reagent with aprotic as well as protic solvents recommend L T A when comparison is m a d e with other standard 1,2-diol cleaving agents such as periodate. The mechanistic aspects of the reaction have been well studied and the results r e v i e w e d , ' ' ' and the picture shown in Scheme 2 emerges. In cases where geometry is favorable, oxidation 9
+ LTA
1 0 a
7 4
7 4 a
vLoPbiOAcJs
-HOAc
+ HOAc
OH
^OH base acid O—Pb(OAc) ^ (OAc
2
-^Pb(OAc)
2
+
HOAc
Baset^H-^O^T^ O^JOAc),
40
\
Η—Ο
39
^C—Me H
+
41
Base Η + 2
AII
+ Pb(OAc), + AcO"
H
+
+
2 ^Jj^
A +
SCHEME 2
HOAc +
Pb(OAc)
+
2
Pb(OAc)
2
28
GEORGE Μ. RUBOTTOM
via 3 9 occurs in a two-electron process. With trans-diols this pathway is n o t feasible and trans-periplanar fragmentation becomes important. The role of both base and acid in enhancing the cleavage of trans-diols has been ration alized by involving transition states such as 4 0 and 4 1 . A large body of work, beyond the scope of this chapter, exists concerning the use of glycol cleavage in structural determination and in the degradation of sugars. A n u m b e r of reviews on the latter have a p p e a r e d . The following summary will outline some of the specific synthetic uses of L T A diol cleavage. F o r instance, the sequential oxidation of 1,2-diols followed by treatment of the ensuing dicarbonyl c o m p o u n d with base offers a general high yield method for the preparation of cyclic s y s t e m s , " whereas the 1 0 a
7 5 - 7 7
7 8
8 0
COMe
(ref. 78)
(29%)
(64%)
/. Oxidations with Lead
Tetraacetate
29
cleavage of bridged diols allows entry into medium or large rings as indicated by the following e x a m p l e s . " 8 1
OH
Rr r
OH
8 5
LTA/MeOH
ΟΥ · 1
Ο
Br
(55%)
7 4
7 4 a 7 5
7 6 7 7 7 8
7 9
8 0
8 1 8 2 8 3 8 4 8 5
C. A. Bunton, in "Oxidation in Organic Chemistry" (Κ. B. Wiberg, ed.), Part A, p. 367. Academic Press, New York, 1965. W. S. Trahanovsky, J. R. Gilmore, and P. C. Heaton, J. Org. Chem. 38, 760 (1973). A. S. Perlin, Adv. Carbohydr. Chem. 14, 9 (1959). C. T. Bishop, Methods Carbohydr. Chem. 6, 350 (1972). P. S. O'Colla, Methods Carbohydr. Chem. 5, 382 (1965). W. S. Johnson, M. F. Semmelhack, M. U. S. Sultanbawa, and L. A. Dolak, J. Am. Chem. Soc. 90, 2994 (1968). R. E. Ireland, P. Bey, K. F. Cheng, R. J. Czarny, J. F. Moser, and R. I. Trust, J. Org. Chem. 40, 1000 (1975). E. J. Corey, R. L. Danheiser, S. Chandrasekaran, P. Siret, G. E. Keck, and J.-L. Gras, J. Am. Chem. Soc. 100, 8031 (1978). P. J. Mulligan and F. Sondheimer, J. Am. Chem. Soc. 89, 7118 (1967). B. W. Roberts, J. J. Vollmer, and K. L. Servis, J. Am. Chem. Soc. 90, 5264 (1968). I. J. Borowitz, A. Liberies, K. Megerle, and R. D. Rapp., Tetrahedron 30, 4209 (1974). A. Tahara and T. Ohsawa, Tetrahedron Lett., 2469 (1969). D. Termont, P. De Clereq, D. De Keukeleire, and M. Vandewalle, Synthesis, 46 (1977).
30
GEORGE Μ. RUBOTTOM
OH
LTA (ref. 84)
CO-Me
OH LTA HOAc
(ref. 85)
OH OH cis-syn-cis and cis-anti-cis mixture
OH LTA HOAc HO
OH cis-syn-cis and cis-anti-cis mixture
(ref. 85) HO
Ο (83%)
The strategic placement of the 1,2-diol system in cyclic precursors also allows controlled placement of remote functional groups in the resulting cleavage p r o d u c t s . The examples presented show not only the feasi bility of this approach but also indicate the wide range of substitution that 8 6 - 8 9
Η
OH
V O H
1
H O ' ^ ^ ^ H
LTA HOAc
(ref. 86)
H O - ^ ^ S ^
C0 Me
CO Me
2
a
(45%, 3 isomers) NC(CH ) 2
6
OHCNH^^H
LTA acetone
NC(CH )
2 e
OHCNH (?)
8 6
8 7
(ref. 87)
G. Biichi, B. Gubler, R. S. Schneider, and J. Wild, J. Am. Chem. Soc. 89, 2776 (1967). E. J. Corey, Ν. H. Andersen, R. M. Carlson, J. Paust, E. Vedejs, I. Vlattas, and R. Ε. K. Winter, J. Am. Chem. Soc. 90, 3245 (1968).
/. Oxidations with Lead
Tetraacetate
31
88)
is compatible with the cleavage reaction. This is especially noteworthy in cases where the molecule contains either a c y c l o p r o p y l or cyclobutyl ring. Oxidation of α-hydroxy carbonyl c o m p o u n d s is also an efficient process, and although reports exist wherein cleavage is affected in aprotic solvent or the solvent is not n o t e d , the general conditions for the transforma8 9 - 9 2
9 2 a
9 3 - 9 5
8 8 8 9 9 0 9 1
9 2 9 2 a 9 3
9 4 9 5
Y. Fukuyama, C. L. Kirkemo, and J. D. White, J. Am. Chem. Soc. 99, 646 (1977). N. Andersen, Y. Ohta, A. Moore, and C. W. Tseng, Tetrahedron 34, 41 (1978). Η. E. Zimmerman and P. S. Mariano, / . Am. Chem. Soc. 91, 1718 (1969). Η. E. Zimmerman, P. Hackett, D. F. Juers, J. M. McCall, and B. Schroder, J. Am. Chem. Soc. 93, 3653 (1971). A. S. Narula and S. Dev, Tetrahedron 29, 569 (1973). S. Ohuchida, N. Hamanaka, and M. Hayashi, Tetrahedron Lett., 3661 (1979). D. Helmlinger, P. de Mayo, Μ Nye, L. Westfelt and R. B. Yeats, Tetrahedron Lett., 349 (1970). J. Cadet and R. Teoule, Tetrahedron Lett., 3229 (1972). F. M. Beringer, P. Ganis, G. Avitabile, and H. Jaffe, J. Org. Chem. 37, 879 (1972).
GEORGE Μ. RUBOTTOM
32
tion include the use of protic media such as water or alcohol. These solvents apparently encourage hydrate or hemiketal formation and thus increase
OH
the rate of o x i d a t i o n .
74
ROH
OH
LTA
Oxidation
Table III gives some typical e x a m p l e s .
96
1 0 0
When
TABLE III LTA CLEAVAGE OF OC-HYDROXY KETONES
Substrate
OH
% Yield
Product
Solvent
90% HOAc
Reference
96
COMe ^y^co H 2
(CH^n Γ ^ ^ O H
, /^7^C0 Me
1. MeOH/LTA 2. MeOH/H
+
2 n
V^
CH(OMe)
AcQ
*
2 42 3 58
97
49
98
91
99
86
100
OH CHO CO Me
AcO.
a
MeOH/HOAc
EtOH/benzene CO.Et
1. MeOH/LTA 2. MeOH/H
CHO CH(OMe).
+
CO Me a
9 6 9 7 9 8 9 9 1 0 0
R. L. Cargill, D. M. Pond, and S. O. LeGrand, J. Org. Chem. 35, 359 (1970). J. R. Hazen, J. Org. Chem. 35, 973 (1970). Y. Shizuri, H. Wada, K. Sugiura, K. Yamada, and Y. Hirata, Tetrahedron 29, 1773 (1973). R. J. Anderson and C. A. Henrick, / . Am. Chem. Soc. 97, 4327 (1975). A. Barco, S. Benetti, G. P. Pollini, P. G. Baraldi, M. Guarneri, and C. B. Vincentini, Synth. Commun. 7, 13 (1977).
/. Oxidations
with Lead
Tetraacetate
33
pyridine, benzene, or acetic acid is used as solvent, α-oxygenated carbonyl c o m p o u n d s can sometimes be i s o l a t e d . " It is also possible to prepare 1 0 1
OH
1 0 3
COMe Κ OH
LTA HOAc
(ref. 101)
1. LTA/HOAc/H 0 2. Jones Ox. 2
(ref. 102)
1,2-diones 4 2 by this m o d i f i c a t i o n . The use of pyridine is crucial to the success of this particular reaction. F o r instance, when Ζ = S, oxidation 104
ο
OH LTA py
1 0 6
ο
^Z"^
i-BuN
42
at sulfur occurs with benzene as s o l v e n t . as a synthetic p r o c e d u r e .
106
% yield 42
Reference
65 68 80
104 105 106
This reaction also has been used
107
LTA
OAc
py
(ref. 107)
(30%) 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5
R. C. Nickolson and M. Gut, J. Org. Chem. 37, 2119 (1972). W. Herz and R. C. Ligon, J. Org. Chem. 37, 1400 (1972). S. W. Pelletier, Κ. N. Iyer, and C. W. J. Chang, J. Org. Chem. 35, 3535 (1970). P. Y. Johnson, J. Zitsman, and C. E. Hatch, J. Org. Chem. 38, 4087 (1973). P. Y. Johnson, I. Jacobs, and D. J. Kerkman, / . Org. Chem. 40, 2710 (1975).
34
GEORGE Μ. RUBOTTOM
Extension of the oxidation process t o a,/?-dihydroxy ketones excellent yields of the corresponding bis-cleavage p r o d u c t s . " 1 0 8
OAc
affords
1 1 1
OAc 1. Os0
4
(ref. 108)
2. LTA/MeOH
(100%)
1 0 6 1 0 7 1 0 8 1 0 9 1 1 0
1 1 1
A. Krebs and H. Kimling, Liebigs Ann. Chem. 740, 126 (1970). P. Y. Johnson and M. Berman, 7. Org. Chem. 40, 3046 (1975). N. S. Crossley, Tetrahedron Lett., 3327 (1971). S. Danishefsky, P. Schuda, and K. Kato, J. Org. Chem. 41, 1081 (1976). S. Danishefsky, P. F. Schuda, T. Kitahara, and S. J. Etheredge, J. Am. Chem. Soc. 99, 6066 (1977). S. Danishefsky, M. Hirama, K. Gombatz, T. Harayama, E. Berman, and P. Schuda, J. Am. Chem. Soc. 100, 6536 (1978).
/. Oxidations
with Lead
Tetraacetate
35
The cleavage of 1,2-amino alcohols with L T A proceeds in a m a n n e r analogous to the 1,2-diol cleavage. T h u s , b o t h 4 3 and 4 4 afford moderate yields of the corresponding cleavage p r o d u c t s . The reaction of 4 5 1 1 2 , 1 1 3
COMe
Η-4γ -| _ LTA R 4 ^ ά
N
JL
IKT
benzene
Η rmr^
U
n
C
V /
_ >^K R C _H O_ + OHC Η OHC
\
v
(ref. 112)
43
(ref. 113)
44
with L T A results in a 6 8 % yield of 4 6 . In this case, it is postulated that the initially formed i m m o n i u m salt 4 7 undergoes further oxidation and re1 1 4
(ref. 114)
47
arrangement leading to 4 6 . A similar pathway could account for the a p pearance of 4 8 . 1 1 5
1 1 2 1 1 3 1 1 4
1 1 5
H. Suginome, H. Umeda, and T. Masamune, Tetrahedron Lett., 4571 (1970). H. J. Roth, T. Schrauth, and Μ. H. El Raie, Arch. Pharm. (Weinheim) 307, 482 (1974). H. De Koning, A. Springer-Fidder, M. J. Moolenaar, and H. O. Huisman, Reel. Trav. Chim. Pays-Bas 92, 237 (1973). M. Narisada, F. Watanabe, and W. Nagata, Tetrahedron Lett., 3681 (1971).
36
GEORGE Μ. RUBOTTOM
(ref. 115)
The oxidation of α-substituted α-amino ketones results in cleavage between the carbonyl a n d carbinamine functions. In the presence of an alcohol, an ester is formed from the acyl group and a nitrile from the carbinamine portion of the original s u b s t r a t e . 116
LTA/R Ό Η
ArCOCH(NH )R
—
2
ArCO R' + RCN a
c
LTA/EtOH
S
CH C1
L
2
NHg CI
2
2
2
(ref. 116)
^C0 Et 2
CN
(25%)
A series of recent investigations indicates that the cleavage of jS-hydroxy sulfides ' ' and ) 5 - h y d r o x y d i t h i a n e s ' ' has great synthetic 1 1 7
1 1 8
1 1 8 3
(ά)7Γ
UxSPh
'"SPh
1 1 9
LTA benzene/py
^
1 1 9 a
1 2 0
OAc PhS
(
A^(CH ) 2
n
r
e
f
n
8
)
^CHO
(ref. 119a)
potential. The mechanistic aspects of the former reaction have yet to be clearly defined, but it has been noted that a trans diaxial disposition of the hydroxy and thiophenoxy groupings is r e q u i r e d . The mechanism of the 118
1 1 6
1 1 7
1 1 8
1 1 8 a
Η. E. Baumgarten, D. F. McLaen, and H. W. Taylor, Jr., / . Org. Chem. 36, 3668 (1971). Β. M. Trost and K. Hiroi, J. Am. Chem. Soc. 97, 6911 (1975). Β. M. Trost, M. Ochiai, and P. G. McDougal, J. Am. Chem. Soc. 100, 7103 (1978). D. Caine and A. S. Frobese, Tetrahedron Lett., 3107 (1977).
/. Oxidations
with Lead
Tetraacetate
37
latter reaction is also c o m p l e x . Evidence has been obtained implicating 4 9 as a key intermediate in the ring expansion p r o c e s s . 1 1 9
1 1 9
R
OH
p s
(CH ) 2
X W
Pb(OAc)
49
3
Treatment of the /J-amidosulfide 5 0 with L T A yields a mixture containing two products resulting from the oxidation of sulfur and 51 a unique product in which migration of the thiomethyl group o c c u r r e d . 121
H H H RCON>J pSMe
O ^ K J ^
SMe Ι Η OAc R C O N J U
H H H RCON J p z
^ h e n z e n e
*
ο ^ -
Ν
CO R'
+
Γ ^
ο < ^
CO R'
A
Γ ^ C0 R'
A
2
50
51 (40%)
Ζ
% yield
SOMe SCH OAc
15 35
2
C. ENOLS AND RELATED
Ν
(ref. 121)
SYSTEMS
The reaction of enolizable carbonyl c o m p o u n d s with L T A has emerged as a standard method for α-acyloxylation. A n extensive review of synthetic applications through 1971 e x i s t s and discussions concerning the mecha nisms of the transformation are also a v a i l a b l e . ' ' Evidence points to rate-determining e n o l i z a t i o n , ' with a fast second step involving either radical or ionic p a t h w a y s , ' ' most workers favoring the latter 1 2 2
1 0 3
1 2
1 0 3
1 1 9
1 1 9 8
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 , 5 2
1 2 2
1 2 3
1 2
1 2 4
Β. M. Trost, K. Hiroi, and L. N. Jungheim, / . Org. Chem. 45, 1839 (1980). Β. M. Trost and K. Hiroi, / . Am. Chem. Soc. 98, 4313 (1976). W. Lottenbach and W. Graf, Helv. Chim. Acta 61, 3087 (1978). E. G. Brain, A. J. Eglington, J. H. C. Nayler, M. J. Pearson, and R. Southgate, J. Chem. Soc. Chem. Commun., 229 (1972). D. J. Rawlinson and G. Sosnovsky, Synthesis, 567 (1973). P. S. Radhakrishnamurti and S. H. Pati, Indian J. Chem. Sect. A 16, 319 (1978). R. O. C. Norman and D. R. Harvey, J. Chem. Soc, 4860 (1964).
GEORGE Μ. RUBOTTOM
38
Pb(OAc)
3
slow
RCOCH R' 2
Pb(OAc) Q
s
homolysis
R
Ό ^=cf RI
heterolysis RCOCHROAc
+ · OAc + Pb(OAc)
2
R'
/
route. Intramolecular acetoxy transfer has also been suggested as a syn chronous m e c h a n i s m . Boron trifluoride has been used successfully to 1 0 3
Ο
facilitate the reaction, causing m o r e rapid enol f o r m a t i o n . Enolates have also been found to undergo acetoxylation with L T A b u t this process may not be g e n e r a l . A n indication of the synthetic use of α-acetoxylation with L T A is provided in Table I V . " Reference 122 m a y also be consulted for a c o m p r e h e n sive listing. T h e sequential ring B, a n d ring A a r o m a t i z a t i o n of 5 2 represents 1 2 , 1 2 2
1 2 5
1 2 6
1 2 7
1 2 5 1 2 6 1 2 7 1 2 8 1 2 9 1 3 0 1 3 0 a 1 3 1 1 3 2
1 3 3
1 3 3 8 1 3 4 1 3 5 1 3 6
1 3 9 3
J. W. Ellis, J. Chem. Soc. Chem. Commun., 406 (1970). R. K. Boeckman, Jr. and M. Ramaiah, / . Org. Chem. 42, 1581 (1977). D. Gorenstein and F. H. Westheimer, J. Am. Chem. Soc. 92, 634 (1970). T. A. Spencer, R. A. Ariel, D. S. Rouse, and W. P. Dunlap, Jr., J. Org. Chem. 37,2349 (1972). J. B. Press and H. Shechter, J. Org. Chem. 40, 2446 (1975). M. Lj. Mahailovic, J. Forsek, and Lj. Lorenc, Tetrahedron 33, 235 (1977). V. S. Kamat, G. K. Trivedi, and S. C. Bhattacharyya, Indian J. Chem. Sect. Β16,184 (1978). Y. Fukuyama, T. Tokoroyama, and T. Kubota, Tetrahedron Lett., 4869 (1973). G. A. Russell, R. L. Blankespoor, K. D. Trahanovsky, C. S. C. Chung, P. R. Wittle, J. Mattox, C. L. Myers, R. Penny, T. Ku, Y. Kosugi, and R. S. Givens, J. Am. Chem. Soc. 97, 1906 (1975). D. Caine, A. A. Boucugnani, S. T. Chao, J. B. Dawson, and P. F. Ingwalson, J. Org. Chem. 41,1539(1976). K. Shimada, T. Nambara, I. Uchida, and S. M. Kupchan, Heterocycles 12, 1445 (1979). G. R. Pettit, C. L. Herald, and J. P. Yardley, J. Org. Chem. 35, 1389 (1970). T. Ibuka, K. Tanaka, and Y. Inubushi, Tetrahedron Lett., 4811 (1970). D. N. Kirk and M. S. Rajagopalan, J. Chem. Soc. Perkin Trans. 1, 1860 (1975).
*
κ
Ο
0
I
6ζ
Ο
0
oAt
jX>
Substrate
2
HOAc
HOAc/Ac 0
HOAc
2
Benzene/HOAc Ac 0
Benzene
Solvent
OAc
Ο
Ο
^\<^OAc
"Xfc!
& Η
ο
Ο
Product
LTA ACETOXYLATION OF ENOLIZABLE CARBONYL COQPOUNDS
TABLE IV
65
100
100
3
60 30
% Yield
130a
130
129
128
127 128
(cont.)
Reference
40
)
\
3
3
*R
R
R
2
1
'R
JF X
| I
0
II
V k)
4
R'
R°jf
/ R*
0
κ
=0
(
\=J
Substrate
2
—
HOAc/Ac 0
Benzene
Benzene
Benzene
Solvent
TABLE IV
4
°
^R> R»
R»
>
R
^OAc
[JΛ
OAc
0 0 CO
R5
i
x
/
Ο
>=O
OAc
Product
r"' Cx
AcO
(cont.)
—
44
—
—
% Yield
133a
133
132
132
131
Reference
41
y
I
COCH.
AcO^
OMe
3
OAc ^ /COCH
Κ rσQ
Accr^
COCHg
2
3
2
a
2
1. Benzene/MeOH BF E t 0 2. NaHCO H 0/EtOH
3
2
Benzene BF E t 0
3
2
Benzene/MeOH BF E t 0
3
Benzene/MeOH BF E t 0
J5 y
OMe
2
OAc COCH OAc
AcOv^^i^
>
2
COCH OAc
AcO /
r
2
COCH OAc
i:b r Λ
—
65
71
69
136
135
134
134
(cow/.)
cr
3
3
nr2rs
1
2
\
2
υ
. — N.
II
R
/ Ν
X
< HOAc (I also present) 2
—
—
Solvent
Benzene
R = Me, Ph R = R == Et or N R = R = 7V-piperidinyl, iV-morpholino
A^
Qy ο
r1
0
ό
Substrate
Product
XT
_ .
V—OAc
\
J
&
ll
Ν
R
AcO* \
A
ο
V
\ ^ O A c
ΰ
TABLE IV (cont.)
X R Η Η Η Me CI Η
32
(%) >85 >78 >85
139a
139
138
137
a-45-50 ^-10-15
—
Reference
% Yield
/. Oxidations with Lead Tetraacetate
43
a new approach to this type of transformation and a novel use for L T A acetoxylation. 140
(50%)
Several drawbacks to the acetoxylation procedure have been reported. F o r instance, in isolated cases, rearrangement occurs during the re action. ' ' A more c o m m o n problem involves the fact that enolization under the reaction conditions employed is not regiospecific a n d hence, 1 4 1
1 4 1 3
1 4 2
(ref. 141) (?) 1 3 7 1 3 8 1 3 9 1 3 9 a 1 4 0 1 4 1 1 4 1 8 1 4 2
(30%)
M. Stefonic, Z. Djarmati, and M. Gasic, Glas. Hem. Drus., Beograd. 37, 373 (1972). H. Moehrle, W. Haug, and E. Federolf, Arch. Pharm. (Weinheim) 306, 44 (1973). E. Ohler, F. Tataruch, and U. Schmidt, Chem. Ber. 106, 396 (1973). T. Kovao, M. Oklobdzija, V. Sunjic, and F. Kajfez, J. Heterocycl. Chem. 16, 1449 (1979). M. Lj. Mihailovic, J. Forsek, and Lj. Lorenc, J. Chem. Soc. Chem. Commun., 916 (1978). J. A. Marshall and G. L. Bundy, J. Chem. Soc. Chem. Commun., 500 (1966). H. Miura, Y. Fujimoto, and T. Tatsuno, Synthesis, 898 (1979). Μ. H. A. Elgamal, Β. A. H. El-Tawil, and Μ. Β. E. Fayez, Tetrahedron 30, 4083 (1974).
