Paper XIII(ii) Frictional losses in turbulent flow between rotating concentric cylinders

Paper XIII(ii) Frictional losses in turbulent flow between rotating concentric cylinders

403 Paper Xlll(ii) Frictional losses in turbulent flow between rotating concentric cylinders C.G. Floyd The f r i c t i o n a l losses a r i s i n ...

616KB Sizes 10 Downloads 67 Views

403

Paper Xlll(ii)

Frictional losses in turbulent flow between rotating concentric cylinders C.G. Floyd

The f r i c t i o n a l losses a r i s i n g in t h e t u r b u l e n t flow between a r o t a t i n g c y l i n d e r a n d a s t a t i o n a r y concentric o u t e r c y l i n d e r have been s t u d i e d experimentally. Tests have been c a r r i e d o u t u s i n g c i r c u l a r c y l i n d e r s a n d o t h e r geometries i n c l u d i n g c i r c u m f e r e n t i a l g r o o v e elements a n d r a d i a l disc elements. It has been f o u n d t h a t t h e f r i c t i o n a l losses c a n b e a c c u r a t e l y p r e d i c t e d by t h e simple addition o f t h e effects o f t h e r o t a t i n g s u r f a c e elements, a n d by assuming t h a t t h e dependence o f the s k i n f r i c t i o n coefficient on Reynolds number i s t h e same for a l l p o i n t s o n t h e r o t o r surface. 1

INTRODUCTION

A t v e r y high Reynolds numbers, t y p i c a l l y greater t h a n l o 6 , t h e flow o f a fluid between a rotating cylinder and a stationary concentric outer c y l i n d e r becomes fully t u r b u l e n t , as t h e superlaminar T a y l o r v o r t e x flow s t r u c t u r e breaks down. T u r b u l e n t flows o f t h i s t y p e occur in t h e a n n u l a r spaces a r o u n d t h e s h a f t s o f c e n t r i f u g a l pumps, in t h e a n n u l i between r o t o r s a n d s t a t o r s o n high speed e l e c t r i c motors, a n d c a n also o c c u r in l a r g e high speed journal bearings. T h e f r i c t i o n a l losses in s u c h systems d u e t o t h e s h e a r i n g o f t h e fluid f i l m a r e s i g n i f i c a n t a n d c a n g i v e r i s e t o excessive localised heat generation. In a l a r g e b o i l e r feed pump, f o r example, heat generation levels o f t h e o r d e r o f 40 k W have been r e c o r d e d in the a n n u l u s a r o u n d t h e mechanical seal i n s t a l l ation. Turbomachinery components s u c h as mechanical seals a r e sensitive t o fluid temperature, a n d t h e r e i s t h e r e f o r e a clear need f o r an accurate heat generation p r e d i c t i o n method f o r s u c h components t o p e r m i t d e s i g n optimisation. Considerable p u b l i s h e d w o r k i s available o n t h e subject o f superlaminar flow between r o t a t i n g c y l i n d e r s but l i t t l e f r i c t i o n a l loss data i s available, a n d t h e n n o t a t Reynolds numbers g r e a t e r t h a n 106.5. F u r t h e r m o r e t h e published w o r k i s limited t o e i t h e r p l a i n c i r c u l a r c y l i n d e r s o r t o discs, a n d t h e r e i s n o data available f o r more complex shapes i n c o r p o r a t i n g both c y l i n d r i c a l s u r f a c e a n d r a d i a l d i s c elements such as make up t h e m a j o r i t y o f t u r b o m a c h i n e r y components. T h e w o r k p r e s e n t e d in t h i s p a p e r i s a s t u d y o f these more complex s h a f t a n d h o u s i n g geometries, a n d i s a n attempt t o determine t h e importance o f t h e v a r i o u s parameters a f f e c t i n g heat generation a n d t o p r o v i d e empirical guidelines f o r p r e d i c t i n g t h e magnitude o f t h e heat generation. T h i s s t u d y i s p a r t o f a wider i n v e s t i g a t i o n i n t o flow problems in turbomachine r y a n n u l i (1).

