Paleopalynology and paleoecology of Calamus-like disulcate pollen grains

Paleopalynology and paleoecology of Calamus-like disulcate pollen grains

Review of Palaeobotany and Palynology, 62 (1990): 97-105 Elsevier Science Publishers B.V., Amsterdam - - Printed in The Netherlands 97 Paleopalynolo...

4MB Sizes 4 Downloads 105 Views

Review of Palaeobotany and Palynology, 62 (1990): 97-105 Elsevier Science Publishers B.V., Amsterdam - - Printed in The Netherlands

97

Paleopalynology and Paleoecology of Calamus-like Disulcate Pollen Grains VOLKAN ~. EDIGER, Zt~HT~ BATI and CENGIZ ALI~AN Turkish Petroleum Corp., Research Center, 06420 Ankara (Turkey) (Received January 3, 1989; revised and accepted July 10, 1989)

Abstract Ediger, V.~., Bati, Z. and Ali~an, C., 1990. Paleopalynology and paleoecology of Calamus-like disulcate pollen grains. Rev. Palaeobot. Palynol., 62: 97-105. Disulcate pollen grains belonging to the genus Dicolpopollis have a distinct morphology. The pollen of this genus has characteristics in common with pollen of the modern plant Calamus which is a climbing rotan palm growing on the riparian margins of peat swamps. Dicolpopollis-type pollen are shown to have been abundant especially in the coal seams. Dicolpopollis is mostly found in the Tertiary rocks forming acme zones especially in the Oligocene except for a few occurrences and indicates probably a subtropical climate.

Paleopalynological t a x o n o m y Genus Dicolpopollis Pflanzl 1956 (emend.) Type Species: D. kockelii Pflanzl 1956 1956 Dicolpopollis Pflanzl, in: Notizblatt d. Hessischen Ladesamtes Bodenf. Wiesbaden, Bd. 84, p.241 Type Species: D. kockelii Pflanzl 1956 1960 Disulcites Erdtman 1947 ex Potoni~, in: Senckenbergiana Lethaea, Bd. 41, p.464 Type Species: D. kalewensis Potoni~ 1960 1966 Disulcipollenites Nakoman, in: Ann. Geol. du Nord, v. 86, p.87 Type Species: D. kalewensis (Potoni~ 1960) Nakoman, 1966 1970 Disulcipollis Krutzsch, in: Atlas, v. 7, p.42 Type species: D. cuddalorensis (Ramanujam) Krutzsch 1970

E m e n d e d description: M i c r o s p o r e s with two sulci w h i c h are u s u a l l y parallel to e a c h o t h e r (Fig.l). Sulci sometimes c o n v e r g e or even t o u c h e a c h o t h e r t o w a r d the s h o r t side. Outline is i r r e g u l a r l y elliptical to trapezoidal. 0034-6667/90/$03.50

Exine is two-layered, r e l a t i v e l y t h i c k a n d the s c u l p t u r e is v e r m i c u l a t e , r u g u l a t e or reticulate. The g r a i n s are u s u a l l y flattened a l o n g the m e r i d i o n a l plane. Sulci are seen on opposite sides as n o t c h e s on the e q u a t o r in the equat o r i a l l y flattened grains. Discussion: Dicolpopollis Pflanzl 1956 is a valid n a m e for a g e n u s with two species. Potoni~ (1966) d e s i g n a t e d the species Dicolpopollis kockelii as lecto-type for the genus. As the g e n u s d e s c r i p t i o n is r a t h e r i n a d e q u a t e , a new e m e n d a t i o n is required. It is the first valid g e n u s n a m e for fossil pollen g r a i n s r e s e m b l i n g Calamus pollen. The g e n u s Dicolpites Vimal 1952 is validly published (Index N o m i n u m G e n e r i c o r u m , 1979) but a p p a r e n t l y based on d i c o t y l e d o n o u s material from lignites of the West P u n j a b (Pakistan). The p i c t u r e s show f e a t u r e s v e r y u n l i k e t h o s e of the pollen g r a i n s described as Dicolpopollis kockelii w h i c h are c o m p a r a b l e with t h o s e of r e c e n t C a l a m u s pollen. Dicolpites V a n der H a m m e n , 1954 is also validly published, but

© 1990 Elsevier Science Publishers B.V.