44
GEORGE Μ. RUBOTTOM
(ref. 142) (20%) regioisomers r e s u l t as well as the p r o d u c t i o n of d i a c e t a t e s . It was also discovered that rates of enolization d o not correspond to p r o d u c t ratios in acyclic c a s e s . Several efforts have been m a d e t o w a r d solving 1 4 3 , 1 4 4
1 4 4
1 4 4
1 Ο
Ο
:
1
(ref. 143)
Ο
Ο
(ref. 144) this problem. T h e use of e n a m i n e s , enol a c e t a t e s , silyl e t h e r s a p p e a r to offer the best alternatives. 1 4 5 - 1 5 2
1 4 4 , 1 5 3
a n d enol
1 5 4 - 1 5 6
1 4 3 1 4 4 1 4 5 1 4 6 1 4 7 1 4 8 1 4 9 1 5 0 1 5 0 a
G. A. Ellestad, R. H. Evans, Jr., and M. P. Kunstmann, Tetrahedron Lett., 497 (1971). S. Moon and H. Bohm, J. Org. Chem. 37, 4338 (1972). F. Corbani, B. Rindone, and C. Scolastico, Tetrahedron 31, 455 (1975). F. Corbani, B. Rindone, and C. Scolastico, Tetrahedron 29, 3253 (1973). F. Corbain, B. Rindone, and C. Scolastico, Tetrahedron Lett., 2597 (1972). S. K. Khetan, J. Chem. Soc. Chem. Commun., 917 (1972). P. L. Majumder, S. Joardar, and Τ. K. Chanda, Tetrahedron 34, 3341 (1978). M. Ohno, T. F. Spande, and B. Witkop, / . Am. Chem. Soc. 92, 343 (1970). Η. H. Eckhardt and H. Perst, Tetrahedron Lett., 2125 (1979).
/. Oxidations with Lead
Tetraacetate
45
The oxidation of enamines with L T A results in products consistent with diacetate intermediates and, in systems capable of i m i n e - e n a m i n e tautomerization, oxidation of the latter form p r e d o m i n a t e s . Although the wide 145 - 1 4 7
R \
1
/
R
2
LTA
RN
AcO OAc R—^C—C—R R N , Η 1
OAc R^O——R
+
2
2
AcNRj
3
3
3
2
w
R
1
RN 3
OAc R
R^H—COR
2
NR|
2
range of products obtained generally precludes the use of the L T A oxidation of enamines for synthetic purposes, useful applications have been reported for 5 3 , 54, and for a series of e n a m i d e s . 1 4 8
1 4 9
1 5 0 - 1 5 2
Me0 C
MeO-C Η \ / C=C / \ PhHN C0 Me
2
2
LTA CH C1 2
C0 Me
W
MeO C
2
2
a
2
(ref. 148)
I
53
Ph MeO AcO
OMe LTA CH C1 2
2
(ref. 149) OH
OH C-3H/3 C-3H<* ,C0 Et 2
C-3H0, C-7 0Ac/3 (24%) C-3Ha, C—7 OAc a (22%) AcO
#
CO Et a
(ref. 150)
(ref. 150a)
46
GEORGE Μ. RUBOTTOM
(ref. 151)
(ref. 152)
Η
Η
(84%)
(100%)
Oxidation of enol a c e t a t e s ' and enol silyl e t h e r s gives high yields of the corresponding α-acetoxy derivatives. The several examples presented 1 4 4
1 5 3
1 5 4
(ref. 144)
(ref. 153)
1 5 1
1 5 2
1 5 3
R. B. Boar, J. F. McGhie, M. Robinson, D. H. R. Barton, D. C. Horwell, and R. V. Stick, J. Chem. Soc. Perkin Trans. 1, 1237 (1975). R. B. Boar, J. F. McGhie, M. Robinson, and D. H. R. Barton, /. Chem. Soc. Perkin Trans. 7, 1242 (1975). K. Oka and S. Hara, J. Am. Chem. Soc. 99, 3859 (1977).
/. Oxidations with Lead OSi(Me) A
Tetraacetate
47
LTA
3
. / ^ As
—
A r ^ ^°
b G n Z e n e
lr
CA
C
(ref. 154)
(91-95%)
are illustrative. With enol silyl ethers the use of lead(IV) benzoate (LTB) is to be r e c o m m e n d e d . In general, the reaction of both enol acetates and enol silyl ethers can be carried out at ambient temperatures, another 1 5 5 , 1 5 6
9Si(Me)
Ο
8
1. LTB/CH C1 2
J-L^OBz 2
2. EtgNHF
^ s / ^ (80%)
OSi(Me)
1. LTB/CH C1 2. EtgNHF 2
c!!x.
O B Z
s
2
(92%)
advantage of the method. Isolation of intermediates such as 5 5
1 5 4
and 5 6
3 5
point to a normal alkene addition process in the L T A reaction with enol (Me)gSiO^ ^OAc
I CI 55
1 5 4 1 5 5 1 5 6
(Me) SiO^ 3
OAc
Ac 56
G. M. Rubottom, J. M. Gruber, and K. Kincaid, Synth. Commun. 6, 59 (1976). G. M. Rubottom, J. M. Gruber, and G. M. Mong, J. Org. Chem. 41, 1673 (1976). G. M. Rubottom and J. M. Gruber, J. Org. Chem. 42, 1051 (1977).
48
GEORGE Μ. RUBOTTOM
silyl ethers. The treatment of trimethylsiloxy-l,3-dienes with LTB is also a OSi(Me)
3
OBz
1. LTB/CH. 2. EtsNHF (91%)
(ref. 156) OSi(Me)
3
1. LTB/CH C1 2
2
2. EtsNHF
OBz (54%)
high yield process; however, certain cyclic cases afford products rationalized by 1 , 4 - a d d i t i o n . 156
OSi(Me)
2
f^jl
OBz
1. L I B / C H ^ l , 2. EtjNHF
OBz (55%) 1. BzO" 2. EtjNHF
OSi(Me)
s
(ref. 156)
OSi(Me)
(OBz), OCOPh
Vinyl ethers undergo L T A oxidation in a manner similar to that of enol silyl ethers. Such a system has been i m p l i c a t e d in the conversion of 5 7 to 5 8 . ' ' The analogous systems 5 9 and 6 0 also afford high yields of oxidation p r o d u c t . 136
1 3 6
1 5 7
1 5 7 a
1 5 8
1 5 7 1 5 7 a 1 5 8
W. Slaunwhite and A. Solo, / . Pharm. Sci. 64, 168 (1975). M. Hossain and D. N. Kirk, Steroids 34, 677 (1979). G. R. Lenz, J. Chem. Soc. Chem. Commun., 241 (1978).
/. Oxidations
with Lead
Tetraacetate
49 OR
(refs. 136, 157, 157a) R= Ac or Η OH
(ref. 158)
60
Systems in which enol formation is directed are also useful in solving the problem of regioselectivity. The treatment of jS-keto sulfides with L T A in hot benzene produces α-acetoxy-a-phenylthioketones in excellent yield. ' ' The latter represent a versatile class of synthetic intermediates. 1 5 9
1
1 6 0
1 6 0 3
Β. M. Trost and A. J. Bridges, J. Am. Chem. Soc. 98, 5017 (1976). Β. M. Trost and G. S. Massiot, J. Am. Chem. Soc. 99, 4405 (1977). Β. M. Trost, W. C. Vladuchick, and A. J. Bridges, J. Am. Chem. Soc. 102, 3554 (1980).
50
GEORGE Μ. RUBOTTOM
(ref. 160)
(90%)
Enol thioethers react with L T A to give thionium ions which then partition to produce allylic acetates and/or bis-acetoxylation p r o d u c t s . The for mation of the allylic acetates is favored in T H F whereas methylene chloride 1 6 1
favors diacetate formation. Also, treatment of the latter with boron trifluoride etherate or 5 Ν K O H leads to excellent yields of the corresponding allylic acetates. The reaction of 61 to 6 2 indicates that isomerization of the
1 6 1
Β. M. Trost and Y. Tanigawa, / . Am. Chem. Soc. 101, 4413 (1979).
/. Oxidations with Lead
Tetraacetate
51
kinetically formed 6 3 to the thermodynamieally more stable 6 2 is occur ring. Alkyl-substituted ketene thioacetals also react with L T A . 1 6 1
1 6 1 a > 1 6 1 b
SPh
SPh
\ J\ η
SPh . OAc
AcO^
(\J
=1,2
1 (V_y
62
63
In this case oxidation affords the corresponding 3-alkyl-l,4-dithiepan-2-ones in moderate yield.
c S
R
/ S
LTA ^ benzene
Γ r~K^P \
1 ^ S ^ R
(ref. 161a)
(34-74%)
The oxidation of 1,3-diones leads not only to the production of a-acetoxy derivatives, but to 1,2-diones as w e l l . ' Use of C - l a b e l i n g studies shows that to a large extent the carbon flanked by the two carbonyls is the one expelled and intermediates such as 6 4 have been i m p l i c a t e d . The 1 6 2
1 6 3
14
162
O
OPb(OAc)
3
Ar^^j^^Ar R 64
R = H,OAc
picture is not complete since 6 5 and 6 6 do not give similar results and loss ?
H
αΛΛατ 65
/
Ο
Ο
LTA H0Ac
Jy*
+
°
\
(JUL) DAc 66 1 6 1 8 1 6 1 b 1 6 2 1 6 3
K. Hiroi and S. Sato, Chem. Lett., 923 (1979). K. Hiroi, S. Sato, and K. Matsuo, Heterocycles 12, 213 (1979). K. Kurosawa and A. Moriyama, Bull. Chem. Soc. Jpn. 47, 2717 (1974). K. Ezoe and K. Kurosawa, Bull. Chem. Soc. Jpn. 50, 443 (1977).
ArC0 H 2
(ref. 162)
52
GEORGE Μ. RUBOTTOM
(ref. 163)
of C is not total. A n intermediate analogous to 6 4 may also be involved in the oxidation of l-phenylheptane-l,3,4,6-tetrone to give 6 7 and 6 8 . 1 4
1 6 4
(ref. 164)
67 68
R = Ph, R' = Me (43%) R = Me, R' = Ph (14%)
Another example of an interesting L T A reaction with a 1,3-dione involves the oxidation of h u m u l o n e to give T C D . Although the T C D structure shown is favored, 6 9 is also possible, whereas 7 0 , a previously postulated structure, is ruled out by spectral data. The mechanism of the transformation is not clear at present. 1 6 5
(ref. 165)
TCD (Tricyclodehydroisohumulone)
M. Poje, B. Gaspert, and K. Balenovic, Reel. Trav. Chim. Pays-Bos 97, 242 (1978). L. De Taeye, D. De Keukeleire, A. De Bruyn, and M. Verzele, Bull. Soc. Chim. Belg. 87, 471 (1978).
/. Oxidations with Lead
53
Tetraacetate
Both acyclic and cyclic 1,3-diones react with aryllead(IV) tricarboxylates to produce the corresponding arylated d e r i v a t i v e s . The examples cited are representative of the method. 165a
Me ArPb(OAc) CHCVpy (CH ) 2
3
(ref. 165a)
rt
MeCOCHXOMe
ArPb(OAc) CHCL/py
3
-MeCOCHCOMe
L
Nonenolizable 1,2-diones are cleaved by L T A in benzene. In rigid systems, anhydrides are obtained in high yield, and when a solvent mixture of 1:1 benzene: methanol is employed, diesters are formed. The latter oxidation is postulated to occur from the corresponding h e m i k e t a l . The oxidation of 166
MeO-C LTA benzene
(91%)
CO,Me
LTA benzene MeOH
(ref. 166) (85%)
the nonenolizable ketone 7 1 gives a 55% yield of 7 2 and the reaction is rationalized by involving carbonium ion i n t e r m e d i a t e s . 167
1 6 5 a 1 6 6 1 6 7
J. T. Pinhey and B. A. Rowe, Aust. J. Chem. 32, 1561 (1979). L. Canonica, B. Danieli, P. Manitto, and G. Russo, Gazz. Chim. Ital. 100, 1026 (1970). H. Miura, K. Hirao, and O. Yonemitsu, Tetrahedron 34, 1805 (1978).
54
GEORGE Μ. RUBOTTOM
LTA HOAc N^-O^Pb(OAc) OAc
71
C0 Ac
s
2
(ref. 167)
Ο 72
(55%)
Nonenolizable thioearbonyl derivatives also react with L T A and generally yield the corresponding carbonyl c o m p o u n d . With sugar derivatives, 1 6 8 - 1 7 0
PIT
^Ph
(ref. 168)
1. LTA/HOAc 2. H 0 2
Ph*
σ TO .o^
α°τ Ό
.ο
Ο
(ref. 169)
(62%)
S
Ο
A
λ 0 \
Ph
(T^o (ref. 170) \ / R production of disulfides can subvert the reaction and trithiocarbonates lead to 7 3 . Finally, the selenocarbonyl c o m p o u n d 7 4 is reported to give a high /
X
0 ^
LTA HOAc
1 7 0
ΜR 73
/. Oxidations with Lead Tetraacetate yield of 7 5 with 7 6 postulated as an i n t e r m e d i a t e .
55
171
LTA HOAc
s
74
Se /
75 (87%)
76
+
I
S
W>V (4%)
(ref. 171) D. PHENOLS
Phenols react readily with L T A , usually in acetic acid, to give excellent yields of the corresponding acetoxy cyclohexadienones. Although h o m o 12
LTA
lytic pathways were originally postulated for the r e a c t i o n , more recent work favors either heterolysis of 7 7 or electrophilic attack by the phenol 12
1 7 2
Pb(OAc) OAc
77
2
78
on L T A . Concerted transfer of acetate from lead to carbon (78) can account for the generally encountered predominance of α-acetoxylation and is analogous to the mechanism proposed for enol o x i d a t i o n . The systems 7 9 - 8 1 are some typical e x a m p l e s . 1 7 3
174
1 7 5 - 1 7 7
1 6 8 1 6 9 1 7 0 1 7 1 1 7 2 1 7 3 1 7 4
1 7 5 1 7 6 1 7 7
J. W. Lown and T. W. Maloney, J. Org. Chem. 35, 1716 (1970). M. Mori and T. Taguchi, Synthesis, 469 (1975). W. M. Doane, B. S. Shasha, C. R. Russell, and C. E. Rist, J. Org. Chem. 30, 3071 (1965). S. Tamagaki, S. Sakaki, and S. Oae, Heterocycles 2, 45 (1974). M. J. Harrison and R. O. C. Norman, / . Chem. Soc. C, 728 (1970). W. A. Bubb and S. Sternhell, Tetrahedron Lett., 4499 (1970). A. Lethbridge, R. O. C. Norman, and C. B. Thomas, J. Chem. Soc. Perkin Trans. 1, 2465 (1975). J. R. van der Veck, H. Steinberg, and Th. J. de Boer, Tetrahedron Lett., 2157 (1970). R. J. Andersen and D. J. Faulkner, J. Am. Chem. Soc. 97, 936 (1975). J. B. Henderson, R. W. Alder, D. R. Dalton, and D. G. Hey, J. Org. Chem. 34, 2667 (1969).
56
GEORGE Μ. RUBOTTOM
79 (50%)
80 (75%)
81 (62%)
(ref. 175)
(ref. 176)
(ref. 177)
The application of the reaction to the synthesis of a wide range of isoquinoline alkaloids has been r e v i e w e d . In general, tetrahydroisoquinolinols of type 8 2 give /j-quinol acetates, while type 8 3 gave 4-aeetoxytetra178
OAc
R
R
82
(-20%) (ref. 178) OAc LTA
ΜβΟ-^^γ^^Μβ
C H a C l 2
MeO
R 83
hydroisoquinolinols. Intermediate 8 4 has been implicated in the latter HO ^Me OAc
MeO 84
case. A third m o d e of behavior has recently been discovered, demon strated by the 8 5 to 8 6 t r a n s f o r m a t i o n . A mechanism has been proposed 1 7 8
179
1 7 8
1 7 9
B. Umezawa and O. Hoshino, Heterocycles 3, 1005 (1975). H. Hara, M. Hosaka, O. Hoshino, and B. Umezawa, Tetrahedron Lett., 3809 (1978).
/. Oxidations
with Lead
Tetraacetate
57
involving cleavage of a /7-quinol acetate to produce 8 7 which then recyclizes to give 8 6 . OAc HO
X J Q C ~*
MeO
85
(ref. 179)
L T A oxidation of phenols carried out in the presence of alcohols gives rise to the production of a l k o x y d i e n o n e s . Whereas this reaction has been used as evidence against a homolytic mechanism for the oxidation, it is n o t clear whether the actual oxidizing agent is L T A or a mixed Pb(IV) species resulting from a l c o h o l - L T A ligand e x c h a n g e . T h e oxidation of pentafluorophenol with L T A gives a 75% yield of 8 8 and 8 9 in a reaction where n o acetoxy products are r e p o r t e d . W h e n a phenol is treated with L T A using 1 7 2 , 1 7 4
175
1 8 0
(ref. 180)
a carboxylic acid can be effectively examples involve conjunction with
0
1
other than acetic acid as solvent, the external nucleophile incorporated into the oxidation product. T w o interesting the reactions of mesitol and 9 0 , respectively, with L T A in acrylic acid as s o l v e n t . 181
L. S. Kobrina, V. N. Kovtonyuk, and G. G. Yakobson, Zh. Org. Khim. 13, 1447 (1977). D. J. Bichan and P. Yates, Can. J. Chem. 53, 2054 (1975).
58
GEORGE Μ. RUBOTTOM
f
CCLH
Ρ
•JL
Δ
Ό (41%)
+ />-isomer
(ref. 181)
X0 H
ί
2
+ p- isomer + o, o-disubstituted product
nI—ο
(23%)
The oxidation of 9 1 with L T A in acetic acid gives 9 2 as the major p r o duct with no apparent interaction with the remote double bond. 1 7 4 , 1 8 2
OG
LTA HOAc
Ρ OAc
(refs. 174, 182)
92
91
However, with c h a l c o n e s , 2-hydroxybenzophenones, 2-hydroxystilbenes, and 3-(2-hydroxphenyl)coumarins treatment with L T A leads 183
1 8 5
1 8 2
1 8 3
1 8 4
184
186
E. Zibral, W. Wessely, and J. Jorg, Monatsh. Chem. 92, 654 (1961). K. Kurosawa and J. Higuchi, Bull. Chem. Soc. Jpn. 45, 1132 (1972). K. Kurosawa, Y. Sasaki, and M. Ikeda, Bull. Chem. Soc. Jpn. 46, 1498 (1973).
/. Oxidations
with Lead Tetraacetate
LTA HOAc
LTA HOAc
1 8 5
1 8 6
59
(ref. 183)
(ref.f. 184) 184)
LTA benzene or HOAc
(ref. 185)
LTA benzene
(ref. 186)
Κ. Nogami and Κ. Kurosawa, Bull. Chem. Soc. Jpn. 47, 505 (1974). K. Kurosawa and K. Nogami, Bull. Chem. Soc. Jpn. 49, 1955 (1976).
60
GEORGE Μ. RUBOTTOM
to oxidative cyclization. The presence of methoxy groups on the phenolic substrate can lead to predominant formation of q u i n o n e s . T h e use of 1 8 7
(ref. 187)
(31%)
acetic acid enhances the process whereas benzene can lead to other reaction pathways. ' Treatment of 9 3 with 2 equivalents of L T A in benzene 1 8 8
1 8 9
ο
OMe
(refs. 188, 189)
t-Bu 94
gives further oxidation (via 94) to afford 9 5 , 9 6 , and 9 7 . The presence of water in the benzene accounts for the production of 9 6 and 9 7 , and thus, a coherent mechanism is p r e s e n t e d . Finally, the reaction of phenols with aryl lead(IV) triacetates in chloroform/pyridine produces moderate yields of o- or /?-dienones with n o acetoxylation o c c u r r i n g . With 1 8 8 - 1 9 0
1 8 8 , 1 9 0
1 9 1 , 1 9 1 3
1 8 7 1 8 8
1 8 9 1 9 0
1 9 1 1 9 1 8
F. R. Hewgill and S. L. Lee, J. Chem. Soc. C, 1556 (1968). F. R. Hewgill, D. G. Hewitt, G. B. Howie, C. L. Raston, R. J. Webb, and A. H. White, J. Chem. Soc. Perkin Trans. 1, 290 (1979). F. R. Hewgill and D. G. Hewitt, J. Chem. Soc. C, 726 (1967). F. R. Hewgill and D. G. Hewitt, G. B. Howie, and W. L. Spencer, Aust. J. Chem. 30, 1971 (1977). H. C. Bell, G. L. May, J. T. Pinhey, and S. Sternhell, Tetrahedron Lett., 4303 (1976). H. C. Bell, J. T. Pinhey, and S. Sternhell, Aust. J. Chem. 32, 1551 (1979).