Nomenclature

1.1

C

T o r q u e e x e r t e d o n t h e r o t o r by t h e fluid

R

Radius o f t h e r o t o r

I

Axial length o f the rotor

r

Local r a d i u s o f a p o i n t o f i n t e r e s t

t

Width o f a n n u l a r g a p between t h e r o t o r a n d t h e stator

v

Local v e l o c i t y a t a p o i n t o f r a d i u s r

v

Kinematic v i s c o s i t y o f t h e fluid

p

D e n s i t y o f t h e fluid

T

Shear s t r e s s o n t h e r o t a t i n g surface

w

Angular velocity o f t h e r o t o r

Non-dimensional Coefficients F Non-dimensional t o r q u e F = Re

R

C /p v 2 R

Rotor Reynolds number ReR = w R 2 / v

Cf S k i n f r i c t i o n c o e f f i c i e n t CF = o r local coefficient 2

cf

‘I / 0 . 5

pw2R

= T 10.5 pw2 r 2

EX PER IMENTAL A R RAN C EMEN T

A p u r p o s e built t e s t rig was developed f o r t h i s work, a n d a schematic arrangement o f t h e r o t o r a n d h o u s i n g assembly i s i l l u s t r a t e d in F i g u r e 1. As c a n b e seen f r o m t h e f i g u r e , t h e r o t o r s h a f t a n d h o u s i n g assembly were so designed t h a t d i f f e r e n t r o t o r s a n d housings c o u l d b e f i t t e d , t o g i v e a wide r a n g e o f a x i a l lengths, s u r f a c e finishes a n d r o t o r t o h o u s i n g g a p sizes. Representative t e s t a n n u l i a r e i l l u s t r a t e d in F i g u r e 2.

404

Fluid Annulus

water by a n e x t e r n a l heat exchanger, a n d t h e water was p r e s s u r i s e d t o between 2 a n d 8 b a r t o p r e v e n t c a v i t a t i o n a n d a i r entrainment t h r o u g h t h e seals from o c c u r r i n g . One o f t h e major problems in developing t h e experimental equipment was t h e d e s i g n o f suitable seals between t h e r o t o r a n d t h e housing. These seals were r e q u i r e d t o operate o v e r a r a n g e o f speeds a n d fluid p r e s s u r e s but w i t h minimal leakage a n d w i t h t h e minimum possible f r i c t i o n a l losses. T h e f i n a l arrangement u s e d consisted o f a c a r b o n seal ring running against a t u n g s t e n c a r b i d e seal ring w i t h t h e axial c l o s i n g f o r c e p r o v i d e d by compressed a i r . T h e c l o s i n g f o r c e between t h e t w o seal r i n g s c o u l d t h e r e f o r e b e regulat e d during t e s t s t o c o n t r o l t h e leakage.

Shaft

T h e use o f stainless steel f o r t h e r o t o r a n d h o u s i n g components a n d t h e use o f water as t h e w o r k i n g fluid were d i c t a t e d by t h e d e s i r e t o r e p r e s e n t t h e conditions in a n actual pump f o r w h i c h some experimental data T h e size o f t h e equipment were available. was also f i x e d f o r t h e same reason. T h e possibilities o f u s i n g a scale model o r o f u s i n g a l t e r n a t i v e f l u i d s were considered, but as t h e importance o f t h e v a r i o u s parameters a f f e c t i n g heat g e n e r a t i o n were n o t k n o w n it was t h o u g h t desirable t o eliminate a n y scale effects.

Figure 1 T e s t riq arrangement

I

/,

I'

J

A

rotor seal

T h e p r i n c i p a l parameters measured were:

seal

(i)

S h a f t speed a n d torque, measured by a s h a f t mounted optical s l i t t e d d i s c system, p r o v i d i n g f i l t e r e d analogue voltage o u t p u t s . F l u i d i n l e t a n d o u t l e t temperatures, measured by p l a t i n u m resistance thermometers. F l u i d pressures, measured by analogue p r e s s u r e gauges.

(ii)

F l u i d c i r c u l a t i o n flow rate, measured by a p a i r o f Rotameter u n i t s . Seal leakage flow rates, measured by t h e time t a k e n t o fill a g r a d u a t e d container

.