98

PLATE I

V.$. EDIGER, Z. BATI AND C. ALI~AN

CALAMUS-LIKE DISULCATE POLLEN GRAINS

99

Pole

Equator

Pole EQUATORIAL VIEW

POLAR VIEW

Fig.1. Terms used in describing Dicolpopollis-type pollen grains.

has to be rejected because it is a later homonym of Dicolpites Vimal 1952, which is not allowed under the rules of the ICBN (Art. 64.1). Both genera are not synonyms as they are based on different types. Disulcites Potoni~ 1960 is a validation of the name of a pollen type of Erdtman (1947). The type of this genus is D. kalewensis (I.N.G., 1979) and Potoni~ suggested at the same time t h a t this pollen type represents Calamus pollen. His pictures seem to emphasize this idea too. The name is therefore superfluous, being a later synonym of Dicolpopollis Pflanzl, as this genus also represents fossil Calamus pollen. DisulcipoUenites Nakoman 1966 is a later, obligate synonym of Disulcites Potoni~ 1960 and has to be rejected for reasons of priority. Disulcipollis Krutzsch 1970 is a validly published genus with the species D. cuddalorense as the nomenclatural type. The difference between Disulcipollis and Dicolpopollis is, however, so small, that it is suggested here to combine both genera. Krutzsch himself noted the similarity between the two genera already.

Botanical affinity: Although Krutzsch (1970) reported t h a t Dicolpopollis-like pollen also occur in several other families such as Araceae and Dioscoreaceae, the sub-family Lepidocaryoideae of the Arecaceae is the most probable taxon for comparison, because megafossils are found together with pollen (Frederiksen, 1985). Chandler (1957) and Nagy and Palfalvy (1963) found spines, fruiting axes, flowers and seeds together with Dicolpopollislike pollen. Calamus is the most possible genus among other genera belonging to Lepidocaryoideae (Nagy, 1963; Gruas-Cavagnetto, 1968; Kedves, 1968, 1979; Muller, 1968; Krutzsch, 1970; Anderson and Muller, 1975; Hochuli, 1978). However, at least eleven other palm genera in the Lypiddaryoideae, namely in the Calameae Bejaudia, Ceratolobus, Cornera, Daemonorhops, Myrialepsis, Plectocomia, Plectocomiopsis, in the Korthalsieae Korthalsia and in the Metroxyleae Metroxylon and Salacca Schizospatha also produce disulcate pollen grains (Thanikaimoni, 1970; M. Kedves, 1988, pers. commun.; W. Punt, 1989, pers. commun.). Some other authors suggested different botanical affinities for Dicolpopollislike pollen (Demonorhops-Hochuli, 1978; Metroxylon-Krutzsch, 1970; Potamegoton-Piel, 1971).

Dicolpopollis kalewensis (Potoni~ 1960) comb. nov. (emend.)

Basionomy: Disulcites kalewensis Potoni~ 1960 (Plate I, 1-4; Plate II, 1-29) Emended description: Disulcate pollen grains with a trapezoidal outline. The grains are usually flattened meridionally. Sulci are slightly converging to the short side and may touch each other. Exine is vermiculate-rugu-

PLATE I SEM photomicrographs of the D. kalewensis from Thrace Basin, Turkey. 1, 2. Meridionally flattened grains. Sulci are shown by arrows. Note the formation of false-reticulum by the vermiculate-rugulate scultural elements in contact, x 5000. 3. Sulcusends on the lateral side of the grains. Note the details of vermiculate sculpture, x 3500 and x 12,500. 4. Detailsof sulci, x 10,000.

oi

0

,lq

0

0 bi

_.2]

0

I

~m

51

Pl

~01

"4

i r,¸ ]

"1

'01

"-4 --4

-3

21-

~

/

zo-

n= 50

r8 .

.

,.

/

.

.

f

..../

.~,~-

14

101

DISULCATE POLLEN GRAINS

CALAMUS-LIKE

',;7 /

1,5

16

Calamus species studied by Kedves (1979) are reticulate, others are rugulate, clavate and verrucate. The pollen grains produced by Calamus palustris Griffith are considerably similar to pollen grains of Dicolpopollis kalewensis in having a rugulate sculpture, similar size, and nearly trapezoidal shape (Kedves, 1979, plate IX, figs.17, 18).

.