/. Oxidations
93
LTA benzene
94
with Lead
MeO
LTA benzene
61
Tetraacetate
f-Bu
(refs. 188, 189)
i-Bu 95
t-Bu
(refs. 188, 190)
MeO + (Z, Z)-isomer 97
f-Bu 96
methylated phenols, the yields are highest when both ortho positions are substituted and the reaction fails when the phenol in question bears only electron-withdrawing g r o u p s . 1 9 1 3
ArPb(OAc)
s
CHCVPY
(refs. 191, 191a) E. MONOCARBOXYLIC ACIDS
T h e reaction of monocarboxylic acids with L T A has been studied ex tensively and an excellent review of the topic is a v a i l a b l e . A general consensus as to mechanism exists as outlined below in Scheme 3 . 192
1 9 2
Pb(IV)(OAc) . (OCOR)
Metathesis:
RC0 H + LTA
Initiation:
Pb(IV)OCOR
Propagation:
R. + Pb(lV)(OCOR)
4 n
2
Δ or hv
Pb(m)(OCOR) Termination:
•
*-R
+
+ Pb(m)(OCOR)
Pb(H) + R- + C 0 •
R
+
2
+ Pb(n)(OCOR)
hydrogen abstraction; dimerization; etc. SCHEME 3
1 9 2
+ HOAc
Pb(m) + R · + COa
R* + Pb(m)(OCOR) R*
n
R. A. Sheldon and J. K. Kochi, Org. React. 19, 279 (1972).
62
GEORGE Μ. RUBOTTOM
Product formation can thus occur from either R- or R leading to the formation of alkanes, alkenes, and acetates. The structure of the carboxylic acid is crucial to the outcome of the reaction since oxidation rates of primary, secondary, and tertiary R · vary considerably with tertiary R · being oxidized most rapidly to R . Addition of C u ( X ) (X is normally OAc) with both primary and secondary carboxylic acids, gives enhanced rates of R · oxida tion with concomitant proton loss and thus, high yields of alkenes. Actual rates of oxidation of primary radicals with Cu(II) approach diffusion +
+
2
R- (1° or 2°) + Cu(II) -> R ( - H ) + H + Cu(I) Cu(I) + Pb(IV) -> Cu(II) + Pb(III) +
control whereas secondary radicals are oxidized at least 100 times faster by Cu(II) than by P b ( I V ) . As noted, the Cu(II) can be used in catalytic amounts since efficient Cu(I) to Cu(II) oxidation is accomplished by Pb(IV). Because tertiary R · is oxidized by Pb(IV), addition of C u ( O A c ) to reactions involving tertiary acids generally has little effect. Solvents such as H M P A , T H F , and D M F in conjunction with pyridine are employed most commonly and are, in general, to be preferred over benzene, acetonitrile, or ethyl a c e t a t e . 1 9 2
2
1 9 2
1. PRIMARY A C I D S
In the presence of pyridine the Pb(IV)/Cu(II) reagent has been used to degrade steroidal acids to give excellent yields of the corresponding al kenes, ' and a similar procedure gave 9 8 , an intermediate in the 1 9 3
1 9 4
LTA/Δ ^
C u ( O A c ) z
py
synthesis of prostaglandin E , t
1 9 5
X)
2
e
VV\A/°^
(refs. 193, 194)
Extending the L T A / C u ( O A c ) method to 2
(CH ) CO Me H (
^
J
(CH ) CO Me
a
2
e
a
^"νΛ/V \-/ l 0
LTA/Cu(OAc) /^ LTA/Cu(OAc) /ftj> 2
2
98 (37%) 1 9 3
1 9 4
1 9 5
J. Meney, Y.-H. Kim, R. Stevenson, and Τ. N. Margulis, Tetrahedron 29, 21 (1973). J. F. W. Keana and R. R. Schumaker, J. Org. Chem. 41, 3840 (1976). D . Taub, R. D. Hoffsommer, C. H. Kuo, H. L. Slates, Z. S. Zelawski, and N. L. Wendler, Tetrahedron 29, 1447 (1973).
/. Oxidations with Lead
63
Tetraacetate
include jS-carboxy ketones gives a useful synthesis of a,/?-unsaturated ketones. ' Model studies indicate that the procedure has general syn1 9 6
1 9 7
(ref. 196)
CO.H LTA/Cu(OAc) benzene/py
2
(ref. 197)
(92%)
thetic potential. The variety of c o m p o u n d s available from 9 9 is i l l u s t r a t i v e . CO-H
1. Li/NH3(97%) 2. LTA/Οu(OAc),
197
Γ^Ψ^Ν
benzene/py Η LTA/Cu(OAc) benzene/py
(89%)
2
1. H /Pd-C (97%) 2. LTA/Cu(OAc) benzene/py 2
2
(ref. 197)
Η (88%)
(92%)
The oxidation of β-carboxy lactones with L T A / C u ( O A c ) gives rise to the corresponding α-methylene l a c t o n e s . 2
198
1 9 6 1 9 7 1 9 8
P. P. Sane, K. J. Divakar, and A. S. Rao, Synthesis, 541 (1973). J. E. Mc Murry and L. C. Blaszczak, J. Org. Chem. 39, 2217 (1974). K. J. Divakar, P. P. Sane, and A. S. Rao, Tetrahedron Lett., 399 (1974).
GEORGE Μ. RUBOTTOM
64
LTA Cu(OAc) py
CO H a
ocx
2
(30%)
(ref. 198) C0 H 2
LTA Cu(OAc) py
2
Decarboxylation of 5-(r-naphthyl)-pentanoic acid with L T A in benzene gives a mixture of tetrahydrophenanthrene and 1 0 0 in overall yields of 58%. Deuteration studies indicate that the primary radical formed in 1 9 9 , 2 0 0
CO,H 2
LTA benzene 100 (4.5%)
(53.5%)
(refs. 199, 200) the reaction gives tetrahydrophenanthrene via competitive formation of both 101 and 1 0 2 .
102
In a related case, 1 0 3 affords 20% of the cyclic product 1 0 4 , and 4-pentonic acid has been found to yield substituted γ-lactones when treated with either L T A or LTA/LiCl m i x t u r e s . 2 0 1
37
LTA/Cu(OAc) benzene/py
2
(ref. 201)
CO,H 103
104
(20%)
/. Oxidations
with Lead
Tetraacetate
65
2. SECONDARY ACIDS
The L T A / C u ( O A c ) decarboxylation of 105 in benzene/pyridine is opti mized by removal of acetic acid from the L T A prior to the reaction. In this manner, a 35% yield of 1 0 6 was r e a l i z e d . Decarboxylation of 107 is 2
202
(ref. 202)
(minor product isolated as phenol)
accomplished in high yield in the presence of H O A c / K O A c .
(ref. 202a)
(65%)
L T A oxidation of 108 in benzene/pyridine produces a n u m b e r of products including alkenoic acids, acetates, a n d lactones from selective loss of the secondary carboxy group over the p r i m a r y . Addition of C u ( O A c ) 2 0 3 , 2 0 4
2
COH 2
R—CH —CH(CH ) C0 H 2
2 N
2
108
1 9 9 2 0 0 2 0 1 2 0 2
2 0 2 8 2 0 3
2 0 4
J. C. Chottard and M. Julia, Tetrahedron Lett., 2561 (1971). J. C. Chottard and M. Julia, Tetrahedron 28, 5615 (1972). C. Descoins, M. Julia, and Η. V. Sang, Bull. Soc. Chim. Fr., 2037 (1972). R. L. Petty, M. Ikeda, G. E. Samuelson, C. J. Boriack, K. D. Onan, A. T. McPhail, and J. Meinwald, J. Am. Chem. Soc. 100, 2464 (1978). M. Cushman and F. W. Dekow, J. Org. Chem. 44, 407 (1979). Yu. N. Ogibin, Μ. I. Katsin, and G. I. Nikishin, Izv. Akad. Nauk SSSR, Ser. Khim., 1345 (1975). Yu. N. Ogibin, Μ. I. Katsin, and G. I. Nikishin, Izv. Akad. Nauk SSSR, Ser. Khim., 1225 (1972).
66
GEORGE Μ. RUBOTTOM
subverts acetate and lactone formation thereby giving alkenoic acids as the major products. There is a preference for alkene formation occurring away from the primary carboxy group a n d varying the nature of X in C u X has little effect u p o n product r a t i o s . Decarboxylation of 1 0 9 , regardless of the C u X used, gave mixtures of alkenes, again favoring the structure with the double bond placement farthest from the O A c g r o u p . 2
2 0 4
2
2 0 5
COH I 2
AcO(CH ) CHCH CH3 2 N
2
109
Selectivity between carboxy groups was also noted in the oxidation of 110. The stereochemical relationship of the carboxy groups is crucial 2 0 6
HOC S
Η
,
Η LTA/Cu(OAc), benzene/py
iv-A.
/
(ref. 206)
C0 H 2
110
since 111 gives 1 1 2 in 30% yield along with several other products. The latter COH 2
T
LTA/Cu(OAc)
a
benzene/py
(ref. 206)
CO H z
111
112 (30%)
case is a unique example of a secondary carboxyl decarboxylation in pre ference to a tertiary. It is not clear what role steric crowding might play in the ability of the two diacids to undergo a ligand exchange reaction with L T A , and thus affect decarboxylation rates. L T A decarboxylation of secondary acids in the absence of C u ( O A c ) can lead to the production of moderate to good yields of the corresponding acetates. Table V summarizes some typical e x a m p l e s . " 2
2 0 7
5
6
17 8
2 1 2
Μ. I. Katsin, Yu. N. Ogibin, and G. I. Nikishin, Izv. Akad. Νauk SSSR, Ser. Khim, 139 (1974). P. K. Jadhav, V. S. Dalavoy, A. S. C. Prakasa Rao, and U. R. Nayak, Indian J. Chem. Sect. Β 15, 589 (1977). Μ. Fetizon, F. J. Kakis, and V. Ignatiadou-Ragoussis, Tetrahedron 30, 3981 (1974). J. B. Lambert, F. R. Koeng, and J. W. Hamersma, J. Org. Chem. 36, 2941 (1971).
2
2
\θ Η
0s
<>
2
C0 H
<>
C0 H
AcO"
AcO'
2
>
Λ 2
\^ C 0 H
>
>_-C0 H
Substrate
Solvent
Benzene/py
Benzene/py
Benzene/py
Benzene/py
^L-OAc
κ
<
(sole product)
yr
-
1
OAc
^—
I
OAc
\^OAc
5 t5
0
I ^
\ ^
\^OAc
Product
DECARBOXYLATION OF SECONDARY CARBOXYLIC ACIDS
Benzene/py
LTA
TABLE V
—
73
66
45
% Yield
(cont.)
209
208
208
207
207
Reference
2
TsN^*
AcO'
h
2
a
J
ή
^\L*CO Me
C0 H
Η
3 1
\
/
NTS
—^^co k 1 :
xNTs /
Substrate
Benzene/py
Benzene/py
Py
Py
Solvent
I
TsN OAc
(-)
+ (-)
a
^CO Me
c)Ac
.I^COaMe
^OAc
^OAc
(isolated as 3/?-alcohol
+
ΛϊΤβ
:
.NTs
(60%)
} :
c
Product
TABLE V {com.)
35 90:10, exorendo
( + 16% alkene)
>47
18 (+14% alkene)
% Yield
212
211
210
210
Reference
/. Oxidations
with Lead
69
Tetraacetate
Perusal of Table V indicates that the decarboxylation of secondary acids is not a stereospecific process. A n u m b e r of examples are accommodated by the intervention of c a r b o n i u m ion intermediates, i.e., the conversions of 113 and 1 1 4 . The reaction of system 1 1 5 is not so clear-cut since, in 2 1 3
2 1 3 a
LTA benzene/py
OAc
(ref. 213)
(CH )
2 ;
η = 4,5,6
113
AcO
(ref. 213a) Sole product
the absence of a carbonyl group, mixtures of both rearranged and unrearranged products result with the latter p r e d o m i n a t i n g . T h e fact that 214
(81%)
(4.9%)
(4.9%) (ref. 214)
b o t h epimers 1 1 6 and 117 give identical mixtures of axial a n d equatorial acetates and that erythro- and threo-HS give equivalent a m o u n t s of erythroand threo-119 has been cited as evidence for cationic intermediates as
2 0 9 2 1 0 2 1 1 2 1 2 2 1 3 2 1 3 a 2 1 4
P. K. Freeman, D. M. Balls, and J. N. Blazevich, J. Am. Chem. Soc. 92, 2051 (1970). Th. Reints Bok and W. N. Speckamp, Tetrahedron 35, 267 (1979). P. Rosen and G. Oliva, /. Org. Chem. 38, 3040 (1973). R. D. Gleim and L. A. Spurlock, J. Org. Chem. 41, 1313 (1976). Y. Sakai, S. Toyotani, Y. Tobe, and Y. Odaira, Tetrahedron Lett., 3855 (1979). R. L. Cargill and A. M. Foster, J. Org. Chem. 35, 1971 (1970). A. L. J. Beckwith, G. E. Gream, and D. L. Struble, Aust. J. Chem. 25, 1081 (1972)
70
GEORGE Μ. RUBOTTOM OAc LTA benzene/py
< L
CO,H
> J
LTA benzene/py
(refs. 36,215)
ι f~Bu (53%) cis -Acetate (47%) trans -Acetate
' W"""' " ' OAc <«r. 2, /P
(erythro- or threo -118)
63 :37, erythro-: tareo -119
6)
3 6 , 2 1 5 , 2 1 6 Decarboxylation of both 120 and 121 in the presence of C u ( O A c ) in pyridine also yields similar a m o u n t s of cis- and /ra«s-alkenes, among other products. Therefore, a c o m m o n , nonstereospecifically gener ated carbonium ion intermediate is i m p l i c a t e d . The foregoing conclusions
W
E
L
L
2
217
Ph 120
LTA benzene/py
A
\
™ \ (29.9%)
Ph
Q
A
t
—OAc
c
(3.5%)
C0 H 2
121
cannot be extrapolated to a number of examples of L T A decarboxylation involving bicyclic systems. Extensive studies of the L T A reactions of a series of bicyclic acids lead to a more complex view of the oxidation p r o c e s s . Initial decarboxylation of Pb(IV) carboxylates generates secondary radicals that can participate in typical radical reactions. Secondary radicals can also couple with Pb(III) or Pb(IV) carboxylates to give Pb(IV) alkyls. Heterolysis leads to carbonium ions, products of cis elimination, or the S i production 2 1 8 _ 2 2 0 a
N
2 1 5
2 1 6 2 1 7 2 1 8 2 1 9 2 2 0 2 2 0 a
S. D. Elakovich and J. G. Traynham, J. Org. Chem. 38, 873 (1973). A. Theine and J. G. Traynham, J. Org. Chem. 39, 153 (1974). T. Shono, I. Nishiguchi, and R. Oda, Tetrahedron Lett., 373 (1970). G. E. Gream, C. F. Pincombe, and D. Wege, Aust. J. Chem. 27, 603 (1974). J. B. Stothers and K. C. Teo, Can. J. Chem. 54, 1222 (1976). B. C. C. Cantello, J. M. Mellor, and G. Scholes, J. Chem. Soc. Perkin Trans. 2, 348 (1974). P. K. Jadhav and U. R. Nayak, Indian J. Chem. Sect, Β 16, 947 (1978).
/. Oxidations
R
R
1
C0 H Η C0 H Me Η Η Me Me Η Η Me Me
R
2
Η C0 H Me C0 H Η Η Η Η Me Me Me Me
2
Η Η Me Me Η C0 Η C0 Η C0 C0 Η
2
2
2
3
2
H
2
H
2 2
H H
with Lead
R Η Η Me Me C0 Η C0 Η C0 Η Η C0
4
2
H
2
H
2
H
2
H
R
Tetraacetate
5
Η Η Η Η Me Me Η Η Η Η Η Η
R
R
6
Η Η Η Η Me Me Η Η Η Η Η Η
71
Reference
7
Η Η Η Η Me Me Η Η Η Η Η Η
218 218 218 218 218 218 219 219 219, 220 219, 220 220a 220a
of esters. Initially formed radicals, in the presence of Cu(II), give Cu(II) derivatives that, in turn, lead to Cu(II) alkyls. T h e Cu(II) alkyls then give products by heterolysis, elimination, and substitution via S i or ligand exchange p a t h w a y s . T h e high yield production of 122 from either longifolic acid, 1 2 3 , or its epimer, indicates that ring formation can be a consequence of L T A - p r o m o t e d decarboxylation as w e l l . Even in acyclic cases the nature of the reaction can be complex. F o r instance, the L T A N
2 1 8
2 2 0 a
^CO H 2
LTA/ Cu(OAc)
LTA Cu(OAc)
2
123
2
UCQ H 2
benzene/py (69%)
benzene/py (74%) 122
(ref. 220a)
72
GEORGE Μ. RUBOTTOM
oxidation of 2,3,3-trimethylbutanoic acid, in the presence or absence of C u X , gives inordinate a m o u n t s of b o t h substitution and elimination p r o ducts in which the carbon skeleton has not rearranged, thus militating against free cationic i n t e r m e d i a t e s . It should be noted that treatment of (£)-( +)-2-methylbutanoic acid with L T A in the presence of cinnamic acid gives (JF)-3-methyl-l -phenyl-1 -pentene via free radical i n t e r m e d i a t e s . The product is racemic and substitution of 2
221
222
COH 2
Μ Me
I
T
«
H
χ
+
^^/C0 H
^ benzene/py" L
2
Et
T
A
^x^CHMeEt
(ref. 222)
(34%)
cinnamic by /?-methoxycinnamic acid diverts the reaction and jS-acetoxy-/?methoxy styrene is formed as an i s / Z - m i x t u r e . 223
3. TERTIARY ACIDS The mechanistic parameters discussed above are also applicable to the reaction of L T A with tertiary carboxylic acids. As an example, the de carboxylations of both cis- and /ra«,y-decalin-9-earboxylic acids afford similar a m o u n t s of A ' - and A - o c t a l i n . Differences in product ratios engendered by C u X addition are lessened with tertiary acids due to the comparable oxidation rates of R · by Cu(II) and P b ( I V ) . 1
9
9,10
2
2 2 4
CO,H
CO
LTA/benzene
2.3
LTA/Cu(OAc) benzene
COH 2
CD
LTA/benzene LTA/Cu(OAc) benzene
CO 1.0
2
3.0
1.0
2
2.0 3.0
1.0 1.0
(ref. 224)
Η
The oxidation reaction generally leads to good yields of alkenes, but regioselectivity is not particularly high. Three examples of olefin formation 2 2 1 2 2 2 2 2 3 2 2 4
A. L. J, Beckwith, R. T. Cross, and G. Ε. Gream, Aust. J. Chem. 27, 1693 (1974). B. Danieli, P. Manitto, F. Ronchetti, and G. Russo, Chem. Ind. (London), 430 (1973). B. Danieli, F. Ronchetti, and G. Russo, Chem. Ind. (London), 1067 (1973). A. L. J. Beckwith, R. T. Cross, and G. Ε. Gream, Aust. J. Chem. 27, 1673 (1974).
/. Oxidations
with Lead Tetraacetate
with terpenoid acid derivatives are given b e l o w .
2 2 5
'
73
2 2 6
'
2 2 6
* Tertiary acids
LTA (68%) CH 2
3
CH3
1 (ref. 225)
OAc
OAc LTA benzene/py
(ref. 226)
H0 C 2
(61%)
(ref. 226a) Ζ= Ο .OH Ζ =
Ζ=Ο (67%) .OH (90%) Ζ=C
such as 1 2 4 that are structurally not able to give alkenes can give substitution products in excellent y i e l d . T h e acid 1 2 5 underwent decarboxylation 2 2 4
OAc
COH 2
124
2 2 5 2 2 6 2 2 6 8
LTA/benzene LTA/Cu(OAc) benzene
2
J. W. Huffman, / . Org. Chem. 35, 478 (1970). R. Caputo, L. Mangoni, L. Previtera, and R. Iaccarino, Tetrahedron 29, 2047 (1973). S. Amagaya, T. Takeda, Y. Ogihara, and K. Yamasaki, J. Chem. Soc. Perkin Trans. 1, 2044 (1979).
74
GEORGE Μ. RUBOTTOM
followed by cyclization during experiments conducted to obtain structural proof for 1 2 6 . Cyclization prior to decarboxylation was noted for L T A 1 8 1
(ref. 181)
126
treatment of acid 1 2 7 .
2 2 7
(ref. 227)
(50%)
An interesting decarboxylation involving 128 gave a mixture containing 1 2 9 , 1 3 0 , and 1 3 1 . These results are best rationalized by cyclization of an intermediate radical followed by oxidation leading to the products observed. 2 2 7 a
co Et 2
V 128
LTA Cu(OAc)
U 2
°
/\/C0 Et 2
129(22%)
130(11%)
131 (4%) (ref. 227a)
2 2 7
2 2 7 a
Y. Hayashi, T. Matsumoto, T. Hyono, N. Nishikawa, M. Uemura, M. Nishizawa, M. Togami, and T. Sakan, Tetrahedron Lett., 3311 (1979). M. Julia, J. M. Salard, and J. C. Chottard, Bull. Soc. Chim. Fr., 2478 (1973).
/. Oxidations
with Lead
Tetraacetate
75
4. α-SuBSTiTUTED ACIDS
Oxidation of α-hydroxy carboxylic acids is a high yield method for the production of ketones. One example of the usefulness of the reaction in the presence of multiple oxidizable functionality involves 1 3 2 . The mech2 2 8
COH 2
H NCONHCH CHOHCH < 2
132
2
2
Η
LTA HOAc/H O z
HoN
HN 2
(ref. 228)
anism of the decarboxylation has been i n v e s t i g a t e d and intermediates such as 1 3 3 p o s t u l a t e d . ' The catalysis of the reaction by bases, such as amines, water, and acetate ion, has been rationalized in terms of oxidant modification rather than by p r o t o n r e m o v a l . 2 2 9 - 2 3 2
2 3 0
2 3 1
2 3 2
R
> ^
yb(OAc)
2
133
α-Alkoxy acids also decarboxylate readily and the degradation of oligoglycosides represents a synthetically useful c a s e . Treatment of sodium 2 3 3
CO,H
AcO OR
OR
LTA benzene
MeO
(ref. 233)
OMe 45% a-OAc 42% /3-OAc 2 2 8 2 2 9
2 3 0 2 3 1
2 3 2 2 3 3
S. Harada, E. Mizuta, and T. Kishi, J. Am. Chem. Soc. 100, 4895 (1978). R. Shanker, S. K. Banerjee, and O. P. Sachdeo, Z. Naturforsch. B. Anorg. Chem., Org. Chem. 28, 375 (1973). Y. Pocker and B. C. Davis, /. Am. Chem. Soc. 95, 6216 (1973). K. Swaminathan, S. Sundaram, and N. Venkatasubramanian, Indian J. Chem. 13, 1163 (1975). Y. Pocker and B. C. Davis, J. Org. Chem. 40, 1625 (1975). I. Kitagawa, M. Yoshikawa, Y. Ikenishi, K. S. Im, and I. Yosioka, Tetrahedron Lett., 549 (1976).