0

(iii) Fiqure 2 T y p i c a l a n n u l a r t e s t qeometries T h e r o t o r a n d h o u s i n g components were manufactured f r o m stainless steel, a n d t y p i c a l r o t o r r a d i i were in t h e r a n g e 107mm to 12lmm. T h e s h a f t was d r i v e n by a 75 k W motor t h r o u g h a b e l t d r i v e system t o g i v e a rotational speed r a n g e o f 2100 r p m t o 9400 rpm. T h e o p e r a t i n g fluid was water, a n d t h i s was c i r c u l a t e d t h r o u g h t h e t e s t cell a t a r a t e o f between 15 a n d 50 l i t r e s / m i n u t e by a n e x t e r n a l pump. Heat was e x t r a c t e d from t h e

S u b s i d i a r y measurements o f t h e compressed a i r s u p p l y p r e s s u r e s t o t h e seals a n d t h e b e a r i n g temperatures were also made. T h e heat g e n e r a t i o n in t h e system was determined by t h e s h a f t speed a n d t h e t o r q u e measurements. Determination o f t h e heat generation from t h e r i s e in fluid temperature a n d t h e fluid c i r c u l a t i o n f l o w r a t e g a v e o n l y a b o u t 709, o f t h e power loss, o w i n g t o t h e additional heat t r a n s f e r i n t o t h e b o d y of t h e housing.

3

CYLINDER TESTS

F o r fully t u r b u l e n t flow w i t h Reynolds numbers g r e a t e r t h a n lo6, t h e flow between t h e r o t o r a n d t h e h o u s i n g has been shown by Pai ( 2 ) a n d Ustemenko ( 3 ) t o consist o f t w o thin s u r f a c e shear l a y e r s a n d a c e n t r a l flow r e g i o n

405 over 80% o f th e gap f o r which v r i s a constant. The s k i n f r i c t i o n coefficient o n t h e r o t o r surface, a n d hence t h e heat generation ,is dependent o n th e velocity g r a d i e n t in t h e It w i l l t h e r e f o r e b e o n l y surface shear layer. weakly dependent o n t h e Reynolds number a n d on the housing geometry. It also follows t h a t the flow in th e a nnular g a p i s essentially tw o dimensional. T h e influence o f t h e helical flow a r i sing from t h e c i r c u l a t i o n of t h e fluid by t h e external pump was considered t o b e small. The axial Reynolds number was less t h a n 0.1% o f the rotational Reynolds numbers a n d t h e work o f Yamada (4) a n d o t h e r s suggests t h a t for these conditions helical flow effects can b e neglected. T h e r e s u l t s obtained in t h i s s t u d y showed no dependence o n fluid c i r c u l a t i o n rate. Sig nificant t h r e e dimensional e n d e f f e c t s did occur, however, b o t h d u e t o t h e additional surfaces o f t h e seals a n d t h e c y l i nder ends, a n d d u e t o t h r e e dimensional flow e ffects in t h e flow caused by these additional surfaces. T h e t o r q u e d u e t o these e n d effects comprised up t o 50% o f t h e total t o r q u e measured, a n d in p a r t i c u l a r t h e f r i c t i o n a t t h e seals was high. T h e t o r q u e d u e t o all t h e e n d effects co uld n o t b e measured separately fro m the t o r q u e d u e t o t h e cylinders, a n d it was t h e r efore necessary t o t e s t t w o c y l i n d e r s of d i f f e r e n t axial lengths, t o eliminate t h e e n d effects by s u b t r a c t i n g t h e two results. Problems have been encountered w i t h t h i s technique in t h e past (5) because o f t h e size o f t h e e n d effects, a n d so f o u r d i f f e r e n t c y l i n d e r l e n g t h s were tested, t o p e r m i t t h e s u b traction calculations t o be c r o s s checked. T h e shortest axial l e n g t h chosen was 40mm. and t h i s l e n g t h was also chosen f o r most o f the t e s t i n g o f more complex r o t o r a n d stator geometries. T h e o t h e r l e n g t h s chosen f o r t h e c y l i nder te sts were 65mm, 80mm a n d 120mm. It was assumed t h a t f o r a g i v e n r o t o r and housing geometry t h e s k i n f r i c t i o n coefficient i s re lated t o t h e Reynolds number b y a power law relationship CF = aReRb, where t h e s k i n f r i c t i o n coefficient i s g i v e n by CF = G / ( n p I R 4 w 2 ) .