.

o

Mean: 16.4x20.4 •



,

17

.

i,

18

L, LENGTH



...:-..

19

20

:,,

21

....

22

2'~ 2', h

28

pro.

Fig.2. Length-width diagram of D. kalewensis from Thrace Basin, Turkey. late and a false reticulum may form where these sculptural elements are in contact. Size range is (14.4-19.8)x (16.2-25.2) I~m (50 specimens). The mean size is 16.4 _ 1.6 x 20.4_ 2.0 ~m (Fig.2). Discussion: The species which are published under the genera Disulcites and Disulcipollenites should be transferred to Dicolpopollis. These species are Disulcites kalewensis Potoni~ 1960, Disulcites cuddalorense Ramanujam 1966, Disulcites luteticus Gruas-Cavagnetto 1967. The following species belong to the same genus: Dicolpopollis calamoides Nagy 1963, Dicolpopollis elegans Muller 1968, Dicolpopollis malesianus Muller 1968, Dicolpopollis fragilis Salujha, Kindra and Rehman 1972, Dicolpopollis proprius Salujha, Kindra and Rehman 1972 and Dicolpopollis reticulatus Salujha, Kindra and Rehman 1980. Some of these species are very similar to each other but no further study is carried out here to revise them because of impossibility of examining their holotypes. For example, Dicolpopollis calamoides published by Nagy (1963) seems to be monosulcate and should be included probably in Arecipites. Botanical affinity: Seven of the eleven recent

Paleogeography Except for the Malaysian occurrence of

Dicolpopollis by Muller (1968) and Bande and Prakash (1986), all other species of Dicolpopollis occur in Tertiary strata (Fig.3). Dicolpopollis-type pollen grains are recorded mostly in Eocene and Oligocene strata. The Eocene occurrences are from North America (Tschudy, 1973; Frederiksen, 1973), Burma (Potoni~, 1960), France (Gruas-Cavagnetto, 1967, 1968), Germany (Krutzsch, 1970), Hungary (Nagy, 1963; Kedves, 1967) and North India (Salujha et al., 1972, 1974). The Oligocene occurrences are from Turkey (Nakoman, 1966, Akyol, 1971; Ediger, 1982), England (Boulter and Craig, 1979) and North India (Salujha et al., 1972, 1974). The Neogene occurrences are rather limited and from Germany (Pflanzl, 1956), India (Ramanujam, 1966; Salujha et al., 1980) and questionably from Turkey (Ediger, 1982). These occurrences show that Dicolpopollis spp. are frequently found in Eocene-Oligocene rocks all over the world. Paleoclimatology

D. kalewensis forms an acme zone in the Upper Oligocene rocks in the Northern Thrace Basin, Turkey (Fig.4). The only record about the climate of the Turkish Oligocene is by Maedler and Steffens (1979) who believe that a "mild warm climate" occurred in the Late

PLATE II Transmitted light microscope photomicrographs of D. kalewensis from Thrace Basin, Turkey. x 850.

102

v . ~ EDIGER, Z. BATI AND C. ALI~AN

l

\ Fig.3. Recorded occurrences of Dicolpopollis-type pollen on the Late Eocene paleocontinental map. Map is taken from Smith and Briden (1979). (1) Texas, Mississippi, Alabama, Louisiana, Arkansas, U.S.A., Eocene (Tschudy, 1973; Frederiksen, 1973). (2) Columbia, Maastrichtian (Van der Hammen, 1954). (3) Bristol Channel, England, Middle Oligocene (Boulter and Craig, 1979). (4) Paris Basin, France, Sparnacien, Upper Cuisian (Kedves, 1968). Paris Basin, France, Sparnacien (GruasCavagnetto, 1967, 1968). (5) Belgium, Oligocene (Roche and Schuler, 1976) (6) Hirschberg, Germany, Middle Miocene (Pflanzl, 1956). Germany, Paleogene (Krutzsch, 1970). (7) Dorog Basin, Hungary, Lower Eocene (Kedves, 1967). Dorog Basin, Hungary, Lower Miocene (Nagy, 1963). Eger, Hungary, Late Oligocene (Nagy, 1979). (8) Istanbul, Turkey, Lower Oligocene (Akyol, 1971). Thrace Basin, Turkey, Oligocene-Miocene (Ediger, 1982). (9) Yozgat, Turkey, Eocene Lower Oligocene (Nakoman, 1966). (10) India, Miocene (Ramanujam, 1966). (11) Burma, Eocene (Potoni~, 1960). (12) Sarawak, Malaysia, Senonian-Recent (Muller, 1968). Indo-Malayan Region, Paleogene Neogene (Bande and Prakash, 1986). (13) N. India, Eocene Oligocene (Salujha et al., 1972, 1974), Neogene (Salujha et al., 1980).