76
GEORGE Μ. RUBOTTOM
glycidates with L T A gives moderate to high yields of the corresponding α-acetoxy a l d e h y d e s or k e t o n e s . Thermolysis of the latter leads to the 234
2 3 4 3
ο
,
OAc I — RWCCOR*
/ \ LTA/py R \ V \ .CO Na — γ γ benzene ^ z
(refs. 234, 234a)
(35-94%)
3
production of α,/J-unsaturated ketones, again in high y i e l d . Decar boxylation of 2-methyl-2-terf-butylperoxypropanoic acid has also been i n v e s t i g a t e d . The decomposition of 134 by L T A / C u ( O A c ) is a convenient method for alcohol regeneration in a sequence designed to obtain optically pure a l c o h o l . 2 3 4 3
235
2
2 3 6
OCOCOH 2
LTA Cu(OAc)
2
dioxane/py
\
A
cO/|
(ref. 236)
Oxidation of α-amino acids such as 7V,7V-dimethylglycine has been used as a degradative procedure for documenting biosynthetic p a t h w a y s . Some question as to the reliability of the method was r a i s e d , but control experiments seem to justify the a p p r o a c h . The method is also successful 2 3 7 , 2 3 8
238
2 3 7
HCl •
(ΘΗΛΝΘΗ,ΘΟ,Η
Τ ΦΑ
benzene
- H,CO + (CH,) NH + CO, 2
z
(refs. 237,238)
for the degradation of hippuric a c i d . Sequential treatment of oxazolin-5ones with hydroxide or acid and then L T A provides a general synthesis for both aldehydes and k e t o n e s . The preparation of 135 and 136 is illustrative. 2 3 9
2 4 0
2 3 4
234a
2 3 5 2 3 6 2 3 7
2 3 8 2 3 9 2 4 0
B. D. Kulkarni and A. S. Rao., Synthesis, 454 (1975). γ Reutrakul, S. Nimgirawath, S. Panichanun, and Y. Srikirin, Tetrahedron Lett., 1321 (1979). W. H. Richardson and W. C. Koskinen, J. Org. Chem. 41, 3188 (1976). J. G. Molotkovsky and L. D. Bergelson, Tetrahedron Lett., 4791 (1971). A. A. Liebman, B. P. Mundy, M. L. Rueppel, and H. Rapoport, J. Chem. Soc. Chem. Commun., 1022 (1972). E. Leete, J. Chem. Soc. Chem. Commun., 1524 (1971). E. Leete and S. A. Slattery, J. Am. Chem. Soc. 98, 6326 (1976). R. Lohmar and W. Steglich, Angew. Chem. Int. Ed. Engl. 17, 450 (1978).
/. Oxidations with Lead
11
Tetraacetate
1. *-BuOK/H 0 2. LTA/THF * HMPA (70%) 2
135
P-C H CI 6
4
(ref. 240)
1. 2N HC1 2. LTA/THF HMPA (61%)
"CHO
Ph 136
Two additional examples of α-amino acid oxidation involve the /Mactam 137 and the preparation of both cyclic and acyclic α-acetoxy nitrosamines from the corresponding nitrosoamino a c i d s . TV-Nitrosopipecolic acid 2 4 1
2 4 2 , 2 4 3
C0 H Ph
OAc -Ph
2
PhO-
LTA Cu(OAc)
PhO 2
(ref. 241)
benzene OMe
OMe (68%)
137
MjK X 0 H
LTA CH Cl /py 2
2
2
NO
cx S
N ' ^OAc NO
(35-44%) (refs. 242, 243) CHgNCH C0 H 2
NO
2
LTA CH Cl /py 2
2
CHsNCH OAc a
NO (37%)
1 2 3
A. K. Bose, M. Tsai, J. C. Kapur, and M. S. Manhas, Tetrahedron 29, 2355 (1973). J. E. Saavedra, J. Org. Chem. 44, 4511 (1979). J. Ε. Saavedra, Tetrahedron Lett., 1923 (1978).
78
GEORGE Μ. RUBOTTOM
affords a complex mixture of products in which the α-acetoxynitrosamine is accompanied by c o m p o u n d s derived from alkene formation. With the nitrosamine derivatives, the oxidation is materially enhanced by pyridine and inhibited by o x y g e n . 242
5. HALODECARBOXYLATION Perhaps the most useful modification of the L T A reaction with carboxylic acids involves carrying out the normal procedure in the presence of halide ion. In this m a n n e r excellent yields of the corresponding alkyl halide are produced. Table VI gives some representative e x a m p l e s ' " 2 0 9
2 1 0 , 2 1 2 , 2 4 4
2 5 0
TABLE VI LTA-HALIDE HALODECARBOXYLATION OF CARBOXYLIC ACIDS
Substrate
Conditions
; Yield
Product
244
LTA/LiCl CO,H
Reference
C
C1 CI
CO H a
43
LTA/LiCl/benzene
245
CI
CI
CI
CI
246
LTA/LiCl CI
C0 H 2
α
£1
C0 H 2
LTA/LiCl benzene/ether
65
247
46
248
Cl
H0 C 2
LTA/LiCl benzene
{cont.) 2 4 4
2 4 5
A. F. Thomas and M. Ozainne, J. Chem. Soc. Chem. Commun., 746 (1973). Η. K. Hall, Jr., C. D. Smith, E. P. Blanchard, Jr., S. C. Cherkofsky, and J. B. Sieja, J. Am. Chem. Soc. 93, 121 (1970).
/. Oxidations with Lead
Tetraacetate
79
TABLE VI (cont.) Substrate
Conditions
Product
% Yield
Reference
249
6 7 8 9 0
LTA/LiCl/benzene
210
1. LTA/benzene/py 2. 40% HC1
212
LT A/LiX/benzene
250
LTA/LiCl/benzene
209
Ε. N. Cain, Tetrahedron Lett., 1865 (1971). R. D. Miller and M. Schneider, Tetrahedron Lett., 1557 (1975). G. E. Gream, Aust. J. Chem. 25, 1051 (1972). Κ. B. Wiberg, G. A. Epling, and M. Jason, J. Am. Chem. Soc. 96, 912 (1974). R. R. Sauers, K. W. Kelly, and B. R. Sickles, J. Org. Chem. 37, 537 (1972).
80
GEORGE Μ. RUBOTTOM
and reference 192 includes many more. Another modification uses treatment of the acid with L T A followed by iodine a n d l i g h t . ' The mechanism 3 5 , 2 5 1
Μ
benzene
2 5 2
i / \ L
(
r e f
-
)
2 5 1
C0 H 9
(ref. 252) (56%)
LTA/I /fty ^ CCl^ 2
H0 C^\^\^^OAc 2
I^^^^^^^OAc
(ref. 35)
(82%)
of the halodecarboxylation process is rationalized in terms of rapid ligandtransfer oxidation of alkyl radicals by h a l o l e a d ( I V ) . Studies o n the 192
R- + Pb(IV)X
• RX + Pb(III)
stereochemistry of the reaction reveal that the reaction is nonstereospecific. ' ' ' Remote functionality can alter epimer ratios by polar 3 6
2 1 5
2 1 6
2 5 3 , 2 5 4
COH
ci
2
LTA/LiCl benzene HOAc
L
t-Bu
COH 2
LTA/LiCl benzene HOAc
J
t-Bu
t-Bu
x ν cis- chloride (33%) irims.chloride
P
{ /
/\θ Η 2
erythro threo
LTA/LiCl ^ benZGne
Ρ
> ζ /
/Λΐ
0 ( r e f s
' f
(ref 216)
1.43:1.00 threo: erythro 1.37:1.00 threo \ erythro
'
3 6
'
2 1 5
'
__
2 5 3 )
λ
/. Oxidations
with Lead Tetraacetate
81
effects as noted by comparing the products formed from 138 versus 1 3 9 .
A
CO H
CI
z
2 5 5
CI
Λ
LTA/LiCl benzene (60%)
138
64:35 (ref. 255)
C0 H
CI
2
CI
LTA/LiCl benzene (60%) 139
79:21
F. DICARBOXYLIC ACIDS
The bis-decarboxylation of 1,2-dicarboxylic acids by L T A , generally carried out in pyridine solvent, has proven to be an extremely useful method for the introduction of an alkene linkage, especially in cyclic systems. One example involves the preparation of 1,4-cyclohexadienes, c o m p o u n d s which are inaccessible by other standard methodology such as the Birch reduction of a r o m a t i c s . Yields are generally low, but the certainty of placement of 256
(ref. 256)
(35%)
the double bond makes the reaction attractive. Some additional cases, including examples of the synthesis of bridged polycyclic alkenes, are noted in Table V I I . References 12 and 192 contain many further examples. 2 5 6 - 2 6 4
2 5 1 2 5 2 2 5 3 2 5 4 2 5 5 2 5 6
J. J. Gajewski and L. T. Burka, J. Am. Chem. Soc. 94, 8860 (1972). L. A. Paquette, W. B. Farnham, and S. V. Ley., J. Am. Chem. Soc. 97, 7273 (1975). R. D. Stolow and T. W. Giants, Tetrahedron Lett., 695 (1971). See also reference 37. R. D. Stolow and T. W. Giants, J. Am. Chem. Soc. 93, 3536 (1971). F. Stoos and J. Rooek, / . Am. Chem. Soc. 94, 2719 (1972).
82
GEORGE Μ. RUBOTTOM TABLE VII LTA
B l S - D E C A R B O X Y L A T I O N OF 1 , 2 - D l C A R B O X Y L I C
Substrate
Solvent
Product
ACIDS
% Yield
DMSO/py
11
256
DMSO/py
30
256
Py
257
Benzene/py
32 12% Η at C-3 and C-6
1
Η Η Η D
R
2
Η Η Η Η
R
R
3
Η D Na Η
257a
257a
Benzene/py
R
Reference
1
Η Η Η D
R
2
Η Η Η Η
% yield
% Η at C-3 and C-6
35-42 41 14 38
10 8 9 9
DMSO/py
—
258
Dioxane/py
10
259
/. Oxidations
with Lead
Tetraacetate
83
TABLE VII (cont.) Substrate
Solvent
Product
45
260
Py
—
261
Benzene/py
36
262
30-40
263
Benzene/py/N
Z
Reference
DMSO/py or dioxane
Benzene/py
MeO C
% Yield
2
21
263a
25
263b
Py/0
2
31
Py/0
2
27 MeO C Z
264
84
GEORGE Μ. RUBOTTOM
The last entry in Table VII is illustrative of the fact that the presence of molecular oxygen often enhances the yields from the reaction. This same oxygen effect was also noted in the preparation of 140 from the corresponding dicarboxylic a c i d s . 2 6 5
140
R
R'
Η Η CH,
Η CH
(ref. 265) 3
Use of excess LTA, or the sequential treatment of the appropriate di carboxylic acid with L T A and a dehydrogenation agent, affords a method for the preparation of substituted aromatic systems I 4 i - i 4 4 . ~ Several reports have appeared concerning the preparation of acenaphthylene 2 6 6
C0 H 2
^CO H
X
2
1. LTA 2. Pd/C
(ref. 266) 141
CO,H LTA (ref. 267)
CO,H 142 (-5%)
HO-C
HO-C
C0 H 2
1. LTA 2. DDQ
C0 H 2
(ref. 268) 143 (12%)
CO,H 1. LTA 2. DDQ
(ref. 268a)
COH Z
144 (10%)
2 6 8 a
/. Oxidations derivatives 1 4 5 .
2 0 2
>
2 6 9
2
7
1
with Lead Tetraacetate
85
R e p o r t e d yields are variable a n d reproducibility
of experimental conditions has been q u e s t i o n e d .
2 0 2
T h e use of anhydrides
such as 146 for producing a l k e n e s has a special advantage in that m a n y anhydrides are available via [2 + 2]- or [4 + 2]cycloadditions of alkenes or dienes, respectively, with maleic anydride. T h e synthesis of D e w a r benzene ( 1 4 7 ) represents a n o t h e r pertinent e x a m p l e . In certain cases anhydrides 2 6 9
2 7 2
py Ο
2 5 7 2 5 7 a
2 5 8
2 5 9 2 6 0 2 6 1
2 6 2 2 6 3 2 6 3 8 2 6 3 b 2 6 4
2 6 5 2 6 6 2 6 7 2 6 8 2 6 8 a
2 6 9
2 7 0 2 7 1 2 7 2
IL-LJ 147 (5-20%)
I. Fleming and E. Wildsmith, J. Chem. Soc. Chem. Commun., 223 (1970). S. Wolfe and J. R. Campbell, Synthesis, 117 (1979). H. G. Selander, D. M. Jerina, D. E. Piccolo, and G. A. Berchtold, J. Am. Chem. Soc. 97, 4428 (1975). Η. E. Zimmerman and L. M. Tolbert, J. Am. Chem. Soc. 97, 5497 (1975). Ν. B. Chapman, S. Sotheeswaran, and K. J. Toyne, J. Org. Chem. 35, 917 (1970). G. A. Russell, R. G. Keske, G. Holland, J. Mattox, R. S. Givens, and K. Stanley, J. Am. Chem. Soc. 97, 1892(1975). P. E. Schueler and Υ. E. Rhodes, J. Org. Chem. 39, 2063 (1974). Υ. E. Rhodes, P. E. Schueler, and V. G. DiFate, Tetrahedron Lett., 2073 (1970). 1. Willner and M. Rabinovitz, J. Org. Chem. 45, 1628 (1980). I. Willner and M. Rabinovitz, Tetrahedron 35, 2359 (1979). J. Wolinsky and R. B. Login, J. Org. Chem. 37, 121 (1972). L. A. Paquette, R. S. Beckley, and W. B. Farnham, J. Am. Chem. Soc. 97, 1089 (1975). T. Tokoroyama, K. Matsuo, and T. Kubota, Tetrahedron 34, 1907 (1978). R. P. Thummel, J. Am. Chem. Soc. 98, 628 (1976). R. P. Thummel and W. Nutakul, J. Am. Chem. Soc. 100, 6171 (1978). K. G. Bilyard, P. J. Garratt, A. J. Underwood, and R. Zahler, Tetrahedron Lett., 1815 (1979). J. E. Shields, D. Gavrilovic, J. Kopecky, W. Hartmann, and H.-G. Heine, J. Org. Chem. 39, 515 (1974). S. F. Nelsen and J. P. Gillespie, J. Am. Chem. Soc. 95, 1874 (1973). J. Meinwald, G. E. Samuelson, and M. Ikeda, J. Am. Chem. Soc, 92, 7604 (1970). Ε. E. van Tamelen, S. P. Pappas, and K. L. Kirk, J. Am. Chem. Soc. 93, 6092 (1971).
86
GEORGE Μ. RUBOTTOM
are formed as reaction side products which, in turn, do not afford alkenes under the conditions e m p l o y e d . ' In the latter example, a 1 5 - 2 0 % yield of diarylallenes could be realized without concomitant anhydride formation. 2 6 4
2 7 3
1. LTA/O. benzene ΗΟ 0^Χ^\^0Ο Η 2
2
(ref. 264)
RR C=C: ,
v
CH C0 H 2
2
LTA benzene/py
RR'C=C=CH + RR'C=<
|^
2
A^O
(ref. 273)
The possibility of concerted bis-decarboxylation seems to be ruled out by orbital symmetry a r g u m e n t s . A transition state such as 148 requires a 2 7 4
Pb(OAc)
2
148
Huckel array of eight electrons and is therefore forbidden. The probable mechanism is stepwise and involves carbonium ion i n t e r m e d i a t e s . Sup192
.COPb(OAc)
COH 2
3
^TCO-H
port for this picture arises from a n u m b e r of observations. First, transdicarboxylic acids can be successfully b i s - d e c a r b o x y l a t e d . ' ' The results noted in reference 257a are especially interesting in that bis-decar boxylation of the corresponding cw-l,2-dicarboxylic acids leads to significant 2 5 7 a
2 7 3 2 7 4 2 7 5 2 7 6
2 7 5
2 7 6
J. K. Crandall, R. A. Colyer, and D. C. Hampton, Synth. Commun. 3, 13 (1973). J. S. Littler, Tetrahedron 27, 81 (1971). J. D. Slee and E. LeGoff, J. Org. Chem. 35, 3897 (1970). W. B. Dauben, C. H. Schallhorn, and D. L. Whalen, /. Am. Chem. Soc. 93, 1446 (1971).
/. Oxidations
HO C
with Lead
LTA/0
2
Tetraacetate
2
Ο
py HCLC
(ref. 275)
(5.2%)
(ref. 276) C (
^
(25%)
H
C0 H 2
LTA CHgCN/py
(ref. 276) (40%)
C0 H 2
D
D
>Oco*H
LTA/py benzene
- £
(ref. 257a)
D ^ D (40%) (no scrambling)
D.
D
R ««γ R
2
1
R
2>
. >C
RR' " R R 1
2
C0 H 2
LTA/py benzene
2
R D Η C H 6
5
Η Η Η
(ref. 257a)
1
2
R
1
2
% yield
D Η 43 Η Η 46 - H Η 69 (no scrambling noted) 6
5
88
GEORGE Μ. RUBOTTOM
deuterium scrambling (see Table VII). Second, products arising from carbonium ion (or radical) intermediates have been i s o l a t e d . ' 2 0 2
HOC 2
2 7 7 , 2 7 7 3
1. LTA 2. Cu(OAc)
CO,H
2
#
1. LTA/py benzene 2. Cu(OAc) DMSO
2
(7.2%)
LTA Cu(OAc)
2
C
°2
H
benzene/py
^
CO H A
(ref. 277) ?0 H 2
HO C A
V
LTA/py/0
+ (40-50%)
(10-15%)
(ref. 277a)
2
anhydride + (20-25%)
On the other h a n d , the reactions of 1 4 9 and 1 5 0 with L T A might be concerted since a Huckel array involving six electrons may be i n v o l v e d . 2 6 4
2 7 7 b
274
2 7 7 2 7 7 3
2 7 7 b
R. S. Givens and W. F. Oettle, J. Am. Chem. Soc. 93, 3963 (1971). Κ. T. Mak, K. Srinivasachar, and N.-C. C. Yang, J. Chem. Soc. Chem. Commun., 1038 (1979). E. J. Corey and H. L. Pearce, J. Am. Chem. Soc. 101, 5841 (1979).
/. Oxidations with Lead
Tetraacetate
89
It is also of interest to note that 151 is reported to give a high yield of the iraws-alkene 1 5 2 . 2 7 8
III. LTA Reactions with Nitrogen-Containing Compounds A. AMINES AND RELATED COMPOUNDS 1. ALKYLAMINES
The reaction of primary alkylamines with L T A to produce nitriles a n d / o r aldimines as well as the reaction of primary aryl amines to form azo com pounds has been r e v i e w e d . ' Recent studies have been mainly concerned with the effects of neighboring groups during amine oxidation. One ex tremely useful example involves the L T A treatment of primary amines 1 2
2 7 9
D. J. Cram, R. B. Hornsby, E. A. Truesdale, H. J. Reich, Μ. H. Delton, and J. M. Cram, Tetrahedron 30, 1757 (1974). J. B. Aylward, Quart. Rev. (London) 25, 407 (1971).
90
GEORGE Μ. RUBOTTOM
containing a δ-ε double bond. With these systems, aziridines are formed in high yield; representative examples are g i v e n . Oxidation of 1 5 3 re2 8 0 - 2 8 3
fj^m,
..ΤΛ/Κ,ΟΟ,,
*s^>
benzene
<^ J (ref. 280) (55-60%) R = H, Me
LTA/I^CO,
-NH,
2
3
benzene
(ref. 282) (90%)
iLy
7
1. LTA benzene
NH
2
2.MeI/Et 0 2
+ M e - N ^ ^
(ref. 283)
(52%)
suits in a complex mixture with the nitrile 1 5 4 the only identifiable product, thus indicating that δ-ε double bond placement in the amine is c r u c i a l . 282
Ο
-
/
™
2
» °»,
/k lta
c
(py
benzene
CN
(ref. 282)
153
154
With 155, the aziridine 156 was obtained in 78% yield and no trace of the 1,4-addition product 157 was d e t e c t e d . Aziridenes constructed by the L T A method have been used as synthetic intermediates for the preparation 284
0 1 2 13 4
W. Nagata, S. Hirai, K. Kawata, and T. Aoki, J. Am. Chem. Soc. 89, 5045 (1967). W. Nagata, S. Hirai, T. Okumura, and K. Kawata, /. Am. Chem. Soc. 90, 1650 (1968). W. Nagata, T. Wakabayashi, and N. Haga, Synth. Commun. 2, 11 (1972). P. S. Portoghese and D. T. Sepp, Tetrahedron 29, 2253 (1973). M. Narisada, F. Watanabe, and W. Nagata, Synth. Commun. 2, 21 (1972).
/. Oxidations
with Lead
Tetraacetate
91
(ref. 284)
157
156 (78%)
155
of diverse structural t y p e s . " The mechanistic aspects of the aziridineforming reactions are not clear. However, several instances where the behavior of primary amines with L T A has been directly compared to the behavior of nitrenes generated from azides of analogous structure indicate that nitrenes are not involved in the former c a s e s . F o r instance, whereas pyrolysis of 158 affords 159, the treatment of 160 with L T A gives an 8 5 % yield of 1 6 1 , probably via a concerted r e a r r a n g e m e n t . Either concerted fragmentations or reactions involving nitrenium ions have been 2 8 1
2 8 3
2 8 5 - 2 8 7
285
(ref. 285)
160 161 (85%)
postulated to explain the formation of iraws-cinnamaldehyde from a 2-phenycyclopropylamine and the production of benzonitrile from L T A treatment of 1 - p h e n y l c y c l o p r o p y l a m i n e . ' Alkoxyamines react with L T A in the presence of alkenes to yield TV-alkoxyaziridines. " Initially, a stepwise addition of nitrenium ion to alkene 286
2 8 8
2 8 5 2 8 6 2 8 7 2 8 8 2 8 9 2 9 0 2 9 1 2 9 2
287
2 9 2
A. J. Sisti and S. R. Milstein, J. Org. Chem. 39, 3932 (1974). T. Hiyama, H. Koide, and H. Nozaki, Tetrahedron Lett., 2143 (1973). T. Hiyama, H. Koide, and H. Nozaki, Bull. Chem. Soc. Jpn. 48, 2918 (1975). S. J. Brois, J. Am. Chem. Soc. 92, 1079 (1970). Β. V. Ioffe and Ε. V. Koroleva, Khim. Geterotsikl. Soedin, 1514 (1972). Β. V. Ioffe and Ε. V. Koroleva, Tetrahedron Lett., 619 (1973). F. A. Carey and L. J. Hayes, J. Org. Chem. 38, 3107 (1973). Β. V. Ioffe, Yu. P. Artsybasheva, and I. G. Zenkovich, Dokl. Akad. Nauk SSSR 231, 1130 (1976).