However, t h e s k i n f r i c t i o n coefficient cannot b e determined d i r e c t l y from t h e experimental data, as t h e total t o r q u e measured ( G T), includes a component d u e t o e n d e f f e c t s ( G E ) as well as t h e c y l i n d e r surface component ( G C). T h e r e f o r e t h e s k i n f r i c t i o n coefficient is g i v en as

where Ic i s t h e actual l e n g t h o f c y l i n d e r s u r face, a n d IE i s a n equivalent e x t r a l e n g t h o f c y l i n d e r surface t o allow f o r t h e e n d effects. T o analyse t h e data, a non-dimensional t o r q ue co efficient F was introduced, where: F = (GC + GE)/pu2R

F can t h e n b e d e f i n e d in terms o f Reynolds n u m b e r by :

a n d thence f r o m a series o f t e s t s w i t h diffe r e n t c y l i n d e r l e n g t h s , a, b a n d IE can b e found.

F has n o p h y s i c a l significance, but was chosen as t h e non-dimensional c o e f f i c i e n t t o g i v e a significant gradient o n a plot o f log F against l o g ReR t o f a c i l i t a t e t h e data processing. I m p l i c i t in t h i s a p p r o a c h was t h e assumption t h a t t h e e n d e f f e c t s c a n b e q u a n t i f i e d by a n a d d i t i o n a l l e n g t h o f c y l i n d r i c a l s u r f a c e ( IE) F o r t h i s assumption t o b e valid, a l l t h e e n d e f f e c t s must v a r y w i t h R e y n o l d s Number in a similar fashion t o t h e c y l i n d e r t o r q u e . The additional torque due t o the e n d effects can be s p l i t i n t o t w o components; the torque d u e t o t h e seals, a n d t h e t o r q u e d u e t o t h e end surfaces o f the cylinders. The torque d u e t o t h e b e a r i n g s c a n b e i g n o r e d as d r y r u n s o f t h e t e s t rig showed t h a t t h e b e a r i n g t o r q u e was n e g l i g i b l e .

.

T o assess t h e t o r q u e d u e t o t h e seals, it was assumed t h a t t h e flow a t t h e seal i n t e r f ac e was t u r b u l e n t , w i t h a seal Reynolds Number o f t h e o r d e r o f 105. T h e seal Reynolds Number was c a l c u l a t e d f r o m t h e s l i d i n g v e l o c i t y a n d a n estimate o f t h e i n t e r f a c e f i l m t h i c k n e s s based o n t h e measured leakage a n d p r e s s u r e differential. The c i r c u m f e r e n t i a l flow a t t h e seal i n t e r f a c e i s t h e n comparable to t h e flow between m o v i n g p a r a l l e l plates, f o r w h i c h t h e dependence o f s k i n f r i c t i o n o n Reynolds n u m b e r i s similar t o t h a t f o r c o n c e n t r i c r o t a t i n g c y l i n d e r s ( 6 ) . It i s t h e r e f o r e reasonable t o assume t h a t t h e t o r q u e d u e t o t h e seals can b e c o n s i d e r e d t o b e equal t o the torque due t o a n additional length o f c y l i n d e r surface. T h e t o r q u e d u e t o t h e e n d surfaces o f t h e r o t a t i n g c y l i n d e r c o u l d not b e d e t e r m i n e d theoretically. However, as t h e flow in t h e annular gap i s a basically irrotational turbulent flow a t a high R e y n o l d s number, t h e t u r b u l e n t b o u n d a r y l a y e r s o n t h e e n d surfaces o f t h e a n n u l a r g a p w i l l b e similar t o those o n t h e c y l i n d e r surfaces. From t h i s i t can be assumed t h a t t h e r e l a t i o n s h i p s between s k i n f r i c t i o n c o e f f i c i e n t a n d Reynolds n u m b e r w i l l also b e similar. It i s t h e r e f o r e reasonable t o assume t h a t a l l t h e e n d e f f e c t s w i l l v a r y w i t h Reynolds n u m b e r in a similar fashion t o t h e c y l i n d e r torque. T h e n f o r each a n n u l a r g a p w i d t h t h e r e s u l t s for a l l t h e a x i a l l e n g t h s c a n b e p l o t t e d in t e r m s o f l o g F a g a i n s t l o g ReR a n d processed simultaneously t o g i v e a least squares r e g r e s s i o n fit o f f o u r p a r a l l e l l i n e s t o t h e f o u r sets o f experimental data.