Oligocene-Early Miocene, but their samples were poor in the number of taxa. The relative percentages of the thermophilous spore-pollen are used as indicators of the climatic changes in this basin. The climate curve for the Northern Thrace Basin differs somewhat from the climatic changes in other parts of the world for the Eocene-Oligocene time period recorded in the literature. The climate usually underwent fluctuations in the Eocene and there is a marked decrease in temperature resulting in a change in climate from tropical to subtropical during the EoceneOligocene epoch. The increased percentages of thermophilous elements in Fig.4 indicate that the temperature was relatively higher in the Oligocene than in the Eocene, resulting probably in a temperate climate in the Eocene instead of a subtropical climate in the Oligo-

cene-Miocene. However, according to Wolfe (1978), Hochuli (1984) and Aleksandrova et al. (1987), the mean annu~il temperature of the Late Eocene changed between 25°C at the beginning to 15°C at the end of this period. This means that the climate was tropical at the beginning and subtropical at the end of the Late Eocene. This discrepancy may be caused by the low representation of spore-pollen in marine sediments deposited in the ?Middle-Late Eocene in the Northern Thrace Basin. For that reason, the Eocene part of the curve should be considered with caution. This situation may also be the cause for the transitional character of the Eocene-Oligocene boundary from temperate to subtropical climates. However, the well-documented cooling episode at the Eocene-Oligocene boundary caused the extinction of many tropi-

103

CALAMUS-LIKE D I S U L C A T E P O L L E N GRAINS

D kalewensis

Thermophile

I

Elements

%

%

AGE

I

? QUATERNARY

? PLIOCENE

OLIGO - MIOCENE

i

LATE

o "3 o

EARLY

F

w z

LATE

w 0 td

? MIDDLE -

| I

LATE

Fig.4. Stratigraphic distribution of D. kalewensis and thermophilous elements in the Northern Thrace Basin, Turkey. See Fig.3 for location of the basin. Relative frequencies of D. kalewensis are based on the means of each stage including only spore-pollen. Thermophilous elements include 22 bryophytic and pteridophytic spore taxa belonging to genera Camarazonotriletes, Gleicheniidites, Leiotriletes, Undulatisporites, Triplanosporites, Baculatisporites, Triletes, Polypodiaceoisporites, Retitriletes, Cicatricosisporites, Corrusporis, Laevigatosporites and Verrucatosporites, 7 monocotyledonousangiosperm pollen taxa belonging to genera Cycadopites, Monocolpopollenites and Dicolpopollis and 15 dicotyledonous angiosperm pollen taxa belonging to genera Triatriopollenites, Tricolporopollenites and Tetracolporopollenites. The solid line is drawn based on the percentages of thermophilous taxa, except some facies elements introduced by Hochuli (1978), including D. kalewensis, Laevigatosporites haardti and Tricolporopollenites margaritatus. cal elements and a southward shifting of climatic zones in the Mediterranean region in the Early Oligocene (Aleksandrova et al., 1987). Except for the Eocene part of the diagram, a marked increase in the relative percentages of thermophilous elements is observed in the Late Oligocene and Oligo-Miocene (probably equivalent to Egerian). Such an increase has also been recorded in Hungary where the climate of the Oligocene-Miocene boundary (Egerian) was definitely subtropical according to the latest palynological information (E. Nagy, 1988, pers. commun.). The mean

annual temperature of the Oligocene was about 15°C at the beginning and about 10°C at the boundary with Miocene (Hochuli, 1984; Aleksandrova et al., 1987). There is a marked cooling trend from Early Oligocene to Late Oligocene resulting in a climate change from subtropical to temperate-subtropical. However, this decrease is not linear and the temperature suddenly increased up to about 20°C somewhere in the Late Oligocene (Wolfe, 1978; Aleksandrova et al., 1987 and references therein). As the Late Oligocene is believed mainly to be humid (Hochuli, 1984) such a warm period seems quite possible for the Late Oligocene. Other sedimentological and paleontological data from the Thrace Basin also support this. During the Late Oligocene a huge continental area stretching from Yugoslavia to Turkey was present in the Paratethys between the Afro-Arabian and Eurasian continents (Steninger and Rogl, 1984). This Indo-PacificAtlantic seaway across the Mediterranean may have caused a pronounced warming trend in the Late Oligocene (Haq et al., 1977).