92
GEORGE Μ. RUBOTTOM
X
LTA
•
RO-N
was postulated since it was believed that the reaction of w-butoxyamine with cis- and trans-2-butenQ was n o n s t e r e o s p e c i f i c . Recent work, however, has shown that this reaction is in fact stereospecific so that a singlet nitrene may well be i n v o l v e d . At least a two-step addition process involving a 291,293
292
Η Me
Me
N c = (
—/l
C
, * M
Me Me C=C
/
X
„.BuO-NH
k
2
LTA
+
"
^
M
»
e
M
W
e
(ref. 292)
Ν
ISJ
w-BuO
n-BuO
nitrenium ion can be excluded. When alkene is omitted, a major pathway for alkoxyamine oxidation is hyponitrite ester 162 formation with subsequent de composition to alkoxy radicals and finally, production of a l c o h o l s . ' 2 9 1
-N
2 9 4 - 2 9 6
2
R-0-N=N-0-R
[RO-]
»-ROH
162
The cyclic system 163 is oxidized to the corresponding oxazine by L T A .
O IN
-
^ CH C1 2
— Γ 2
I ^
2 9 6 a
(ref. 296a)
I
(50%)
H
163
Oxidation of 164 in the presence of electron-rich alkenes leads to the formation of a z i r i d i n e s . The reaction has been shown to be nonstereo specific with (Z)-l-phenylpropene and an equilibrating singlet and triplet nitrene has been implicated to explain the stereochemical r e s u l t s . When treatment of 164 with L T A is carried out in the presence of allyl aryl sufides, 296b
2960
2 9 3 2 9 4
2 9 5 2 9 6
2 9 6 3
2 9 6 b 2 9 6 c
L. J. Hayes, F. P. Billingsley II, and Carl Trindle, J. Org. Chem. 37, 3924 (1972). R. Partch, B. Stokes, D. Bergman, and M. Budnik, J. Chem. Soc. Chem. Commun., 1504 (1971). A. J. Sisti and S. Milstein, / . Org. Chem. 38, 2408 (1973). R. O. C. Norman, R. Purchase, and C. B. Thomas, J. Chem. Soc. Perkin Trans. 7, 1701 (1972). V. J. Lee and R. B. Woodward, J. Org. Chem. 44, 2487 (1979). R. S. Atkinson and B. D. Judkins, J. Chem. Soc. Chem. Commun., 832 (1979). R. S. Atkinson and B. D. Judkins, J. Chem. Soc. Chem. Commun., 833 (1979).
/. Oxidations
with Lead
Tetraacetate
93
iV-arylthiosulfenamides are produced. This reaction may be specific for the singlet n i t r e n e , and the mechanism of product formation is discussed in more detail in Section III, C with regard to diazene trapping. 2 9 6 c
R
SNHo
R I ArSNCHCH=CH
2
SAr I
/ s
2
SAr' (ref. 296c)
1
/
C=C
Ar'SCH CH=CHR LTA
R
4
\
NO,
Ο,Ν'
R
s
R
Ν
R1
Rz
164
R
3
(refs. 296b, 296c)
Secondary and tertiary alkylamines react with L T A to form imine deriva tives when α-hydrogen is available; thus 165 is oxidized to a mixture of
165
Δ - and A - a z o m e t h i n e isomers 1 6 6 . The oxidation of alkaloid 167 is accompanied by fragmentation to yield 1 6 8 , whereas a series of bicyclic 1 5 ( Ν )
16(N)
2 9 7
2 9 8
(ref. 298)
168
94
GEORGE Μ. RUBOTTOM
aziridines 1 6 9 fragment to produce the useful ω-cyanocarbonyl derivatives R
(ref. 287)
170 (29-85%)
170. Treatment of either 171 or 1 7 2 with L T A affords the immonium salt 173, and subsequent N a B H reduction of 173 generates 1 7 2 . ' Further, it has been shown that with base 173 can be transformed into the correspond ing enamine 1 7 4 enabling R-group epimerization to o c c u r . Enamine 2 8 7
2 9 9
3 0 0
4
3 0 0
Η R 173
Η R 174
(ref. 300)
7
8 9
10
W. Nagata, T. Wakabayashi, Y. Hayase, M. Narisada, and S. Kamata, J. Am. Chem. Soc. 92, 3202 (1970). R. E. Moore and H. Rapoport, J. Org. Chem. 38, 215 (1973). R. T. Brown, C. L. Chappie, and A. A. Charalambides, J. Chem. Soc. Chem. Commun., 756 (1974). M. Barczai-Beke, G. Dornyei, M. Kajtar, and Cs. Szantay, Tetrahedron 32, 1019 (1976).
/. Oxidations
with Lead Tetraacetate
formation is also noted in the oxidation of 1 7 5 ,
LTA benzene
3 0 1
95 176,
3 0 2
177,
and
3 0 3
(ref. 301)
175 Me
Me
LTA benzene
(ref. 302)
I Η 176
(28%)
Me \ Ν—Ν H(OEt)
Me \ Ν—Ν
1. LTA 2. hydrolysis
MeMgBr
Me \ Ν—Ν CHOHCftj
CHO
2
177
(ref. 303)
several alkaloid s y s t e m s , and demethylation has been noted as well. ' In one case, the use of pyridine enhanced the demethylation 304
3 0 5
3 0 6
3 0 6
MeO
COJVIe
I Me solvent benzene pyridine
C0 Me 2
(ref. 305) 17%
20% 10%
MeO 'Me
Me
LTA
LTA
MeO
MeO OMe
OMe
OMe
(7-10%) (ref. 306)
96
GEORGE Μ. RUBOTTOM
process, and when substituted Af-alkyl-N-methylanilines are treated with L T A / A c 0 / C H C 1 , high yields of the corresponding acetamides result, presumably via 1 7 8 . " 305
2
3
3 0 7
3 0 9
R
R
Ar—NMe — A r — Ν
Ac + CH 0 2
R I (Ar—N=CH ) + (178)
(ref. 307-309)
2
2. AROMATIC AMINES Neighboring groups also effect the course of the L T A oxidation of a r o matic a m i n e s . F o r example, 1 7 9 180 and 1 8 1 give cyclic de rivatives, often in high yield. The reaction has been rationalized in terms of both cation and radical i n t e r m e d i a t e s . Oxidative cyclization can also be 2 7 9
3 1 0
3 1 1
3 1 2
3123
I
ο
Ν
2
LTA
2
Ν ^ Λ NH
(ref. 310)
(28%)
179
γ γ Ν Η
V^W~
benzene
H O A c Η
γΥν.
Κ
Ν
γ ^ /
NH
Ph
(ref. 311) R
% yield
2
Ph NH Η
WO
90 75 86
2
(ref. 312)
181
R
% yield
R
Η Me NH
82 86 87
NMe SMe Ph
2
% yield 2
75 72 82
used with quinoidal systems, again with excellent r e s u l t s . However, in one instance, the TV-oxide 182 was obtained as major p r o d u c t . As yet the mechanism for the formation of 1 8 2 is unclear. 3 1 1 > 3 1 3
3 1 4
/. Oxidations
with Lead
Tetraacetate
97
Me LTA
° γ
Ν ^
Ν
ΜΛΑΝ
H O A C
/ Ν
_ ^
( R E F 3 , , )
ο (25%)
(19%)
182 (67%)
(ref. 314) Pyrrolopyrimidines when treated with L T A u n d e r g o ring expansion to the pyrimido-pyrimidine s y s t e m . ' This high-yield transformation has 3 1 5
3 0 1 3 0 2 3 0 3 3 0 4
3 0 5
3 0 6 3 0 7 3 0 8 3 0 9 3 1 0 3 1 1 3 1 2 3 1 2 a 3 1 3 3 1 4 3 1 5 3 1 6
3 1 6
M. Watanabe, S. Kajigaeshi, and S. Kanemasa, Synthesis, 761 (1977). J. Daunis, H. Lopez, and G. Maury, J. Org. Chem. 42, 1018 (1977). D. S. Noyce and Β. B. Sandel, J. Org. Chem. 41, 3640 (1976). G. Stork and A. G. Schultz, / . Am. Chem. Soc. 93, 4074 (1971). J. P. Kutney, U. Bunzli-Trepp, Κ. K. Chan, J. P. de Souza, Y. Fujise, T. Honda, J . Katsube, F. K. Klein, A. Leutwiler, S. Morehead, M. Rohr, and B. R. Worth, J. Am. Chem. Soc. 100, 4220(1978). L. Castedo, R. Suau, and A. Mourino, Heterocycles 3, 449 (1975). G. Galliani, B. Rindone, and P. L. Beltrame, J. Chem. Soc. Perkin Trans. 2, 1803 (1976). G. Galliani, B. Rindone, and C. Scolastico, Tetrahedron Lett., 1285 (1975). B. Rindone and C. Scolastico, Tetrahedron Lett., 3379 (1974). A. Matsumoto, M. Yoshida, and O. Simamura, Bull. Chem. Soc. Jpn. 47, 1493 (1974). Y. Maki and E. C. Taylor, Chem. Pharm. Bull. 20, 605 (1972). E. C. Taylor, G. P. Beardsley, and Y. Maki, J. Org. Chem. 36, 3211 (1971). L. K. Dyall, Aust. J. Chem. 32, 643 (1979). W. Schafer, H. W. Moore, and A. Aquado, Synthesis, 30 (1974). E. C. Taylor, Y. Maki, and A. McKillop, J. Org. Chem. 37, 1601 (1972). F. Yoneda and M. Higuchi, J. Chem. Soc. Chem. Commun., 402 (1972). F. Yoneda and M. Higuchi, Bull. Chem. Soc. Jpn. 46, 3849 (1973).
98
GEORGE Μ. RUBOTTOM
been shown to involve 1 8 3 as an intermediate, and an attempted trapping experiment with cyclohexene failed to provide evidence for a free nitrene.
Ph CI Br
90 86 72
B. AMIDES
The reaction of primary amides with L T A in the presence of an alcohol is a very useful alternative to classical methods for the oxidative rearrange ment of amides into isocyanates and, hence, c a r b a m a t e s . " The latter step is catalyzed by addition of t r i e t h y l a m i n e . W h e n the oxidation is performed in D M F , and the resulting isocyanate treated with tert-butylamine, excellent yields of wHsyra-ureas r e s u l t . The ter t-butyl carbamates 3 1 7
3 1 9
317
317
RNHCONH—t-Bu {
RCONH
[
2
RNHC0 i-Bu 2
(ref. 317)
formed by the procedure also have the advantage of being rapidly cleaved to the corresponding amine hydrochlorides by treatment with a n h y d r o u s H C l in dry ethanol. Discrete nitrene intermediates could not be trapped from the oxidation and rearrangement from an intermediate 1 8 4 has R—C ί
^Pb(OAc)
2
Η 184
been p r o p o s e d . Rearrangement of 1 8 5 into 186 indicates that the reaction occurs with retention of c o n f i g u r a t i o n . This point has also been proven with the LTA/pyridine rearrangement of β-hydroxy primary 3 1 7
317
3 1 7 3 1 8 3 1 9
Η. E. Baumgarten, H. L. Smith, and A. Staklis, J. Org. Chem. 40, 3554 (1975). B. Acott, A. L. J. Beckwith, and A. Hassanali, Aust. J. Chem. 21, 185 (1968). B. Acott, A. L. J. Beckwith, and A. Hassanali, Aust. J. Chem. 21, 197 (1968).
/. Oxidations
with Lead
99
Tetraacetate
amides which afford extremely high yields (73-100%) of the corresponding 2-oxazolidinones. ' 32 0
3
2 1
Ph
Ph
'\/C0 NH 2
LTA f-BuOH
2
(ref. 317) 186 (13%)
185
LTA py
(refs. 320, 321)
(95%)
W h e n the above reaction is carried out in the presence of iodine and light, AModoamides are formed which subsequently homolyze and cyclize. After treatment with dilute alkali γ- and ^-lactones are p r o d u c e d . A recent example involves the conversion of 187 to 1 8 8 (68% y i e l d ) . Similar ex periments with lupanoic acid amides 189 gives mainly the corresponding 2 7 9
322
^CONH
2
LTA/I /hv_ 2
c H 8
1
7
^o^o
benzene
(-cf>) \
187
CH e
/
17
(ref. 322)
ΚΟΗ
EtOH/H 0 2
C H C0CH(CH C0 H) 8
CONH.
17
2
188 <
(ref. 323)
3 2 0 3 2 1 3 2 2
S. S. Simons, Jr., 7. Org. Chem. 38, 414 (1973). S. S. Simons, Jr., J. Am. Chem. Soc. 96, 6492 (1974). W. L. Parker and F. Johnson, J. Org. Chem. 38, 2489 (1973).
2
2
100
GEORGE Μ. RUBOTTOM
isocyanates. Cyclization was also observed in the L T A oxidation of 190 324,324a j ^ electron-withdrawing substituents inhibited ring formation and increased the a m o u n t of dimeric products 191 p r o d u c e d . 323
n
§
c a s e
3 2 4
PhCH 0—NHCONH 2
190
^0
3CH Ph
LTA
2
CHClg
•N \ OCH Ph
R
+
(ArNHCO—N4? 191
9
(ref. 324)
A novel ring contraction occurs when 1 9 2 is treated with L T A . Product 193 may well arise from an intramolecular acetyl transfer involving 194. 3 2 5
rr"Y 192
™, (FRY
COXOMel
-co
2
/ Ν \ COMe 193 (86%)
194
(ref. 325)
Finally, oxidation of a series of bicyclic secondary amides 1 9 5 gives products consistent with the formation of the highly strained 1 9 6 . 3 2 6
(CH ) 2
n
Sulfonamides can also undergo nitrenoid reactions when treated with LTA. The examples presented below are t y p i c a l . ' ' Failure of 3 2 7
3 2 8
3 2 8 0
J. Protiva and A. Vystroil, Collect. Czech. Chem. Commun. 41, 1200 (1976). J. H. Cooley and P. T. Jacobs, J. Org. Chem. 40, 552 (1975). A. R. Forrester, Ε. M. Johansson, and R. H. Thomson, J. Chem. Soc. Perkin Trans. 1, 1112(1979). C. W. Rees and A. A. Sale, J. Chem. Soc. Perkin Trans. 1, 545 (1973). M. Toda, H. Niwa, K. Ienaga, Y. Hirata, and S. Yamamura, Tetrahedron Lett., 335 (1972). M. Okahara, K. Matsunaga, and S. Komori, Synthesis, 203 (1972). 328 ' ' T. Ohashi, K. Matsunaga, M. Okahara, and S. Komori, Synthesis, 96 (1971). T. A. Chaudri, Pak. J. Sci. Ind. Res. 18, 1 (1976). 3 2 3
3 2 4
3 2 4 a
3 2 5
3 2 6
3 2 7
1
/. Oxidations
with Lead I TA
R R ' N — S 0 N H + SMe ^ 2
ArS0 N=SRR'
2
2
101
RR'N—S0 —N=S(Me) Ο
2
2
A r S 0 N H + LTA
2
Tetraacetate
ArS0 N=S(Me)
2
2
2
(ref. 327)
2
(refs. 328,328a)
alkenes to trap intermediates is taken as negative evidence for free nitrene formation. The same conclusion was reached from the observation that the arsinimines 1 9 7 produced by L T A oxidation of sulfonamides in the presence of triphenylarsine actually arise from nitrogen attack on inter mediate 1 9 8 . * The same considerations are thought to apply to the 3 2 8 3
3 2 9
3 3 0
I TA
RS0 NH + P h A s ^ Ph As=NS0 R 2
2
3
3
(refs. 329,330)
2
(197) (Ph As(OAc) ) 3
2
198
reactions of sulfonamides with L T A and sulfides noted above. In this case 199 is proposed as a likely i n t e r m e d i a t e . Analogous oxidations have also been reported to give the tellurium derivatives 2 0 0 . The bis-sulfonamide 329
3 3 1
R S(OAc) 2
2
(ref. 329)
R Te(OAc) 2
199
2
(ref. 331)
200
201 gives a 9 3 % yield of ( £ / Z ) - 2 0 2 when allowed to react with L T A in acetic a c i d . 3 3 2
(ref. 332) SO Ph z
202 (93%)
C. HYDRAZINES AND RELATED COMPOUNDS
The reaction of hydrazines with L T A generally produces azo c o m p o u n d s or diazines, depending u p o n substitution pattern and this behavior has been reviewed. With hydrazine, treatment with two equivalents of L T A 2 7 9 , 3 3 3
3 2 9 3 3 0 3 3 1 3 3 2 3 3 3
J. I. G. Cadogan and I. Gosney, J. Chem. Soc. Perkin Trans. 1, 466 (1974). J. I. G. Cadogan and I. Gosney, J. Chem. Soc. Chem. Commun., 586 (1973). B. C. Pant, Tetrahedron Lett., 4779 (1972). A. G. Pinkus and J. Tsuji J. Org. Chem. 39, 497 (1974). D. M. Lemal, in "Nitrenes" (W. Lwowski, ed.), p. 345. Wiley (Interscience), New York, 1970.
102
GEORGE Μ. RUBOTTOM
gives a quantitative yield of N in a reaction that has been used to detect small a m o u n t s of hydrazine using coulometric t e c h n i q u e s . Oxidation of thiadiazolidines produces excellent yields of the corresponding thiadiazolines as part of a high-yield method for the synthesis of symmetrically substituted alkenes. Systems 2 0 3 and 2 0 4 are typical. 2
3 3 4 , 3 3 5
3 3 6
Η
Η
stV R > T
R
3 3 7
">0
pet. ether
R
S
"H ""* »• " 33
R
R
(ref. 336)
R
(ref. 337) 204 (85%)
203 (69%)
The reaction of benzylhydrazine with L T A is reported to afford benzyldiimide which then reacts further to give benzyl acetate with a second molar equivalent of L T A . Since the production of benzyl acetate predominates in the presence of excess methanol, it is proposed that this c o m p o u n d arises via the intramolecular reaction of 2 0 5 . The diimide initially formed from 3 3 8
PhH C—Ν 2
AcO^fvN Pt> AcO^ OAc 205
2 0 6 cyclizes to give 2 0 7 in low yield Ο
339
Q
C0 Et 2
Me.„>k
/N—NHCO.Et
LTA
Μ θ
NHCO Et
-Ν
EtOH
Et. I Me
a
(ref. 339)
2
206
207 (19%)
Diacylhydrazides are readily oxidized to the corresponding diacyldiimides by L T A , " and in the presence of 1,3-dienes, high yields of [4 + 2]cycloaddition products are o b t a i n e d . " 3 3 8 , 3 4 0
3 4 2
3 4 0
3 4 3
/. Oxidations
with Lead Tetraacetate
103
Τ. J. Pastor, V. J. Vajgand, V. V. Vojka, and V. Antonijevic, Mikrochim. Acta, 131 (1978). M. R. Mahmoud, M. S. El-Meligy, and I. M. Issa, Indian J. Chem. 54, 872 (1977). A. P. Schaap and G. R. Faler, J. Org. Chem. 38, 3061 (1973). L. K. Bee, J. Beeby, J. W. Everett, and P. J. Garratt, J. Org. Chem. 40, 2212 (1975). R. O. C. Norman, R. Purchase, C. B. Thomas, and J. B. Aylward, J. Chem. Soc. Perkin Trans. 1, 1692(1972). E. C. Taylor and F. Sowinski, J. Org. Chem. 40, 2321 (1975). D. W. Whitman and Β. K. Carpenter, J. Am. Chem. Soc. 102, 4272 (1980). S. F. Nelsen, W. C. Hollinsed, L. A. Grezzo, and W. P. Parmelee, J. Am. Chem. Soc. 101, 7347 (1979). 340b j j chem. 34, 3181 (1969). Μ. E. Jung and J. A. Lowe, J. Org. Chem. 42, 2371 (1977). R. J. Cremlyn, M. J. Frearson, and D. R. Milnes, J. Chem. Soc. Chem. Commun., 319 (1974). R. J. Weinkam and Β. T. Gillis, J. Org. Chem. 37, 1696 (1970).
3 3 4 3 3 5
3 3 6 3 3 7 3 3 8
3 3 9
3 4 0
3 4 0 a
B
3 4 1
3 4 2
3 4 3
G i n i s
a n d
R
A
I z y d o r e 5
0
r
g
104
GEORGE Μ. RUBOTTOM
(MePhN) P—NHNHCO-Et 2
+
Ο
LTA CC1
ΊΡ— (NPhMe)
4
(?)
2
(ref. 342)
(ref. 343)
(88%)
The formation of azo c o m p o u n d s has also been noted from the deacylation of certain hydrazine d e r i v a t i v e s , and in this regard N,iV-diisopropyl3 3 8 , 3 4 4
Ο Μ
6
- Ν ^ γ
Η Ν
^ 0
/ 2
οΛΛΛ Me
Η
Ε 1
M H
°
Ο
e
\
K
Ο
\
N
Ο^ΑΛο/
A C
\
Me
Η
/
0
^Α>Αθ Me (66%) (ref. 344)
E. C. Taylor and F. Sowinski, J. Org. Chem. 40, 2329 (1975).
/. Oxidations with Lead
Tetraacetate
105
hydrazine has been used as an easily removed protecting group for carboxylic acids. Λ^Ν-Dialkylhydrazides ' and N 7V-dialkylhydrazines can 3 4 5
338
346
338
3
LTA
^T^
RCO-N—NH
I
•
Py
RC0 H
^ N=N
+
2
\
(-100%)
(ref. 345)
f—
(not isolated)
also generate dipoles such as 2 0 8 when treated with L T A . A series of diMe COCH Ph co \ / Ν—Ν Ν—Ν 2
PhCH=CHj + Me N—NHCOCHaPh
LTA
a
*Ph
(ref. 346)
. (15%) (H C=N—N—COCHjjPh) Me +
2
208
aziridines 2 0 9 was cleaved with L T A to give 2 1 0 and 2 1 1 Η
347
OAc L
*^CHR R l
T
A
»
R ^ i — N = N — C R R O A c + R R CH-N=N—CR R OAc s
4
1
2
210
e
s
4
211 (ref. 347)
209
W h e n the 1,1-disubstituted hydrazine is incorporated into a ring system, a n u m b e r of products arise which probably come from an intermediate diazine (nitrene). F o r instance, the formation of a tetrazene and the ap propriate amine derivative can occur from the oxidation or fragmentation of the initially formed 2 1 2 . Several other examples of the latter process 3 4 8 , 3 4 9
Z—N=N—Ζ '[oxidation] LTA Z-NH,
C H > C 1 >
Ζ =
»» [ Ζ — N H - N H - Z ] 212
^[fragmentation] Ζ—Η 3 4 5
3 4 6
(ref. 348)
D. H. R. Barton, M. Girijavallabhan, and P. G. Sammes, J. Chem. Soc. Perkin Trans. /, 929 (1972). W. Oppolzer and H. P. Weber, Tetrahedron Lett., 1711 (1972).
GEORGE Μ. RUBOTTOM
106 are a v a i l a b l e .