T h e r e g r e s s i o n a n a l y s i s was weighted t o t a k e account o f t h e estimated a c c u r a c y o f t h e measurements. F i g u r e 3 shows a plot of t h e data p o i n t s f o r a 5mm g a p f o r t h e t w o

406 It can b e seen t h a t t h e c o r r e l a t i o n between t h e data a n d t h e f i t t e d lines i s good, a n d in f a c t t h e c o r r e l a t i o n c o e f f i c i e n t s were t y p i c a l l y g r e a t e r t h a n 0 . 9 9 . T h e r e g r e s s i o n analysis d e t e r m i n e d n o t o n l y t h e slope o f t h e line, but also t h e m a g n i t u d e o f t h e e n d e f f e c t s in t e r m s o f the equivalent e x t r a length o f cylindrical surface. T h e e q u i v a l e n t e x t r a l e n g t h s were calculated t o b e 5 8 , 75 a n d 75mm f o r a n n u l a r g a p w i d t h s o f 5 , 10 a n d 20mm r e s p e c t i v e l y . The reduced magnitude o f the end effects f o r t h e 5mm g a p was n o t d u e t o experimental e r r o r , as r e p e a t t e s t s showed t h a t t h e a c c u r a c y o f d e t e r m i n a t i o n o f t h e e n d l e n g t h s was It i s t h e r e f o r e consida p p r o x i m a t e l y f 3mm. e r e d t h a t it was a r e s u l t o f some t h r e e dimensional flow e f f e c t o v e r t h e c y l i n d e r e n d surfaces.

extreme axial lengths o f 40 a n d 120mm togeth e r w i t h t h e f i t t e d lines. T h e r e s u l t s for t h e i n t e r mediate lengths have been omitted f o r c l a r i t y .

12 .o

I

I = 120

log

11.5

11

Al l o w i n g f o r t h e calculated i n f l u e n c e o f t h e e n d effects, t h e r e l a t i o n s h i p s between s k i n f r i c t i o n c o e f f i c i e n t a n d Reynolds n u m b e r were determined f o r the different gap widths.

.o

These were f o u n d t o be:

10.5 6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.0

7.1

log ReR

Fiqure 3

T h e r e appears t o b e o n l y a s l i g h t dependence o n t h e g a p r a t i o ( t / R ) , a n d t h i s is in agreement w i t h t h e r e s u l t s o f o t h e r workers. T h i s c a n b e seen in F i g u r e 4 w h i c h is a plot o f other published results and the present results.

T o r q u e aqainst Reynolds number f o r two a xial lenqths

1.3

1.2

1.1

1 .o

l-

i

P t/R

o

0.15-0.4

A

0.07-0.15

V

0.04-0.07

0

0.02-0.04

5.6

1

5.8

Fiqure 4

6.0

I

6.2

I

f

I

6.4

6.6

6.8

1

7.0 l o g ReR

Selected p u b l i s h e d data compared w i t h mean lines f r o m p r e s e n t r e s u l t s f o r cylinders.

Published r e s u l t s from B i l q e n ( 7 ) . G o r l a n d ( 8 ) & T a y l o r ( 9 )

7.2

407 It would appear from F i g u r e 4 t h a t t h e s k i n f r i c tion coefficient i n i t i a l l y decreases w i t h decreasing gap r a t i o but t h e n begins t o increase as t he g ap r a t i o f u r t h e r decreases. T h e minimum s k i n f r i c t i o n coefficient o c c u r s when t h e g a p r a t i o i s in th e approximate r a n g e o f 0 . 1 t o 0 . 2 . A more precise statement o n t h e e f f e c t o f g a p r a t i o o n s k i n f r i c t i o n coefficient i s n o t possible, as the scatter o f experimental data p o i n t s i s greater t h a n a n y g a p r a t i o effect.

4

assumption was based o n t h e f a c t t h a t t h e s k i n f r i c t i o n c o e f f i c i e n t data f o r complete discs p u b l i s h e d by o t h e r w o r k e r s ( 1 0 , 1 1 , 1 2 ) showed good agreement w i t h t h e p r e s e n t r e s u l t s f o r c y l i n d r i c a l surfaces, as shown in F i g u r e 6 .