Paleoecology The modern plant C a l a m u s is a climbing rotan palm (liana or vine) which is most abundant on the riparian margins of peat swamps beyond the marine influence in tropical-subtropical regions (Anderson and Muller, 1975; Bande and Prakash, 1986). The fossil C a l a m u s - t y p e of pollen has been reported in many strata, but in most of the reported occurrences, the maximum abundance seems to be always in coal (Frederiksen, 1985 and references therein). For this it is regarded as facies element (Hochuli, 1978) and it cannot be used as a paleotemperature indicator (C. Gruas-Cavagnetto, 1989, pers. commun.). It is usually found in values of 10-20% (Muller, 1968; Ediger, 1982), but sometimes reaches up to 26-50% or even more than 50% (Akyol, 1971). The apparent preference of Dicolpopoll i s - p r o d u c i n g plants for peat swamps is well shown in Oligocene strata from Turkey by Corsin and Nakoman (1967) and Ediger (1982).

104

V.$. EDIGER,Z. BATIAND C. ALISAN

_o O

D. kalewensis

=. •,..=

illiativo %

:':?!.

.o =:~'.o

m a t e r i a l and the permission to publish the results. T h e i r a p p r e c i a t i o n s are also due to Assoc. Prof. Dr. D. Altiner, The Middle East T e c h n i c a l U n i v e r s i t y , A n k a r a , T u r k e y , Prof. Dr. E. N a g y , H u n g a r i a n Geological Institute, Budapest, H u n g a r y , Dr. C. G r u a s - C a v a g n e t t o , U n i v e r s i t 6 des Sciences et T e c h n i q u e s du L a n g u e d o c , Montpellier, F r a n c e , Prof. Dr. M. Kedves, U n i v e r s i t y of J o z s e f Atila, Szeged, H u n g a r y for c r i t i c a l l y r e a d i n g and editing the m a n u s c r i p t . M. Biilbfil helped in the s c a n n i n g e l e c t r o n microscopy.

References

Fig.5. Relative frequencies of D. kalewensis in the Oligocene strata from the Thrace Basin, Turkey (Data from Ediger, 1982). See Fig.3 for location of the basin. They h a v e r e p o r t e d t h a t the m a x i m u m relative frequencies are clearly in the coals r a t h e r t h a n in the m a r l y i n t e r c a l a t i o n s (Fig.5). C h a n d l e r (1957, p.75) also r e p o r t s " p l e n t y of pollen-grains of Calamus i n d i c a t i n g a dense Calamus j u n g l e " in the Oligocene lignites of S.W. England. Elsik (1978) r e p o r t s t h a t the U p p e r P a l e o c e n e coal from E a s t Texas, U.S.A., c o n t a i n s m a i n l y a CalamuspollenitesArecipites association. R o c h e and S c h u l e r (1976) f o u n d pollen of Calamus a l w a y s associated with spores of Acrostichum in Oligocene peats formed in b r a c k i s h - w a t e r s w a m p forest in Belgium. A close r e l a t i o n s h i p in the relative f r e q u e n c y d i s t r i b u t i o n b e t w e e n D. kalewensis and Baculatisporites spp., Tricolporopollenites

margaritatus, Polyvestibulopollenites verus (Alnus), and some f u n g a l spores is also observed in the T h r a c e Basin, T u r k e y (Ediger, 1981, 1982; Ediger and Ali~an, 1989).