In systems where nitrogen extrusion can take place,
3 5 0 , 3 5 1
fragmentation occurs in high y i e l d .
3 5 0
'
""
3 5 2
Similar products are also
3 5 5
observed from the L T A oxidation of substituted Ν—Ν
LTA
2 R—CN
benzene R
Ν
+
N
1,2-diaminobenzenes.
2
(refs. 350, 354, 355)
(88-90%)
R
356
NH
2
LTA
N—NH
benzene
9
(ref. 352)
(81%) Ring expansion has also been observed a n d used as a high-yield m e t h o d for the synthesis of b o t h 1,2,3-benzotriazines a n d 1 , 2 , 4 - b e n z o t r i a z i n e s . 357
N—NH
/
\
or
2
NH Ν II / N - N H Ν
358,359
LTA/CaO
T
(ref. 357)
2
2
R
LTA CH C1 2
m
2
^
VV ^ As.iL 1
(refs. 358, 359)
(48-95%)
3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 4 3 5 5
3 5 6 3 5 7
3 5 8 3 5 9
V. N. Yandovskii, P. M. Adrov, and L. B. Koroleva, Zh. Org. Khim. 11, 156 (1975). L. Hoesch and A. S. Dreiding, Helv. Chim. Acta 58, 980 (1975). D. J. Anderson, T. L. Gilchrist, and C. W. Rees, J. Chem. Soc. Chem. Commun., 800 (1971). K. Sakai and J.-P. Anselme, Tetrahedron Lett., 3851 (1970). K. Sakai and J.-P. Anselme, J. Org. Chem. 37, 2351 (1972). J. W. Barton and A. R. Grinham, J. Chem. Soc. Perkin Trans. 1, 634 (1972). T. L. Gilchrist, G. E. Gymer, and C. W. Rees, / . Chem. Soc. Perkin Trans. 1, 1747 (1975). Κ. K. Mayer, F. Schroppel, and J. Sauer, Tetrahedron Lett., 2899 (1972). F. Schroppel and J. Sauer, Tetrahedron Lett., 2945 (1974). L. S. Kobrina, Ν. V. Akulenko, and G. G. Yakobson, Zh. Org. Khim. 8, 2375 (1972). Β. M. Adger, S. Bradbury, M. Keating, C. W. Rees, R. C. Storr, and Μ. T. Williams, J. Chem. Soc. Perkin Trans. 1, 31 (1975). Α. V. Zeiger and Μ. M. Joullie, J. Org. Chem. 42, 542 (1977). Α. V. Zeiger and Μ. M. Joullie, Synth. Commun. 6, 457 (1976).
/. Oxidations
with Lead
Tetraacetate
107
When 1 -aminopyridinium, 1 -aminoquinolinium, 1 -aminoisoquinolinium, or certain 2-aminoimidazo[l,5-fl]pyridinium b r o m i d e s are treated with LTA, the corresponding acylated cyclic hydrazides result in moderate to excellent yield. The sequence shown portrays the postulated mechanism for the pyridine d e r i v a t i v e . 360
360
3 6 0
3 6 0 3
360
HNCOMe
Treatment of 1-aminobenzotriazole with L T A affords a mild, high-yield method for the generation of b e n z y n e . The procedure, carried out in the presence of suitable 1,3-dienes gives products derived from [4 + 2]cycloaddition. Benzyne produced by the above method also reacts with C S 361
3 6 2 - 3 6 4
2
NH
2
(ref. 362)
3 6 0 3 6 0 a 3 6 1 3 6 2 3 6 3
3 6 4
J. T. Boyers and Ε. E. Glover, J. Chem. Soc. Perkin Trans. 7, 1960 (1977). Ε. E. Glover, L. W. Peck, and D. G. Doughty, J. Chem. Soc. Perkin Trans. 7, 1833 (1979). C. D. Campbell and C. W. Rees, J. Chem. Soc. C, 742 (1969). T. Irie and H. Tanida, J. Org. Chem. 43, 3274 (1978). H. Kato, S. Nakazawa, T. Kiyosawa, and K. Hirakawa, J. Chem. Soc. Perkin Trans. 1, 672 (1976). T. J. Barton, A. J. Nelson, and J. Clardy, J. Org. Chem. 37, 895 (1972).
108
GEORGE Μ. RUBOTTOM
to give good yields of 213 or 214 depending u p o n the solvent e m p l o y e d .
365
/. Oxidations
with Lead
109
Tetraacetate
The lifetime of an aryne can be lengthened dramatically by immobilizing the system on carboxylated polystyrene resin. The persistence of 2 1 5 for 70 seconds has been r e p o r t e d . 3 6 6
0-
( ? ) — COOCH CH
COOCHXHL
2
k^AV
CH C1 2
s
(ref. 366) 2
215
NH,
In the absence of an " a r y n e t r a p , " the formation of biphenylenes becomes important, and in several instances crossed aryne couplings have been demonstrated. T h e typical [4 + 2] adducts obtained from L T A treatment 3 6 7
352
(31%)
(15%) (ref. 352)
of 2 1 6 or 2 1 7 in the presence of dienes are indicative of the fact that nonbenzenoid arynes are accessible by the method too. 3 5 3
3 6 8
N or N -isomer x
(ref. 353)
217
3
(ref. 368)
Generation of double as well as triple bonds in nonaromatic systems is also feasible as noted by the synthesis of the interesting c o m p o u n d s 2 1 8 , 219, 220, and 2 2 1 . The triazene derivative 2 2 2 loses nitrogen on 3 6 9
3 6 9
3 6 5 3 6 6 3 6 7
3 6 8 3 6 9
3 7 0 3 7 1
3 7 0
3 7 1
J. Nakayama, J. Chem. Soc. Perkin Trans. 1, 525 (1975). P. Jayalekshmy and S. Mazur, J. Am. Chem. Soc. 98, 6710 (1976). C. F. Wilcox, Jr., J. P. Uetrecht, G. D. Grantham, and K. G. Grohmann, J. Am. Chem. Soc. 97, 1914(1975). D. Christophe, R. Promel, and M. Maeck, Tetrahedron Lett., 4435 (1978). R. L. Viavattene, F. D. Greene, L. D. Chueng, R. Majeste, and L. M. Trefonas, J. Am. Chem. Soc. 96, 4342(1974). T. Nakazawa and I. Murata, Angew. Chem., Int. Ed. Engl. 14, 711 (1975). C. W. Rees and D. E. West, J. Chem. Soc. C, 583 (1970).
110
GEORGE Μ. RUBOTTOM
(ref. 369)
"Bis-#-aminotriazoline"
(ref. 369)
(ref. 370)
(ref. 371)
treatment with L T A to afford 223, or the equivalent, which gives 1,3- as well as 1,2- and 1,4-adducts when trapped with a number of 1 , 3 - d i e n e s . ' 372
J. Meinwald and G. W. Gruber, J. Am. Chem. Soc. 93, 3802 (1971). J. Meinwald, L. V. Dunkerton, and G. W. Gruber, /. Am. Chem. Soc. 97, 681 (1975).
373
/. Oxidations
with Lead
Tetraacetate
111
222
(44%)
223
(72%)
(ref. 372)
(ref. 373)
Diazenes which d o not undergo the fragmentation reactions noted above afford high yields of aziridines by cycloaddition to alkenes. Stereochemical studies ' " indicate stereospecific addition which implicates singlet 3 5 5
3 7 4
3 7 6
LTA
RgNNHg-
(R,N-N)
Η
^N—NR
2
nitrene as the reactive intermediate, and I N D O calculations even favor a preferred singlet g r o u n d - s t a t e . Systems 2 2 4 - 2 3 0 have all been used successfully and even 2 3 0 , which fragments readily in the absence of alkene, gives aziridines when alkenes are p r e s e n t . ' When the diazene generated from 2 3 0 was trapped with a series of aryl substituted styrenes it was found that electron-donating groups in the styrene p r o m o t e aziridine formation 293
3 5 4
EtO C a
P h ^
N
ι
^ P h
NH
3 7 5 3 7 6
a
M e ^ ^ M e NH,
2
224 (ref. 354) 3 7 4
CO Et
225 (ref. 354)
3 5 5
/ Ν—Ν
Ph
Me NH
ii NH
2
2
226 (ref. 354)
227 (ref. 374)
D. J. Anderson, T. L. Gilchrist, D. C. Horwell, and C. W. Rees, J. Chem. Soc. C, 576 (1970). H. Person, C. Fayat, F. Tonnard, and A. Foucaud, Bull. Soc. Chim. Fr., 635 (1974). H. Person, F. Tonnard, A. Foucaud, and C. Fayat, Tetrahedron Lett., 2495 (1973).
112
GEORGE Μ. RUBOTTOM
^N
r^"V"^
/ N H 2
i
Ι π
N^Me
Ν—Ν
1 \
ι
^ / ^ Ν ^ Ο
Ph^N^Ph
I
I
NH
NH
2
228 (ref. 374)
2
229 (ref. 374)
230 (refs. 354, 355)
at the expense of f r a g m e n t a t i o n . The fact that diazenes might have some nucleophilic character due to tervalent nitrogen lone pair d e r e a l i z a t i o n should enhance the reactivity of the nitrene toward electrophilic alkenes. 355
R N—S
R N =N" +
2
2
This behavior has been o b s e r v e d . " The effect of substituents on b o t h the nitrene and alkene have also been discussed in terms of frontier orbital theory. ' A large n u m b e r of aziridines have been synthesized using iV-aminophthalimide as the nitrene precursor. The examples given in Table VIII are i l l u s t r a t i v e . 3 7 4
3 7 5
3 7 6
3 7 6
3 7 4 - 3 8 3
T A B L E VIII LTA-PROMOTED AZIRIDINE FORMATION WITH 7V-AMINOPHTHALIMIDE IN METHYLENE CHLORIDE
Substrate
Product
% Yield
Reference
O. R = —Ν Ο R \
R
1
/ R
R \
3
1
/
c=c
c
\
/ \ R
2
R
4
/
c
3
R
4
\
Ν
2
R /
I
R R C H ί-Bu Me Me Η CI CI 1
6
R Η Η Η Η Me Η CI 2
5
R Η Me Η Me Me Η Η 3
R Η Me Me Η Me CI CI 4
42 61 36 19 57 60 90
374 374 374 374 375 374 374
/. Oxidations with Lead
Tetraacetate
113
TABLE VIII (cont.) Substrate
R
1
\ R
2
Product
/
R
3
R
4
; Yield
Reference
/ C=C
R
\
R
1
C0 Me C0 Et COaMe C0 Me COMe COHS /?-C1COH4 /7-N0 C H m-MeOC H CoHs />-ClC H />-N0 C H /?-MeOC H m-MeOC H COHS />-ClC H /7-N0 C H /7-MeOC H COHS /7-ClC6H /?-N0 C H /?-MeOC H CeHs /7-ClC H /?-N0 C H COHS /?-N0 C H /7-N0 C H /?-MeOC H COHS COHS COHS 2
2
2
2
6
2
4
6
4
6
4
6
4
6
4
6
4
6
2
6
4
4
6
4
4
2
6
4
6
4
6
4
2
6
4
2
6
4
2
6
4
6
4
2
Η Η Me Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η
R
3
Η Η Η Η Me CN CN CN CN CN CN CN C0 Et C0 Et C0 Et C0 Et C0 Et Et Et Et Et Me Me Me Me CN CN CN CN CN Η Η 2
2
2
2
2
R
4
Η C0 Et Η Me Me C0 Me C0 Me C0 Me CONH CONH CONH CONH C0 Et C0 Et C0 Et C0 Et C0 Et N0 N0 N0 N0 N0 N0 N0 N0 PO(OEt) PO(OEt) Ts CeHs CeHs C0 Me COC H 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 2
2
6
5
73 20 100 90 88 73 83 95 74 81 90 83 40 40 48 51 96 50 50 62 70 66 58 80 85 18 50 20 25 43 75 70
374 374 374 374 374 375, 3 7 6 375,376 375,376 375, 3 7 6 375,376 375,376 375,376 375,376 375 375 375 375, 3 7 6 375, 376 375,376 375,376 375,376 375 375 375 375 375, 3 7 6 375,376 375,376 376 376 375, 3 7 6 375, 376 (cont.)
114
GEORGE Μ. RUBOTTOM TABLE VIII (cont.) Substrate
Product
; Yield
Reference
[I
R = -N
6 R
1
\ R
2
/
R
3
R
4
R
/ C=C
R
\
R
R
1
2
2
1
\
C
/
R
/
C
\
Ν
/
R
3
R
4
\
R
3
4
C6H5
Η
Η
CHO
50
375, 376
COHS
Η
Η
CN
35
375,376
OEt
Η
Η
Η
95
375,376
COHS Η
Η
50
377
Η
32
378
Η COHS
C6H5
Ν—R
30-40
374, 375, 376
42
379
Ν—R
R'
V R"
Ν—R
R"
C0 Me Η
Η 35 Η 22
380
Η
CI 12
381
2
R'
18
381
382
endo/exo mixture
Η Ν—R
22
382
endo/exo mixture
Η
a?
R OAc
89
383
/. Oxidations
with Lead
Tetraacetate
115
Phthalomidonitrene generated from L T A treatment of N-aminophthalimide reacts with 1,3-dimethoxybenzene to give 2 8 - 3 7 % of 2 3 1 along with a trace of azepine 2 3 2 . Pyrolysis of 2 3 3 affords a 2 to 1 mixture rich in 3 8 4
(ref. 384) OMe 231 (28-37%)
232 (trace)
1.5 233
azepine. The difference in product ratios is attributed to acetic acid present in the L T A reaction. In one interesting extension of the method, N-aminophthalimide was oxidized in the presence of alkynes in an attempt to generate the antiaromatic
3 7 7 3 7 8 3 7 9 3 8 0 3 8 1 3 8 2 3 8 3 3 8 4
L. A. Carpino and R. K. Kirkley, J. Am. Chem. Soc. 92, 1784 (1970). R. Annunziata, R. Fornasier, and F. Montanari, J. Org. Chem. 39, 3195 (1974). G. C. Tustin, C. E. Monken, and W. H. Okamura, J. Am. Chem. Soc. 94, 5112 (1972). G. R. Meyer and J. Stavinoha, Jr., J. Heterocycl. Chem. 12, 1085 (1975). A. G. Anderson, Jr. and D. R. Fagerburg, Tetrahedron 29, 2973 (1973). A. Ruttimann and D. Ginsburg, Tetrahedron 32, 1009 (1976). D. W. Jones, J. Chem. Soc. Chem. Commun., 884 (1972). D. W. Jones, J. Chem. Soc. Chem. Commun., 67 (1973).
116
GEORGE Μ. RUBOTTOM
l//-azirine system. However, the only product isolated was the 2//-azirine, derived perhaps from rearrangement of the transiently stable 1//-system 234.
3 8 5
N—NH,
(ref. 385)
Diazenes can also be trapped by allyl aryl sulfides to give 2 3 5 which subsequently afford 2 3 6 by a [2,3] sigmatropic s h i f t . Trapping with 386
R-N +
R'CH=CH \Ή Ar — S
Ar\
c
2
235
236 (54-64%)
II > + •
(ref. 386)
sulfoxides gives high yields of the corresponding s u l f o x i m i d e s ' reaction that occurs with retention of configuration at s u l f u r . 3 5 4
3 8 7 , 3 8 8
3 8 8 a , 3 8 8 b
15
16 17
in a The
D. J. Anderson, T. L. Gilchrist, G. E. Gymer, and C. W. Rees, /. Chem. Soc. Perkin Trans. 7, 550 (1973). R. S. Atkinson and S. B. Awad, J. Chem. Soc. Perkin Trans. 7, 651 (1975). T. L. Gilchrist, C. W. Rees, and E. Stanton, J. Chem. Soc. Chem. Commun., 801 (1971).
/. Oxidations
with Lead
Tetraacetate
117
formation of 2 3 7 is one interesting application of the p r o c e s s .
38815
Pyrolysis
p©
S—f"\/
LTA/RNH, ^
1-N^/\
CH CI 2
2
C0 R'
I
|"~ ~\S
L_ ^y\ N
C0 R'
2
2
237 (76%)
(ref. 388b)
of 2 3 8 at low pressure has been shown to give benzocyclobutene-1,2dione whereas photolysis of 2 3 8 in the presence of cyclohexene affords aziridine 2 3 9 . Thermal decomposition of the readily available 3 8 7 , 3 8 8
3 8 8
(ref. 388) (35%)
Ο
(refs. 387, 388)
239 (20%)
3-amino-2-oxazolidone system 2 4 0 results in concomitant loss of N • Ν » . -Ν Ο
\ II N = SMe
2
•N \ :N:
+ N + C0 2
and
2
2
240
3 8 8
3 8 8 a 3 8 8 b
D. J. Anderson, D. C. Horwell, E. Stanton, T. L. Gilchrist, and C. W. Rees, J. Chem. Soc. Perkin Trans. J, 1317 (1972). S. Colonna and C. J. M. Stirling, J. Chem. Soc. Perkin Trans. 7, 2120 (1974). J. E. G. Kemp, M. D. Closier, and Μ. H. Stefaniak, Tetrahedron Lett., 3785 (1979).
118
GEORGE Μ. RUBOTTOM
C 0 from an intermediate diazene to afford excellent yields of a l k e n e . ' This predominantly syn-elimination allows the preparation of interesting strained alkenes such as 2 4 1 and 2 4 2 . ' 3 8 9
3 9 0
2
3 8 9
241
3 8 9
3 9 0
242
(ref. 389)
(refs. 389,390)
D. AZOMETHINES
The chemistry of the oxidation of azomethines ( 2 4 3 ) with L T A has been studied extensively. T w o excellent comprehensive reviews on the subject have
ζ / RR'C=N 243
appeared ' along with several specific reviews dealing with oxidation of oximes, substituted h y d r a z o n e s , heteroallylic s y s t e m s , and oxida tive cyclization of carbonyl d e r i v a t i v e s . The depth of coverage of this interesting area of L T A chemistry noted above precludes further discussion except to note several recent reports. Hydrazone 2 4 4 is cyclized in good y i e l d , while treatment of 2 4 5 with 9
3 9 1
392
393
394
395
396
^Y^N N ^ N 244
NH
LTA 2
λ
benzene *
fy^\
N^L/^ (60%)
L T A in the presence of acrylonitrile gives 2 4 6 . U n d e r the same con ditions, 2 4 7 affords the corresponding t r i a z o l o p y r i d i n e . Both 2 4 8 and 3 9 7
397
19 10 (1 12 ,3 4 15
6 17 , 7 a
M. Kim and J. D. White, J. Am. Chem. Soc. 99, 1172 (1977). M. Kim and J. D. White, J. Am. Chem. Soc. 97, 451 (1975). R. N. Butler, F. L. Scott, and T. A. F. O'Mahony, Chem. Rev. 73, 93 (1973). R. N. Butler, Chem. Ind. (London), 523 (1972). R. N. Butler, Chem. Ind. (London), 437 (1968). R. N. Butler, Chem. Ind. (London), 499 (1976). J. Warkentin, Synthesis, 279 (1970). G. Maury, J.-P. Paugam, and R. Pougam, J. Heterocycl. Chem. 15, 1041 (1978). B. Stanovnik and M. Tisler, Croat. Chem. Acta 49, 135 (1977). T. Tsuchiya and J. Kurita, / . Chem. Soc. Chem. Commun., 803 (1979).
3 9 7 a
/. Oxidations
with Lead
245
Tetraacetate
119
246
(ref. 397)
H
I
gj with L T A . 249397b
v e
interesting ring-contracted products when allowed to react R
(ref. 397a)
(60-65%)
249
1.4
(25%)
:
1
( f. 397b) re
Studies on the reaction of L T A with a series of aliphatic aldehyde phenylhydrazones 250 containing o r t h o substituents in the 7V-phenyl ring indicate that formation of 251 is favored by both the ortho substituent on the N-phenyl ring and an alkyl group (R) on the methine carbon of 250. P r o duction of 252 is enhanced by replacement of alkyl with aryl or by increased 3 9 7 b
J. B. Press, Ν. H. Eudy, F. M. Lovell, and N. A. Perkinson, Tetrahedron Lett., 1705 (1980).
120
GEORGE Μ. RUBOTTOM
complexity in the alkyl group. A partitioning of 2 5 3 accounts for both products. ' The acyl hydrazone 2 5 4 is oxidized by L T A to afford 3 9 8
C=N— Ν Η
i
w
3 9 8 3
//
LTA
NO
/ =
a
N
" p v \
//
NO
a
(AcO) Pb 3
250
(refs. 398, 398a)
253
OAc I RHC—N=N—Ar R
251
_ =N-N-Ar C
H
°
A
C
Ac I RCONH—N—Ar 252
stereoselective ring f o r m a t i o n .
39815
(ref. 398b)
NNHAc
OH LTA CH C1 2
HO*
2
AcO* (63%)
254
Oxime 2 5 5 gives a mixture of nitrosoacetates upon treatment with L T A , while oximes 2 5 6 produce mixtures of nitrosoacetates and nitroacetates in moderate y i e l d s . A series of dioximes were found to give mainly 3 9 9
3 9 9 3
N—OH
LTA (78%)
NO OAc
+
OAc "NO (ref. 399)
255
8 8 a 8 b 9 9 a 0 0 a
R. N. Butler and W. B. King, J. Chem. Soc. Perkin Trans. 1, 282 (1977). R. N. Butler and A. M. O'Donohue, Tetrahedron Lett. 4583 (1979). I. R. McDermott and C. H. Robinson, J. Chem. Soc. Chem. Commun., 28 (1979). T. Bosch, G. Kresze, and J. Winkler, Liebigs Ann. Chem., 1009 (1975). D. Shafiullah and H. Ali, Synthesis, 124 (1979). A. Ohsawa, H. Arai, and H. Igeta, Heterocycles 9, 1367 (1978). H. Arai, A. Ohsawa, and H. Igeta, Heterocycles 12, 204 (1979).