COMPLEX GEOMETRY EFFECTS Influence o f Housinq Geometry

4.1

A series o f te sts were c a r r i e d o u t u s i n g p l a i n c y l i ndrical r o t o r s but w i t h changes t o t h e housing geometry. Two d i f f e r e n t housing geometry effects were tested. T h e f i r s t o f these was a change t o t h e i n l e t geometry from t h a t shown in Figure 2 ( i ) t o t h a t shown in F i g u r e 2 ( i i ) . Figure 5 shows t h e data f o r b o t h geometries plotted as log F against log ReR f o r a n 80mm axial l e n g t h c y l i n d e r . It can b e seen t h a t changing t h e i n l e t geometry h a d n o discerna b l e effect o n t h e r o t o r torque.

12.0

11.5

11.0

+

.7 .6 -

1

1 6.4

6.5

1

6.6

6.7

6.8

6.9

7.0

7.1

published radial disc results

8

+

closed inle t

Q

open i n l e t

+ I

6.6

Comparison o f c y l i n d e r r e s u l t s against

i+

1

6.5

log ReR

+

F

6.4

Fiqure 6

0

0

Present c y l i n d e r r e s u l t s lppen (10) Ketola & McGrew ( 1 1 ) D a i l y & Nece ( 1 2 )

6.3

++

-1

6.3

-

.8

.5

1

10.5

.9

I

I

1

6.7

6.8

6.9

1

7.0

The variation o f the total torque for the 121mm r o t o r w i t h r o t o r Reynolds n u m b e r c o u l d t h e n b e p r e d i c t e d by i n t e g r a t i n g t h e local s k i n f r i c t i o n c o e f f i c i e n t o v e r t h e complete r o t o r s u r face. T h e e n d e f f e c t s were i n c l u d e d as a n e x t r a axial length o f cylinder. The predicted total t o r q u e a n d t h e experimental data a r e p l o t t e d in F i g u r e 7 a n d show good agreement.

1

7.1

12.0

F

-

Ef Effect o f doubling

log ReR Figure 5 Influence o f i n l e t qeometry o n t o r q u e T h e second housing change i n v o l v e d t h e i n t r o d u c t i o n o f a circumferential groove, as shown in F i g u r e 2 ( i i ) . Again t h i s h a d n o discernable effect o n t h e r o t o r torque. T h i s i s n o t s u r p r i s i n g as one would expect t h e r o t o r t o r q u e to depend o n t h e velocity g r a d i e n t in t h e shear layer o n t h e rotor, a n d t h i s will b e l i t t l e affect e d by h ousing changes. 4.2

11.5-

11.0

-

10.5

I

Radial Elements

The n e x t series o f tests i n v o l v e d t h e i n t r o d u c t i o n o f r a d i a l elements o n t o t h e r o t o r . T w o r o t o r s were used, w i t h r a d i i o f 116mm a n d 1 2 l m m , t o g i v e radial surface elements a t t h e c y l i n d e r ends. It was assumed t h a t t h e relations h i p between local s k i n f r i c t i o n coefficient a n d local Reynolds number f o r b o t h disc a n d c y l i n d e r elements was t h e same as t h a t between the s k i n f r i c t i o n c oefficient a n d r o t o r Reynolds This number f o r t h e c y l i n d r i c a l surfaces.

6.3

1

,

6.4

I

I

6.5

6.6

Fiqure 7

I

6.7

1

6.8

I

1

6.9 7.0 log ReR

Pr e d i c t e d a n d measured t o r q u e f o r a r o t o r w i t h r a d i a l s u r f a c e elements

1

7.1

408

The proportion o f the total torque due to the r a d i a l surfaces i s small, t y p i c a l l y a r o u n d 15%, but t h e estimate o f t h e t o t a l t o r q u e i s s t i l l sensitive t o l a r g e e r r o r s in t h e estimate o f t h e F i g u r e 7 shows a r e radial surface torque. calculated p r e d i c t i o n assuming t h a t t h e local s k i n f r i c t i o n coefficient for the radial surfaces was double t h e value f o r t h e c y l i n d r i c a l surfaces. It can b e seen t h a t t h e p r e d i c t i o n d i f f e r s s i g n i f i c a n t l y f r o m t h e experimental data. It can be concluded t h a t , f o r t h i s t y p e o f geometry where t h e p r o p o r t i o n o f t o t a l t o r q u e d u e t o t h e r a d i a l surfaces i s small, t a k i n g t h e local r a d i a l s u r f a c e s k i n f r i c t i o n c o e f f i c i e n t t o b e equal t o t h e c y l i n d e r s u r f a c e s k i n f r i c t i o n coefficient i s a v a l i d a p p r o a c h t o p r e d i c t i n g t h e total torque.