Acknowledgements The a u t h o r s t h a n k the T u r k i s h P e t r o l e u m C o r p o r a t i o n R e s e a r c h C e n t e r for p r o v i d i n g

Akyol, E., 1971. Microfiore de l'Oligocene Inf~rieur rbcolt~e dans un sondage pros d'Avcikoru, Sile-Istanbul. Pollen Spores, 13: 117-133. Aleksandrova, A.N., Prozorov, Yu.I. and Yasamanov, N.A., 1987. Climatic and floristic zonation of the Mediterranean region during early Cenozoic time. Int. Geol. Rev., 29: 503-514• Anderson, J.A.R. and Muller, J., 1975. Palynological study of Holocene peat and Miocene coal deposit from NW Borneo• Rev. Palaeobot. Palynol., 19: 291-351. Bande, M.B. and Prakash, U., 1986. The Tertiary flora of southeast Asia with remarks on its paleoenvironmental and phytogeography of the Indo-Malayan region. Rev. Paleobot. Palynol., 49: 203-233. Boulter, M.C. and Craig, D.L., 1979. A middle Oligocene pollen and spore assemblage from the Bristol Channel• Rev. Paleobot. Palynol., 28: 259-272. Chandler, M.E.J., 1957. The Oligocene flora of Bovey Tracey Lake Basin, Devonshire. Br. Mus. Nat. Hist. Bull. Geol., 3:73 123. Corsin, P.N. and Nakoman, E., 1967. Contribution ~ l'6tude palynologique des formations tertiaires du bassin de Thrace• II. Etude quantitative. Ann. Soc. G~ol. Nord, 87: 39 53. Ediger, V.~., 1981. Fossil fungal and algal bodies from Thrace Basin, Turkey• Palaeontographica, 179: 87- 102. Ediger, V.~., 1982. Paleo-environmental analysis of KuleliBabaeski Ridge (NW Thrace) and a new approach to the evaluation of hydrocarbon potential of Northern Thrace Basin. TPAO Rep. No. 427:1 194. Ediger, V.~. and Ali~an, C., 1989. Tertiary fungal and algal palynomorph biostratigraphy of the Northern Thrace Basin, Turkey. Rev. Palaeobot. Palynol., 58: 139-161. Elsik, W.C., 1978. Palynology of Gulf Coast lignites: the stratigraphic framework and depositional environments• Texas Univ. Bur. Econ. Geol. Rep. Inv., 90:21 32. Erdtman, G., 1947. Suggestions for the classification of fossil and recent pollen grains and spores. Sven. Bot. Tidskr., 41(1): 104 114. Frederiksen, N.O., 1973. New mid-Tertiary spores and pollen grains from Mississippi and Alabama. Tulane Stud. Geol. Paleontol., 10: 65--86.

CALAMUS-LIKE

DISULCATEPOLLENGRAINS

Frederiksen, N.O., 1985. Review of Early Tertiary sporomorph paleoecology. A.A.S.P. Cont. Ser., 15:1 92. Gruas-Cavagnetto, C., 1967. Quelques nouvelles esp~ces sparnaciennes de pollen et spores. Bull. Soc. G6ol. Fr., 9: 57-62. Gruas-Cavagnetto, C., 1968. Etude palynologique des divers gisements du Sparnacien du bassin de Paris. Mem. Soc. Geol. Fr., 110: 1-144. Haq, B.U., Premoli-Silva, I. and Lohmann, G.P., 1977. Calcareous plankton paleobiogeographic evidence for major climatic fluctuation in the Early Cenozoic Atlantic Ocean. J. Geophys. Res., 82(27): 3861-3876. Hochuli, P.A., 1978. Palynologische Untersuchungen im Oligoz~in und Untermioziin der Zentralen und Westlichen Paratethys. Beitr. Pal~iontol. Osterreich., 4: 1-132. Hochuli, P.A., 1984. Correlation of Middle and Late Tertiary sporomorph assemblages. Paleobiol. cont. Montpellier, 14: 301-314. Index Nominum Genericorum I, 1979. E.R. Farr, J.A. Leussink and F.A. Stafleu (Editors), Junk Publishers, The Hague, pp.1-630. Jansonius, J. and Hills, L.V., 1976. Genera file of fossil spores and pollen. Spec. Publ. Dept. Geol. Univ. Calgary, Canada, 3431 cards, Suppl. 1-6 (1977-1982). Kedves, M., 1967. Etudes palynologiques des couches du Tertiaire inf6rieur de la r6gion parisienne I. Spores. Pollen Spores, 9:521 552. Kedves, M., 1968. Etudes palynologiques des couches du Tertiaire Inf6rieur de la r6gion parisienne. Pollen Spores, 10: 315-334. Kedves, M., 1979. Morphological investigation of recent Palmae pollen grains. Acta Bot. Acad. Sci. Hung., 26(3-4): 339-373. Krutzsch, W., 1970. Atlas der mittel-und jungertertiiiren dispersen Sporen-und Pollen-sowie der Mikroplanktonformen des nSrdlichen Mitteleuropas, VII VEB Gustav Fischer Verlag, Jena, 175 pp. Maedler, K. and Steffens, P., 1979. Neue blattfloren aus dem Oligoz~in, Neogen und Pleistoziin der Turkei. Geol. Jahrb., 33: 3-33. Muller, J., 1968. Palynology of the Pedawan and Plateau sandstone formations (Cretaceous-Eocene) in Srawak, Malaysia. Micropaleontology, 14:1 37. Nagy, E., 1963. Spores et pollens nouveaux d'une coupe de la Briqueterie d'Eger (Hongrie). Pollen Spores, 5: 397-412. Nagy, E., 1979. Palynological evaluation of the holostratotype of the Egerian. Acta Biol. Szeged, 25(3-4): 45-52. Nagy, E. and Palfalvy, I., 1973. Revision pal6obotanique de la coupe de la briqueteria d'Eger. Rap. Ann. Inst. G6ol. Hung. annee: 223-263. Nakoman, E., 1966. Analyse sporo pollinique des lignites