/. Oxidations
with Lead
Tetraacetate
(ref. 399a)
PA NO
N—OH
AcO/ Ή N0
AcO (15-18%)
256
121
2
(18-22%)
257, but the analogous bis-hydrazones give mainly b u t a d i e n e s when treated with L T A in methylene chloride. 4 0 0
4 0 0 b
N—OH
t
LTA
„ / R—(v
HO-N
, \ _ /)—R
Ο
40015
^
+
257
(refs. 400-400b)
Me NNHAr
LTA CH Cl a
ArNHN
(ref. 400b)
ArN=N
Me
The oxidation of b i s - t o s y l h y d r a z o n e s ' and b i s - s e m i c a r b a z o n e s ' with L T A gives rise to the cyclization noted. The process is favored when X in 2 5 8 is a good leaving group. T h e proposed diazo intermediate 2 5 9 ( Y = 0 ) can be isolated when 2 5 8 ( Y = 0 ) is oxidized using methylene c h l o r i d e triethylamine as solvent. Subsequent treatment of 2 5 9 ( Y = 0 ) with acetic 401
LTA HOAc
Ar—C=N—NHX I Y= C—Ar
402
- Ar—C=N=NJ Ar—C=Y^
403
404
Y= NR Ar^N
259
258
Y = Ο HOAc CONH Ts Ts CONH
4 0 1
2
NNHCONH NNHTs Ο Ο
2
Refs.
OAc I ArCHCOAr (refs. 401,404,405)
NHCONH NHTs
2
403, 404 401,402
Qhsawa, H. Arai, H. Igeta, T. Akimoto, A. Tsuji, and Y. Iitaka, J. Org. Chem. 44, 3524 (1979). R. N. Butler, A. B. Hanahoe, and W. B. King, /. Chem. Soc. Perkin Trans. 1, 881 (1978). R. N. Butler and A. B. Hanahoe, J. Chem. Soc. Chem. Commun., 622 (1977).
4oob
4 0 2
2
A
122
GEORGE Μ. RUBOTTOM
acid gives O - a c e t y l b e n z o i n . treatment with L T A . ' 4 0 6
4 0 1 , 4 0 4 , 4 0 5
Systems of type 2 6 0 also cyclize upon
4 0 7
^R N"
3
A-
LTA Y = NR
3
R R C=NNHCNHR 1
2
260
3
LTA Υ = Ο or Y = °> R3 = N=CR R 1
(ref. 406)
A 2
R
1
(refs. 406, 407)
IV. LTA Reactions with Hydrocarbons A. ALKANES
Acetoxylation of saturated hydrocarbons by L T A received little attention prior to 1 9 7 0 . It was reported that oxidation of polycyclic alkanes such as a d a m a n t a n e was complicated by further reaction of primary p r o d u c t s . Further, it has been shown that regioselectivity is not particularly high with adamantyl d e r i v a t i v e s . ' ' However, recent studies have discovered that 122
4 0 8
1 7
1 8
4 0 9
1. LTA/TFA LiCl/CH Cl 2. 10% NaOH 2
2
(88-92%)
1. LTA/TFA LiCl/CH Cl 2. 10% NaOH 2
1. LTA/TFA LiCl/CH Cl 2
OH
2
(ref. 409)
2
2. 10% NaOH OH (88%)
/. Oxidations
with Lead
Tetraacetate
123
the use of L T A / T F A in the presence of chloride ion gives excellent yields of trifluoroacetoxylated polycyclic hydrocarbons isolated as the corresponding alcohols. The reaction was less successful with methylcyclohexane and 3-methylhexane, but with 261, a regioisomer and a product with rearranged carbon skeleton were i s o l a t e d . A very useful extension of the reaction 409
409
LTA/TFA LiCl/CH Cl 2
2
2. 10% NaOH (18%) 26
261
24
(ref. 409)
involves sequential treatment of hydrocarbon with L T A / T F A and then with a nucleophile. In this manner, a n u m b e r of bridgehead functionalized hydro carbons are obtained in excellent y i e l d . The identity of the oxidizing 4 0 9 , 4 1 0
1. LTA/TFA 2. nucleophile
Ζ
% yield
—NHCOMe —NHCHO —C H OMe-p -C H OH-/> —CH(C0 Et)COMe
85 82 64 81 87 97
6
6
4
4
2
—S-H-BU
(ref. 410) 1. LTA/TFA 2. CHaCN/H**" H0 2
NHCOMe (78%)
agent in the L T A / T F A / L i C l reaction is not clear, but mechanistic studies have shown that oxidation does not occur via radical-cation intermediates.
4 0 3 4 0 4
4 0 5 4 0 6 4 0 7 4 0 8 4 0 9 4 1 0
Ν. E. Alexandrou and S. Adamopoulos, Synthesis, 482 (1976). R. N. Butler, A. B. Hanahoe, and A. M. O'Donohue, J. Chem. Soc. Perkin Trans. 1, 1246 (1979). R. N. Butler and A. B. Hanahoe, Chem. Ind. (London), 39 (1978). L. M. Cabelkova-Taguchi and J. Warkentin, Can. J. Chem. 56, 2194 (1978). K. Ramakrishnan, J. B. Fulton, and J. Warkentin, Tetrahedron 32, 2685 (1976). W. H. W. Lunn, / . Chem. Soc. C, 2124 (1970). S. R. Jones and J. M. Mellor, J. Chem. Soc. Perkin Trans. 1, 2576 (1976). S. R. Jones and J. M. Mellor, Synthesis, 32 (1976).
124
GEORGE Μ. RUBOTTOM
At this point, a mechanism proceeding by electrophilic attack at the c a r b o n hydrogen bond is f a v o r e d . ' The L T A acetoxylation of hydrocarbons, as noted above, is not par ticularly useful as a synthetic technique. Acetoxylation of the benzylic position of aromatic hydrocarbons, however, is frequently e m p l o y e d . The reaction of 2 6 2 with L T A is t y p i c a l . The reaction of toluene with 4 1 1
4 1 2
122
413
(ref. 413) (82%)
262
L T A has been rationalized by a free-radical mechanism in which the radicals have a slight positive c h a r a c t e r . ' The fact that cumene reacts twice as fast as toluene with L T A is taken as supportive e v i d e n c e , as is the iso lation of products resulting from ring substitution by methyl and carboxymethyl r a d i c a l s . Both short-lived r a d i c a l s and concerted c a r b o n lead bond f o r m a t i o n have been suggested in the acetoxylation of fluorene derivatives with L T A . A mechanistic change occurs, however, in aromatic systems with low ionization potentials. In these systems an electron-transfer process per tains. Thus, 2 6 3 is initially oxidized to 2 6 4 followed by production of 2 6 5 ; with excess L T A 2 6 6 is o b t a i n e d . 4 1 4
4 1 5
416
414
415
4 1 6 3
4 1 7
418
(ref. 418)
266 (50%) 4 1 1
265 (37%)
S. R. Jones and J. M. Mellor, J. Chem. Soc. Perkin Trans. 2 , 511 (1977).
/. Oxidations with Lead
Tetraacetate
125
A similar process may be occurring in the L T A oxidations of b o t h 7-methyl- and 1 2 - m e t h y l b e n z ( a ) a n t h r a c e n e . A very useful a d a p t a t i o n of the electron-transfer pathway occurs with the oxidation of methoxy-substituted alkyl benzenes. D u e to the shift in mecha nism away from the radical route, 2 6 7 reacts in preference to 2 6 8 as shown 419
0CH3
0CH3
Φ 9 CH
3
267
HC(CH3)
2
268
by a competition experiment. Therefore, methyl functionalization by L T A is possible in the presence of tertiary benzylic hydrogen with oxygenated aromatics. 420
(ref. 420)
(60%)
4 1 2 4 1 3 4 1 4 4 1 5
4 1 6 4 1 6 a
4 1 7
4 1 8 4 1 9 4 2 0
S. R. Jones and-J. M. Mellor, J. Chem. Soc. Chem. Commun., 385 (1976). H. Yagi and D. M. Jerina, / . Am. Chem. Soc. 97, 3185 (1975). Ε. I. Heiba, R. M. Dessau, and W. J. Koehl, Jr., J. Am. Chem. Soc. 90, 1082 (1968). P. S. Radhakrishnamurti and S. N. Mahapatro, Indian J. Chem. Sect. A 14, 478 (1976). Ε. I. Heiba, R. M. Dessau, and W. J. Koehl, Jr., J. Am. Chem. Soc. 91, 6830 (1969). S. Narasimhan and N. Venkatasubramanian, Indian J. Chem. Sect. Β 17, 143 (1979). Ε. I. Heiba, R. M. Dessau, and W. J. Koehl, Jr., J. Am. Chem. Soc. 91, 138 (1969). J. Pataki and R. Balick, Tetrahedron Lett., 3447 (1974). P. Jacquignon and M. Croisy-Delcey, C. R. Acad. Sci. Ser. C 276, 955 (1973). V. V. Dhekne and A. S. Rao, Synth. Commun. 8, 135 (1978).
126
GEORGE Μ. RUBOTTOM
The oxidation reaction of benzylic methyl groups with L T A has also been applied to p y r r o l e s . Use of 2 molar equivalents of L T A with 269 4 2 1 , 4 2 1 3 , 4 2 2
w f\
R
3
R
w
R
2
LTA
^
M e ^ N > - C 0 R ^ HOAc/Ac 0 2
2
^
AcO
N
3
A
Η
C
R
2
0 R^
(refs. 421, 421a, 422)
2
(53-
yields large a m o u n t s of the corresponding aldehydes upon h y d r o l y s i s . In a manner analogous to pyrrole oxidation, indoles can also be transformed 422
Me
Me
Me
W
Me
l.LTA/HOAc,
Me-^N^CO^
Δ
'
W Π Τ ί Γ ^ Nχ τ Α , CO R OHCT
z U
X
(ref. 422)
X
z
I
Η
Η 269
(57-8
into the corresponding acetoxy derivatives by treatment with L T A . Attempts at bis-acetoxylation were unsuccessful.
LTA HOAc
MeO
R
R'
% yield
OMe OMe Me Me Me
CN CHO CHO CN C0 Me
76 65 — — —
2
Dehydrogenation was observed when 270 was treated with L T A , MeO
4 2 2 a
4 2 3
and
MeO LTA benzene
(ref. 423)
OMe 270 11 l a
2 2 a 3
(30%)
A. H. Jackson, G. W. Kenner, Κ. M. Smith, and C. J. Suckling, Tetrahedron 32,2757 (1976). L. Diaz, G. Buldain, and B. Frydman, / . Org. Chem. 44, 973 (1979). J. B. Paine III, R. B. Woodward, and D. Dolphin, / . Org. Chem. 41, 2826 (1976). K. Takahashi and T. Kametani, Heterocycles 13, 411 (1979). P. J. M. Gunning, P. J. Kavanagh, M. J. Meegan, and D. Μ. X. Donnelly, / . Chem. Soc. Perkin Trans. 7, 691 (1977).
/. Oxidations
with Lead
Tetraacetate
127
the interesting b r o m o derivative 2 7 1 was obtained when 2 7 2 was allowed to react with L T A / N B S . In the latter case, no product of benzylic oxida tion was isolated. 4 2 4
271 (10%)
272
In rare instances, L T A cleavage of c a r b o n - c a r b o n σ-bonds has been observed for the most p a r t in systems containing cyclopropyl r i n g s . ' 4 2 5
4 2 6
(ref. 425) OAc (61%)
c
\^Pb(OAc)j
LTA HOAc \
Ν
r
OAc
ηΔ, OAc
(ref. 426)
(72%)
Mechanistic studies on a series of substituted arylcyclopropanes reveal that the strained ring is attacked by L T A and not by ( A c O ) P b A c O ~ . A con certed mechanism involving coordination of the cyclopropane with lead as acetate ion departs is f a v o r e d . Lead(IV) diacetate difluoride also cleaves phenylcyclopropane in a m a n n e r analogous to L T A . +
3
427
4 2 8
B. AROMATIC HYDROCARBONS
Reactive polynuclear aromatics and aromatic c o m p o u n d s containing electron-donating groups can undergo nuclear acetoxylation with L T A . 4 2 4
4 2 5 4 2 6 4 2 7 4 2 8
B. Talapatra, S. K. Mukhopadhyay, Μ. K. Chaudhuri, and S. K. Talapatra, Indian J. Chem. Sect. Β 14, 129 (1976). L. T. Scott and W. R. Brunsvold, J. Am. Chem. Soc. 100, 4320 (1978). D. F. Covey and Alex Nickon, J. Org. Chem. 42, 794 (1977). R. J. Ouellette, D. Miller, A. South, Jr., and R. D. Robins, J. Am. Chem. Soc. 91,971 (1969). J. Borastein and L. Skarlos, J. Chem. Soc. Chem. Commun., 796 (1971).
128
GEORGE Μ. RUBOTTOM
When benzylic oxidation is not a competitive process, yields of this type product are m o d e r a t e . The synthesis of 273 is an e x a m p l e . 1 2 2
4 2 9
OAc
(ref. 429)
Br
Br 273 (40%)
L T A oxidation of anthracene in benzene, benzene-pyridine, b e n z e n e cyclohexane, or chloroform gives a mixture containing approximately equal amounts of cis- and / r u f / t ^ J O - d i a c e t o x y ^ J O - d i h y d r o a n t h r a c e n e . When b e n z e n e - m e t h a n o l is used as solvent, the corresponding dimethoxy deriva tives are formed showing a preference for formation of the trans-isomev 274. In the former case, products are believed to arise from a carbonium ion intermediate, while in the latter, concerted methoxy transfer from a methoxylated lead species to afford 2 7 5 is followed by S 2 displacement of lead to give 2 7 4 . Results consistent with this second pathway were also 430
N
4 3 0
OMe
OMe
275
274
(ref. 430)
obtained in the L T A / b e n z e n e - m e t h a n o l oxidation of a c e n a p h t h y l e n e . The bis-acetoxylation referred to above is also observed with furan deriva tives as illustrated by the conversions of 2 7 6 and 2 7 7 . 431
4 3 2
4 3 2 a
(ref. 432)
276
/. Oxidations
with Lead
Tetraacetate
129
AcO
(ref. 432a)
(90%)
277
The L T A oxidation of methoxy-substituted benzenes has proven to be a complex reaction. In general, methoxy-substituted benzenes react with L T A via S 2 plumbylation to afford aryl lead c o m p o u n d s which either homolyze or h e t e r o l y z e . ' Alternatively, electron transfer occurs to afford a radical cation that is intercepted by a nucleophile. The radical thus formed is oxidized further to give p r o d u c t s . ' Radical initiators such as Perkadox enhance the latter process, whereas monomethyl oxalate facilitates both types of r e a c t i o n s . The use of acetic acid as solvent in the oxidation of anisole increases the a m o u n t s of nuclear acetoxylated products observed at the expense of ring methylation, acetoxymethylation, and attack of the alkyl methyl g r o u p . ' Oxidation studies using lead t e t r a b e n z o a t e and a series of naphthalene e t h e r s have also been carried out. A n interesting synthetic application of the reaction of methoxylated aromatics with L T A involves the oxidative cyclization of diarylidene succinic anhydrides into 1-phenylnaphthalenes. The reaction occurs in yields of over 60% and can be illustrated by the conversion of 278 into 2 7 9 . E
4 3 3
4 3 4
4 3 3
4 3 5
4 3 5
436
4 3 4
4 3 5
437
4 3 7 a
4 3 8
4 2 9 4 3 0 4 3 1 4 3 2 4 3 2 a
4 3 3 4 3 4
4 3 5
4 3 6
4 3 7
4 3 7 a 4 3 8
R. G. Harvey and H. Cho, J. Chem. Soc. Chem. Commun., 373 (1975). B. Rindone and C. Scolastico, J. Chem. Soc. C, 3983 (1971). B. Rindone and C. Scolastico, Tetrahedron Lett., 1479 (1973). Τ. M. Cresp and F. Sondheimer, J. Am. Chem. Soc. 97, 4412 (1975). H. Akita, T. Naito, and T. Oishi, Chem. Lett., 1365 (1979). R. O. C. Norman and C. B. Thomas, J. Chem. Soc. B, 421 (1970). L. C. Willemsens, D. de Vos, J. Spierenburg, and J. Wolters, /. Organomet. Chem. 39, C61 (1972). R. A. McClelland, R. O. C. Norman, and C. B. Thomas, J. Chem. Soc. Perkin Trans. 1, 562 (1972). R. A. McClelland, R. O. C. Norman, and C. B. Thomas, J. Chem. Soc. Perkin Trans. 1, 578 (1972). R. A. McClelland, R. O. C. Norman, and C. B. Thomas, J. Chem. Soc. Perkin Trans. 1, 570(1972). E. R. Cole, G. Crank, and B. J. Stapleton, Aust. J. Chem. 32, 1749 (1979). A. S. R. Anjaneyulu, V. K. Rao, P. Satyanarayana, and L. R. Row, Indian J. Chem. 11, 203 (1973).
130
GEORGE Μ. RUBOTTOM Ο
MeO
v
Ο
ί
MeO' Brv
LTA HOAc
ο
?
(ref. 438)
^OMe
OMe 278 As with alkanes, the oxidation of aromatic hydrocarbons is facilitated by the use of either L T A / T F A or lead tetrakistrifluoroacetate ( L T T F A ) in T F A . Both electrophilic p l u m b y l a t i o n ' ' and electron-transfer p r o 439,442 are thought to occur. Plumbylation affords 2 8 0 which then cesses converts to 2 8 1 in a reaction thought to involve aryl c a t i o n s . ' Since 281 is readily hydrolyzed, the sequence represents a high yield phenol s y n t h e s i s . Intermediates such as 2 8 0 can also be conveniently prepared via metathesis involving T F A and the corresponding aryl lead t r i a c e t a t e s . 4 3 9
4 4 0
4 4 1
4 3 9
4 4 3
443
443
Ar—Η + LTTFA -
ArPb(OCOCF ) 3
3
280 ,ArPb(OCOCF ) 3
Pb(OCOCF ) 3
ArOCOCF
TFA 3
*
+
Ar
3
2 A
+
>rPb(OCOCF ) + TFA
2
(ref. 443)
HOCOCF,
2
281
The proposed intermediate, A r P b ( O C O C F ) is also trapped by reactive a r o matic compounds to afford high yields of biphenyl d e r i v a t i v e s . ' Com binations of TFA/polymethylbenzenes and A1C1 or [ A l ( O C O C F ) ]/ benzene or toluene give the best r e s u l t s . ' 3
2
4 4 4
3
4 4 4
OMe
4 4 4 3
n
2 n + 1
3
4 4 4 3
MeO. TFA (ref. 444)
Pb(OAc)
3
(84%) 4 3 9 4 4 0 4 4 1 4 4 2
R. O. C. Norman, C. B. Thomas, and J. S. Willson, J. Chem. Soc. B, 518 (1971). J. R. Campbell, J. R. Kalman, J. T. Pinhey, and S. Sternhell, Tetrahedron Lett., 1763 (1972). D. de Vos, J. Wolters, and A. van der Gen, Reel. Trav. Chim. Pays-Bas 92, 701 (1973). R. O. C. Norman, C. B. Thomas, and J. S. Willson, J. Chem. Soc. Perkin Trans. 1,325 (1973).
L Oxidations
with Lead
Tetraacetate
131
Plumbylation also occurs readily with L T A in the presence of m o n o halogenoacetic a c i d s , dichloroacetic a c i d , and trichloroacetic acid. ' A wide range of aryl lead triacetates can therefore be pre pared by using the appropriate combination of aromatic substrate, L T A , and halogenated acetic acid followed by metathesis with acetic a c i d . 4 4 5
4 3 9
4 4 3 , 4 4 6
4 4 3 , 4 4 6
4 4 3
C. ALKENES 1. ACYCLIC ALKENES
Oxidation of acyclic alkenes by L T A is believed to occur via the sequence shown in Scheme 4 . Recent studies using methanol serve to confirm this 5 2
1 2
= (
+
/=\
LTA
Η
—) (OAc) Pb 3
AcO" AcO'
+
Pb(OAc)
2
+
AcO
OAc
~) ^~
\ . I
(+ +
AcO
OAc
/ ., X \
(OAc) Pb* s
SCHEME 4
premise, ' and evidence has been presented favoring the decomposition of the organometallic adduct 2 8 2 with concomitant formation of an acetoxonium ion 2 8 3 . The presence of water then gives high yields of 2 8 4 and 2 8 5 . With internal alkenes evidence is presented which implicates 2 8 6 4 4 7
4 4 8
4 4 7
OAc
OH
C H -eH-CH 1 3
6
2
Pb(OAc) 282
3
9Ο /
+
pΡ
H l s C e
283
OAc
^C ++ *-CHH CH—CH CH—CH OAc e e
1 31 3
22
284
ΟΑ,ΟΗ—fH, CeH^CH-CH, OH 285
(ref. 447)
H. C. Bell, J. R. Kalman, J. T. Pinhey, and S. Sternhell, Tetrahedron Lett., 853 (1974). H. C. Bell, J. R. Kalman, J. T. Pinhey, and S. Sternhell, Tetrahedron Lett., 857 (1974). H. C. Bell, J. R. Kalman, G. L. May, J. T. Pinhey, and S. Sternhell, Aust. J. Chem. 32,1531 (1979). D. de Vos, J. Spierenburg, and J. Wolters, Reel. Trav. Chim. Pays-Bas 91, 1465 (1972). D. de Vos, F. Ε. H. Boschman, J. Wolters, and A. van der Gen, Reel. Trav. Chim. Pays-Bas 92, 467(1973). A. Lethbridge, R. O. C. Norman, C. B. Thomas, and W. J. E. Parr, J. Chem. Soc. Perkin Trans. 7,231 (1975).
a
132
GEORGE Μ. RUBOTTOM
R
Ή 286
as the source of at least part of the diacetates f o r m e d . Ally lie products arise from homolytic p a t h w a y s . When L T A / T F A is used in the oxidation of a series of styrene-related c o m p o u n d s , preparatively worthwhile yields of carbonyl c o m p o u n d s are formed, and a similar transformation was observed with 1 - o c t e n e . 4 4 7
4 4 7
4 4 9 , 4 5 0
447
^
^
1. LTA/TFA
If
2. H 0
J>
2
~Ο
(refs. 449,450)
(98%)
1. LTA/TFA 0 ΓΓ 2
2. H 0 2
^
0
J<^J>
2
N ^ ^ ^
(ref. 449)
Ο
(91%)
The generalized mechanism for the reaction is illustrated for the conversion of 2 8 7 to 2 8 8 . ' Similar mechanistic considerations would seem to apply in the reaction of L T A / H F with 1,2-diphenylethylene. 4 4 9
4 5 0
451
ArCR=CHR'
L T A / T F A
>
ArCR—CHR' I
287
CF COO 3
I
Pb(OCOCF ) 3
\ ^
3
(refs. 449, 450)
+
TFA CR—CHR'Ar Ji^(CF COO) CR—CHR'Ar^" | RCOCHR'Ar OCOCF 3
2
3
288
The reaction of biallyl with L T A leads to a partitioning of the initially formed 2 8 9 to give b o t h 2 9 0 and 2 9 1 . Allenes react with L T A in acetic 4 5 2
8
9 10 1 12
A. Lethbridge, R. O. C. Norman, and C. B. Thomas, J. Chem. Soc. Perkin Trans. 7, 1929 (1974). A. Lethbridge, R. O. C. Norman, and C. B. Thomas, J. Chem. Soc. Perkin Trans. 7,35 (1973). D. Westphal and E. Zbiral, Monatsh. Chem. 106, 679 (1975). D. D. Tanner and P. Van Bostelen, J. Am. Chem. Soc. 94, 3187 (1972). I. Tabushi and R. Oda, Tetrahedron Lett., 2487 (1966).