T o t e s t f o r i n t e r a c t i o n s between t h e c y l i n d r i c a l a n d r a d i a l s u r f a c e elements, a stepped r o t o r was tested. T h i s r o t o r was o f 40mm a x i a l l e n g t h , w i t h lOmm a t a r a d i u s o f 107mm a n d 30mm a t a r a d i u s o f 116mm. T h e t o r q u e f o r t h e r o t o r was p r e d i c t e d b y t h e i n t e g r a t i o n o f t h e local s k i n f r i c t i o n c o e f f i c i e n t across t h e r o t o r surface, as before, a n d t h e p r e d i c t i o n was again f o u n d t o a g r e e v e r y closely w i t h t h e experimental data, w i t h n o detectable interaction effects. T h e above r e s u l t s show t h a t t h e t o r q u e f o r a n y complex r o t o r a n d h o u s i n g geometry w i t h i n t h e r a n g e t e s t e d can b e p r e d i c t e d by t h e simple a d d i t i o n o f t h e components o f t o r q u e d u e t o t h e r o t a t i n g s u r f a c e elements, t o g e t h e r w i t h a n e x t r a component o f t o r q u e t o allow f o r e n d effects. The influence o f the housing geometry o n t h e t o t a l t o r q u e o f t h e system i s minor a n d can be neglected. T h i s i s most c l e a r l y shown by t h e r e s u l t s f o r t h e system shown in F i g u r e 2 ( i i i ) w h i c h has b o t h a stepped r o t o r a n d a c i r c u m f e r e n t i a l g r o o v e in t h e housing. F i g u r e 8 shows v e r y close agreement between t h e measured t o r q u e r e s u l t s a n d t h e p r e d i c t e d values.

11.5

4

5

GENERAL A P P L I C A B I L I T Y

T o a p p l y these r e s u l t s g e n e r a l l y , it i s necessary t o know w h e t h e r a l l o f t h e e n d e f f e c t s a r e d u e t o t e s t rig effects, o r whether t h e y a r e in p a r t caused by flow e f f e c t s a r o u n d t h e edges o f t h e r o t a t i n g s u r f a c e . It i s clear t h a t a l l t h e e n d e f f e c t s a r e n o t caused b y t h e seal f r i c t i o n a n d c y l i n d e r e n d A 40mm l o n g r o t o r w i t h a 5mm s u r f a c e s alone. a n n u l a r g a p has a n e n d e f f e c t e q u i v a l e n t l e n g t h o f 58mm. A p p r o x i m a t e l y h a l f o f t h i s can b e e x p l a i n e d as d u e t o t h e r a d i a l s u r f a c e s a t t h e sides o f t h e r o t o r a n d t h e l i k e l y losses in t h e t h i c k fluid films o n t h e seal faces. T h e remaining e n d e f f e c t s a r e p r o b a b l y d u e t o t h r e e dimensional flow e f f e c t s w h i c h may be u n i q u e t o t h e t e s t r i g o r may b e g e n e r a l l y applicable

.