105 Eocenes de Sorgun (Yozgat-Turquie). Inst. Etud. Rech. Min. Turq., 67: 68-88. Pflanzl, G., 1956. Das Alter der Braunkohlen des Meissners der Floze 2 und 3 des Hirschberges und eines benachbarten Kohlenlagers bei Laudenbach. Notizbl. Hess. Landesamt. Bodenforsch. Wiesbaden, 84: 232-244. Piel, K.M., 1971. Palynology of Oligocene sediments from Central British Columbia. Can. J. Bot., 49:1885 1920. Potoni6, R., 1960. Sporologie der eoz~inen Kohle von Kalewa in Burma. Senckenbergiana Lethaea, 41: 451-481. Potoni6, R., 1966. Synopsis der Gattungen der Sporae Dispersae. Beih. Geol. Jahrb., 72: 1-244. Ramanujam, C.G.K., 1966. Palynology of the Miocene lignite from South Arkod District, Madras, India. Pollen Spores, 8: 149-203. Roche, E. and Schuler, M., 1976. Analyse palynologique (pollen et spores) de divers gisements du Tongrien de Belgique. Serv. Geol. Belg. Prof. Pap., 11: 1-58. Salujha, S.K., Kindra, G.S. and Rehman, K., 1972. Palynology of the South Shillong Front Part I: The Paleogene of Garo Hills. Proc. Sere. Paleopalynol. Indian Stratigr., pp.265-291. Salujha, S.K., Kindra, G.S. and Rehman, K., 1974. Palynology of South Shillong Front Part II: The Paleogenes of Khasi and Jaintia Hills. Paleobotanist, 21(3): 267-284. Salujha, S.K., Kindra, G.S. and Rehman, K., 1980. Palynostratigraphy of Tertiary sediments of the Tulamura Anticline, Tripura. IV Int. Palynol. Conf., Lucknow (1976-1977), 2: 667-685. Smith, A.G. and Briden, J.C., 1979. Mesozoic and Cenozoic paleocontinental maps. University Press, Cambridge, 63 pp. Steninger, F.F. and Rogl, F., 1984. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. In: J.E. Dixon and A.H.F. Robertson (Editors), The geological evolution of the eastern Mediterranean. Geol. Soc. Am. Spec. Publ., 17: 659-668. Thanikaimoni, G., 1970. Les Palmiers: Palynologie et syst6matique. Inst. Fr. Pondich6ry. Tray. Sect. Sci. Tech., 11: 1-286. Tschudy, R.H., 1973. Stratigraphic distribution of significant Eocene palynomorphs of the Mississippi embayment. U.S. Geol. Surv. Prof. Pap., 743-B: 1-24. Van der Hammen, T., 1954. E1 desarrollo de la flora Colombiana en los peridos geologicos, I. Maestrichtiano hast. Terciario mas inferior. Bol. Geol., 2(1): 49-106. Wolfe, J.A., 1978. A paleobotanical interpretation of Tertiary climates in the Northern hemisphere. Am. Sci., 66(6): 694-703.