/. Oxidations
with Lead A c 0
Tetraacetate
133
^y-oAc 290
Pb(OAc)
3
LTA HOAc ~
„
+
^
<
r e f 4 5 2
)
289 AcO OAc 291
acid to give the corresponding 3 - a c e t o x y a l k y n e . ' Use of optically active allene reveals that the addition of L T A occurs predominantly by a suprafacial pathway. The reaction of (£)-( +)-l,3-dimethylallene to give (S)-( + )-4-acetoxy-2-pentyne is i l l u s t r a t i v e and similar results pertain with 1,2-cyclononadiene. 454 453
454
453
(OAc) Pb 3
Μ θ
\ / )C-C=C
LTA
V
Η (S)
MG
N Η
/Pb(OAc) C=C^ ! C^ Η
3
A
c
0
-
Me
"
| OAc ~ - "
M E
(ref. 453)
2. CYCLIC ALKENES
The oxidation of cyclic alkenes with L T A has been widely s t u d i e d . In general, products can be rationalized by invoking 2 9 2 which can lead to 2 9 3 and 2 9 4 . Intermediate 2 9 3 can also arise from syn addition of L T A to 52
4 5 3
4 5 4
R. D. Bach, R. N. Brummel, and J. W. Holubka, J. Org. Chem. 40, 2559 (1975). R. D. Bach, U. Mazur, R. N. Brummel, and L.-H. Lin, J. Am. Chem. Soc. 93, 7120 (1971).
134
GEORGE Μ. RUBOTTOM
a
+:Pb(OAc)
Pb(OAc) 294
LA
3
292
3
Pb(OAc)
3
OAc
293
products
products
the a l k e n e , and 2 9 3 and 2 9 4 can undergo homolysis of the l e a d - c a r b o n bond followed either by product formation from the ensuing radical or by oxidation to the corresponding carbonium ion which then gives p r o d u c t s . When the reaction is applied to strained alkenes or alkenes capable of carbonium ion rearrangement, novel results often occur. F o r example, treat ment of 1,3,3-trimethylcyclopropene with L T A affords 2 9 5 and 2 9 6 in yields of 40% and 5% r e s p e c t i v e l y . The interesting intermediate 2 9 7 is 4 5 5
52
456,457
(AcO) HC
LTA
2
CH C1 2
2
295 (40%)
296 (5%)
(refs. 456, 457) (OAc) Pb 3
(OAc) Pb s
297
postulated to account for the formation of 295. In a related case, the series 2 9 8 reacts with L T A to selectively produce 2 9 9 . The selectivity is explained by invoking 3 0 0 . M o r e remote cyclopropyl functionality can remain 4 5 8
R
1
R
RN 2
R R 298
4 5 5 4 5 6 4 5 7 4 5 8
3
4
LTA
AcO
1
R -A 2
R
4
HOAc ^-Pb(OAc)„ 300
R
OAc
1
"R
4
R
2
R
3
(ref. 458)
299
D. D. Tanner, P. B. Van Bostelen, and M. Lai, Can. J. Chem. 54, 2004 (1976). T. Shirafuji and H. Nozaki, Tetrahedron 29, 77 (1973). T. Shirafuji, Y. Yamamoto, and H. Nozaki, Tetrahedron Lett., 4713 (1971). R. Noyori, Y. Tsuda, and H. Takaya, J. Chem. Soc. Chem. Commun., 1181 (1970).
/. Oxidations
with Lead
Tetraacetate
135
intact during oxidation, as in the preparation of 301 and 3 0 2 from 3 0 3 . This behavior is in contrast to the oxidation of 4-carene by LTA/benzene in 4 5 9
303
301 (60-65%)
302 (16-20%) (ref. 459)
which a n u m b e r of products were isolated which are consistent with h o m o allylic rearrangement of the three-membered r i n g . With 3-carene, the major product of L T A oxidation was 3 0 4 . 4 6 0
4 6 1
(ref. 461) OAc 304
Ring contraction was observed when 3 0 5 or the corresponding anhydride was treated with LTA, and the intermediate 3 0 6 is implicated in the rea r r a n g e m e n t . Analogous to the reaction of 4-carene with L T A mentioned 462
(OAc) HC 2
(ref. 462)
C0 Me 2
306 4 5 9 4 6 0
4 6 1 4 6 2
H. Sekizaki, M. Ito, and S. Inoue, Bull Chem. Soc. Jpn. 51, 3663 (1978). B. A. Arbuzov, V. V. Ratner, Z. G. Isaeva, and M. G. Belyaeva, Dokl Akad. Nauk SSSR 204, 1115 (1972). B. A. Arbuzov, V. V. Ratner, and Z. G. Isaeva, Izv. Akad. Nauk SSSR, Ser Khim, 45 (1973). T. Sasaki, K. Kanematsu, A.Kondo, and K. Okada, J. Org. Chem. 41, 2231 (1976).
136
GEORGE Μ. RUBOTTOM
above, /J-pinene affords products involving participation of the neighboring four-membered r i n g . ' With 3 0 7 , a mixture containing the diacetate 3 0 8 and allylic acetate 3 0 9 was f o r m e d . T h e results are less straightforward with alkenes containing 5 2
4 6 3
4 6 4
(ref. 464) 307
308
309
a double bond exocyclic to a five-membered ring. The oxidation of 3 1 0 is a case in p o i n t . A pronounced solvent effect has been reported for the 4 6 5
(ref. 465)
(10%)
(7%)
(50%)
oxidation of both longifolene, 3 1 1 , and camphene, 3 1 2 . In each case, the use of acetic acid as solvent results in ring expansion whereas the use of 4 6 6
(ref. 466)
' H. Ohue, M. Matsushita, T. Ikeda, and H. Miki, Osaka Kogyo Daigaku Kiyo Rikohen 22, 175 (1978). V. Balogh, J.-C. Beloeil, and M. Fetizon, Tetrahedron 33, 1321 (1977). G. Ortar and I. Torrini, Tetrahedron 33, 859 (1977). S. N. Suryawanshi, P. K. Jadhav, and U. R. Nayak, Indian J. Chem. Sect. Β 16, 446 (1978). 3
4
5
6
/. Oxidations
with Lead
Tetraacetate
LTA
LTA
HOAc
benzene
137
OAc
OAc
(ref. 466)
Η 312
(66%)
(59%) /Ζ-mixture
Ε
benzene gives the corresponding aldehyde enol acetate. This dramatic change in product composition is attributed to the dielectric constant of the solvent used. Solvent effects also play a role in the oxidation of both norbornadiene and norbornene, a fact alluded to in some detail in reference 52. N o r b o r n e n e was originally reported to give an 85% yield of 3 1 3 upon treatment with L T A in acetic a c i d . However, improved techniques of product analysis have re4 6 7
OAc OAc
313
vealed a much more complex set of p r o d u c t s . ' The m o d e of formation of 3 1 3 is an area of some c o n t r o v e r s y . A recent comparison of the behavior of n o r b o r n e n e and benzobicyclo[2.2.2]octatriene toward both L T A and L T A / H F has resulted in the formulation of a mechanism involving initial syn-addition of L T A to the alkene in question. Displacement of lead then gives a cation 3 1 4 , which then results in the production of 3 1 3 . 5 2
4 6 8
52
4 5 1
455
4 5 1 , 4 5 5
OAc
LTA HOAc
^\X~Fb(OAc)
3
314
^OAc
313
The L T A / H F oxidant and P b F ( O A c ) both have been used to fluorinate cyclohexene rings contained in steroids, and a spectrum of products is 2
4 6 7
4 6 8
2
K. Alder, F. H. Flock, and H. Wirtz, Chem. Ber. 91, 609 (1958). J. Kagan, Helv. Chim. Acta 55, 2356 (1972).
138
GEORGE Μ. RUBOTTOM
obtained. L T T F A in methylene chloride-nitromethane reacts with steroidal cyclohexenes to yield products arising from 1,2-ditrifluoroacetoxylation and allylic trifluoroacetoxylation. Analogous to the reaction of conjugated dienes with L T A , L T T F A reacts with both 1,3-cyclohexadiene and cyclopentadiene to give products of 1 , 4 - a d d i t i o n . 4 6 9 , 4 7 0
450
5 2
450
ο
CFXOO
OCOCF,
LTTFA Et O
(ref. 450)
a
(33%)
Extensive studies have been carried out concerning the reactions of lead(IV) acetate azides [ P b ( O A c ) _ „ ( N ) J with alkenes and much of the work in this area has been r e v i e w e d . F o r the reaction run at low temper atures (—20°C), a mechanism involving addition of "positive azide" to the alkene has been postulated. Products then arise from the carbonium ion thus formed. Alternatively, products might evolve from a sequence in volving the cyclo addition of azide to the double bond to give 315 which then reacts f u r t h e r . A n interesting and typical example of the synthetic 4
3
471
4 7 1 , 4 7 2
4 7 2 , 4 7 3
N// Ν Ν
I
Ζ—Pb Ζ = OAc or N
3
315
use of the reaction occurs when lead(IV) acetate azide and norbornene interact to give 316 in a yield of 7 5 % . A series of A -steroidal alkenes has 4 7 4
Pb(OAc) _ (N ) 4
n
CH C1 2
3
5
OAc
n
(ref. 474)
2
316 (75%)
4 6 9 4 7 0 4 7 1 4 7 2 4 7 3 4 7 4
M. Ephritikhine and J. Levisalles, Bull. Soc. Chim. Fr., 339 (1975). M. Ephritikhine and J. Levisalles, / . Chem. Soc. Chem. Commun., 429 (1974). E. Zbiral, Synthesis, 285 (1972). E. Zbiral and A. Stutz, Monatsh. Chem. 104, 249 (1973). A. Stutz and E. Zbiral, Liebigs Ann. Chem. 765, 34 (1972). E. Zbiral and A. Stutz, Tetrahedron 27, 4953 (1971).
/. Oxidations with Lead
Tetraacetate
139
been found to fragment when treated with lead(IV) acetate a z i d e , ' whereas steroidal alkenes unsubstituted at the double bond in question, afford α-azido k e t o n e s . ' In the former case, temperature is crucial 4 7 1
4 7 1
4 7 5
4 7 6
(ref. 475)
(ref. 476)
(50%)
since allyl a z i d e s and other oxidation p r o d u c t s arise when the reaction is carried out at + 2 0 ° C . Dienes react with lead(IV) acetate azide to give 4 7 5
4 7 7
COMe
COMe
(ref. 475)
(45%)
mixtures resulting from both 1,2- and 1,4-addition of the reagent as well as products resulting from r e a r r a n g e m e n t . ' ' In the presence of L T A / T F A , alkenes react with disulfides to afford high yields of the corresponding /?-trifluoroacetoxysulfides that are converted by treatment with base to /J-hydroxy s u l f i d e s . The cleavage of /J-hydroxy sulfides with L T A has been mentioned in Section ΙΙ,Β. T h e use of diselenides in place of disulfides also results in alkene addition when employed in con junction with L T A . 4 7 1
4 7 8
4 7 9
118
4 7 9 a
5 6 7 8 9 9 a
H. Hugl and E. Zbiral, Tetrahedron 29, 759 (1973). E. Zbiral and G. Nestler, Tetrahedron 27, 2293 (1971). E. Zbiral and H. Hugl, Tetrahedron 29, 769 (1973). A. Wolloch, E. Zbiral, and E. Haslinger, Liebigs Ann. Chem., 2339 (1975). H. Hugl and E. Zbiral, Tetrahedron 29, 753 (1973). N. Miyoshi, Y. Ohno, K. Kondo, S. Murai, and N. Sonoda, Chem. Lett., 1309 (1979).
140
GEORGE Μ. RUBOTTOM
PhS—SPh
.SPh
1. LTA/TFA
+
2. base
-
k ^ H ^
(ref. 118)
(74%)
PhSe-SePh
cc
o
+
SePh (ref. 479a)
OAc
(70%)
V. LTA Reactions with Organometallics Interest in the reactions of organometallics with L T A has led to the development of a number of useful synthetic procedures. Oxidation of trialkylboranes with L T A gives moderate yields of the corresponding alkyl acetates. With mixed trialkylboranes containing both primary and 480
R B + LTA
3ROAc
3
(ref. 480)
secondary alkyl groups on boron, preferential formation of secondary alkyl acetate occurs. The reaction has also been extended to the oxidation of 1-bromo-l-alkenyl dialkyl boranes as a means of obtaining the correspond ing l-bromo-l,2-dialkylethenes. In this case, alkyl migration occurs instead of acetate f o r m a t i o n . Use of low temperature ( —50°C) and C H C 1 as 481
2
Br
R'
\
RB
/
C=C
\
2
Br LTA
/
R'
\
/
Η
2
/ c
=
=
c
R
\
(ref. 481) Η
solvent favors production of the Z-isomer while ^-isomer formation occurs at 0°C in benzene-hexane mixtures. Hydroalumination of 1-alkenes with L A H by T i C l catalysis followed by L T A treatment provides another excellent method for the preparation of primary alkyl a c e t a t e s . The use of 3 1 7 is crucial since organoaluminates 4
482
2RCH=CH + LAH 2
LiAl(CH CH R) H ^ 2
2
2
2
2AcOCH CH R
317 4 8 0
4 8 1
482
Y. Masuda and A. Arase, Bull. Chem. Soc. Jpn. 51, 901 (1978). Y. Masuda, A. Arase, and A. Suzuki, Chem. Lett., 665 (1978). F. Sato, Y. Mori, and M. Sato, Tetrahedron Lett., 1405 (1979).
2
2
( f. 482) re
/. Oxidations with Lead
141
Tetraacetate
of the type L i A l R lose only two of the R-groups in the L T A reaction. The selective monohydroalumination of unconjugated dienes also allows for the preparation of unsaturated a c e t a t e s . 4
482
1. L A H / T i C l THF
OAc 4
(ref. 482)
2. L T A
(64%)
Both arylthallium d i t r i f l u o r o a c e t a t e s and diarylthallium trifluoroacetates react with L T A - t r i p h e n y l p h o s p h i n e in T F A to give excellent yields of aryl trifluoroacetates. Subsequent alkaline hydrolysis leads to the p r o duction of the corresponding phenols. The aryllead tri(trifluoroacetate) 3 1 8 is proposed as a likely i n t e r m e d i a t e . 483
4 8 4
484
ArTl(OCOCF ) 3
2
1. L T A / T F A
ArOCOCF
" °> ArOH 39-78%
(ref. 483)
^ " ° > ArOH 21-69%
(ref. 484)
Na 3
c
3
Ar T!OCOCF 2
1. L T A / T F A 3
°
H/ H
2
c
2
2. P h P
2ArOCOCF
Ν 3
2. P h P
2
2
3
2
2
(ArPb(OCOCF ) ) 3
3
318
W h e n arylthallium ditrifluoroacetates are treated with L T T F A in T F A , formation of 3 1 8 is actually observed, with subsequent decomposition to the corresponding aryl t r i f l u o r o a c e t a t e s . A n extension of the reaction allows preparation of 3 1 9 from both arylmercury(II) trifluoroacetates and 443,485
SiMe
LTTFA
LTTFA
TFA
TFA Pb(OCOCF )
3
3
319
CFoCOO
3
HgOCOCFg
142
GEORGE Μ. RUBOTTOM
arylsilicon c o m p o u n d s . ' ' In each case, m e t a l - m e t a l exchange and not protonation followed by plumbylation p r e v a i l s . ' A number of organotin c o m p o u n d s containing S n — H , S n — C , S n — S n , and S n — Ο groups are effectively acetoxylated with L T A , and dialkyldiarylstannanes give 7 0 - 9 0 % yields of diacetoxydiarylplumbanes along with the corresponding diacetoxyldialkylstannanes. £-l-Alkenyl-fl-butylstannanes are converted smoothly into terminal alkynes upon treatment with 4 4 3
4 8 5
4 8 5 3
4 8 5
4 8 5 3
4 8 6
487
R
2SnAr
L T A 2
HO ? 8
A C ) 2
a
L T A in a c e t o n i t r i l e . is proposed.
488
'
R Sn(OAc) + Ar Pb(OAc) (70-90%) 2
2
2
2
(ref. 487)
Intermediate 320 leading to 321 and thus the alkyne
LTA Sn(Bu)
CH CN a
3
(ref. 488) LTA CH-CN I Η
Sn(Bu)
3
(64%) Bu.Sn
Bu Sn 3
C=C
\
^ R
HC—CHR — (OAc) PbCH=CHR / + Pb(OAc) Bu SnOAc 3
3
320 ί 3
14 15
15a 6
17 18
HC=C—R
3
321
E. C. Taylor, H. W. Altland, R. H. Danforth, G. McGillivray, and A. McKillop, J. Am. Chem. Soc. 92, 3520(1970). E. C. Taylor, H. W. Altland, and A. McKillop, J. Org. Chem. 40, 2351 (1975). J. R. Kalman, J. T. Pinhey, and S. Sternhell, Tetrahedron Lett., 5369 (1972). H. C. Bell, J. R. Kalman, J. T. Pinhey, and S. Sternhell, Aust. J. Chem. 32, 1521 (1979). U. Christen and W. P. Neumann, J. Organomet. Chem. 39, C58 (1972). O. P. Syutkina, Ε. M. Panov, and K. A. Kocheshkov, Zh. Obshch. Khim. 43, 1322 (1973). E. J. Corey and R. H. Wollenberg, J. Am. Chem. Soc. 96, 5581 (1974).
/. Oxidations
with Lead
Tetraacetate
143
Allylic mercuric acetates are transformed into mixtures of allylic acetates by LTA. The major reaction pathway is thought to involve S ' (probably S i') formation of a σ-allylic lead derivative which then d e m e t a l a t e s . With the dimeric π-complex 3 2 2 direct attack by L T A is p o s t u l a t e d . Oxidation of E
E
489
489
'>m< c
H
3
C
/y^S
\
Pd J
HOAc
CH —CH—CH=CH 3
2
(ref. 489)
OAc
AcO I O/OAc Pb Q^^ OAc
major product
b
A c
322
cycloocta-l,5-diene with L T A / P d C l gives a 70% yield of 3 2 3 , and arylbutenylacetates are formed in high yield from the reaction of aryl4 9 0
2
LTA/PdCl HOAc
,
2
1
^ ^
x
(ref. 490)
x
mercuric salts, butadiene, and L T A in the presence of a catalytic a m o u n t of palladium a c e t a t e . 491
_ PhHgOAc
^
+
LTA Pd(OAc) H CN
C
3
2
»
^ l^jl
ι
Γ Τ L
^
.
(ref. 491)
(78%)
A series of jS-aminopalladium c o m p o u n d s 3 2 4 were treated with L T A to afford the corresponding jS-aminoacetates. Hydrolysis or L A H reduction gives β - a m i n o a l c o h o l s . Stereochemical studies show that /?-aminoacetate 492
4 8 9
4 9 0
4 9 1 4 9 2
W. Kitching, T. Sakakiyama, Z. Rappoport, P. D. Sleezer, S. Winstein, and W. G. Young, J. Am. Chem. Soc. 94, 2329 (1972). P. M. Henry, M. Davies, G. Ferguson, S. Phillips, and R. Restivo, J. Chem. Soc. Chem. Commun., 112(1974). R. F. Heck, J. Am. Chem. Soc. 90, 5542 (1968). J.-E. Backvall, Tetrahedron Lett., 2225 (1975).
144
GEORGE Μ. RUBOTTOM NMe
NMe
2
RCH—CHR
I
Yfi?
NMe
2
OH
-
I
or L A H
RCH—CHR
PdCl
2
(ref. 492)
RCH—CHR
I
OAc
OH
324
formation occurs with inversion at the site containing palladium. Alkyl transfer to lead with retention, followed by acetate ion attack with inversion, accounts for the observed r e s u l t s . 492
Me
R—
LTA
crPdCl
-R-6^
Me
Pb(OAc)
AcO 3
OAc I R—C-»'H Me
(ref. 492)
The reaction of L T A in pyridine to free cyclobutadiene from cyclobutadieneiron tricarbonyl is a method which complements the use of eerie a m m o n i u m nitrate ( C A N ) for the same p u r p o s e . " L T A is especially useful in systems where acidic conditions can be deleterious. The examples given are illustrative. 4 9 3
LTA py Fe(CO)
4 9 5
(ref. 493)
ο
3
(40-44%)
EtO,
EtO
OEt
OEt
LTA
(ref. 494)
py Fe(CO)
3
(ref. 495) C0 R / 22
/
RO,C Fe(CO) 3 4 5
N=N
LTA
.CO R
py CO R a
3
% yield
a
—C ~"CH CH-j 2
L. Brener, J. S. McKennis, and R. Pettit, Org. Synth. 55, 43 (1976). J. C. Barborak and R. Pettit, J. Am. Chem. Soc. 89, 3080 (1967). S. Masamune, N. Nakamura, and J. Spadaro, J. Am. Chem. Soc. 97, 918 (1975).
45 50-60
/. Oxidations with Lead
Tetraacetate
145
Benzocyclobutadiene is generated by the L T A oxidation of 3 2 5 and when 3 2 5 is used in conjunction with cyclobutadieneiron tricarbonyl and L T A the mixed adduct 3 2 6 is obtained in 75% y i e l d . The latter intriguing result stems from the fact that oxidation of 3 2 5 and cyclobutadieneiron tricarbonyl 496
(ref. 496)
occurs at comparable rates. This being the case, the benzocyclobutadiene thus produced can only function in the role of dienophile in the subsequent [4 + 2]cycloaddition with c y c l o b u t a d i e n e . 496
LTA py Fe(CO)
3
Fe(CO)
326 (75%)
3
325
(ref. 496)
(100%)
ACKNOWLEDGMENT
The author gratefully acknowledges H. D. Juve, Jr., D. K. Heckendorn, W. D. Boyce, and L. A . Rubottom for their help in preparing the manuscript, and Professor J. H. Cooley for his most useful comments.
W. Merk and R. Pettit, J. Am. Chem. Soc. 89, 4787 (1967).