T h e o n l y way t o find o u t i s t o compare t h e t o r q u e p r e d i c t e d f o r a complex geometry w i t h measured t e s t r e s u l t s o b t a i n e d o n a completely d i f f e r e n t t e s t rig. T h i s comparison was made, u s i n g r e s u l t s f o r a piece o f t u r b o m a c h i n e r y made up o f t w o sections similar t o F i g u r e 2 ( i i i ) a n d a l o n g p l a i n c y l i n d e r o f 400mm a x i a l l e n g t h . It was f o u n d t h a t t h e p r e d i c t e d t o r q u e , a g r e e d w i t h t h e t e s t data t o w i t h i n 10% i f a l l t h e e n d e f f e c t s were assumed t o b e d u e t o seal losses a n d t e s t r i g e f f e c t s . However, t h i s level o f agreement between p r e d i c t i o n a n d experimental data i s n o t c o n c l u s i v e as t h e l o n g p l a i n c y l i n d e r compone n t swamped a n y i n f l u e n c e o f t h e e n d e f f e c t s T h e r e remains, o n the total torque. t h e r e f o r e , some e n d e f f e c t s w h i c h a r e a f u n c t i o n o f u n k n o w n e f f e c t s in t h e flow o v e r t h e r o t a t i n g surface, a n d it i s s t i l l n o t clear if t h e y a r e u n i q u e t o t h e t e s t r i g o r a r e g e n e r a l l y applicable. It i s t h e r e f o r e concluded t h a t t h e following g u i d e l i n e s w i l l p r o v i d e a reasonable a n d c o n s e r v a t i v e estimate o f t h e t o r q u e o n t h e r o t o r o f a piece o f t u r b o m a c h i n e r y .

(1)

O n l y t h e r o t a t i n g s u r f a c e s h o u l d be considered.

(2)

A mean v a l u e o f s k i n f r i c t i o n c o e f f i c i e n t should be applied to b o t h the radial and t h e c y l i n d r i c a l surfaces. T h e value Re-Oe2 s u g g e s t e d i s Cf = 3.16. w h e r e Re i s e i t h e r a f u n c t i o n o f R f o r t h e c y l i n d r i c a l surface, o r a v a r i a b l e f u n c t i o n o f r f o r t h e r a d i a l surface. These numerical values a r e mean values o f those d e t e r m i n e d f o r t h e d i f f e r e n t g a p r a t i o s a n d h a v e been t e s t e d a n d f o u n d t o g i v e good c o r r e l a t i o n .

(3)

It i s c o n s i d e r e d t h a t a n additional length o f cylindrical surface should be a d d e d as a n estimate o f t h e u n k n o w n effects, p r i n c i p a l l y d u e t o i n t e r f e r e n c e e f f e c t s adjacent t o t h e r o t o r c o r n e r s . F o r r o t o r s w i t h t w o major changes in r a d i u s a l o n g t h e i r a x i a l lengths, s u c h as those tested, a n additional l e n g t h o f 35mm a t a r a d i u s o f 107mm i s appropriate. For r o t o r s w i t h a

11.0

10.5

6.3 6 . 4 Fiqure 8

6.5

6.6

6.7

6.8

6.9

7.0 7.1 log ReR

Comparison of p r e d i c t e d a n d measured r e s u l t s f o r a stepped r o t o r a n d a q r o o v e d h o u s i n q

409

(4)

greater number o f step changes in radius then it is likely t h a t t h i s l e n g t h should be increased.

(9)

TAYLOR, G 1 . " F l u i d f r i c t i o n between r o t a t i n g c y l i n d e r s 1-torque measurements" Proc. Roy. SOC. Ser A., 1936, 157 p546

In addition, f o r the test rig used f o r the present work, it i s necessary t o add a f u r t h e r l e n g t h o f 35mm o f c y l i n d r i c a l s u r face t o allow f o r t h e f r i c t i o n due t o the seals and adjacent radial surfaces.

(10)

IPPEN, A T "Influence o f viscosity on c e n t r i f u g a l pump performance". T r a n s ASME, 1946, 68, p 823

(11)

KETOLA, H N McCrew, J M "Pressure, frictional resistance a n d flow characteristics o f t h e p a r t i a l l y wetted r o t a t i n g d i s k " Trans. ASME. Ser. F., 1968, 90, p 295 -

(12)

DAILY, J W, NECE, R E "Chamber dimension effects o n induced flow and frictional resistance o f enclosed r o t a t i n g disks". Trans. ASME. Ser D., 1969, 82, p 217

It is considered t h a t t h e e r r o r in t h e estimate o f torque obtained u s i n g the above procedure is unlikely t o be greater than 20%, f o r r o t o r s w i t h gap ratios in t h e range 0.05 t o 0.2, and w i t h similar ratios o f radial t o c y l i n d r i c a l r o t o r surface areas t o those o f t h e r o t o r s tested. 6

ACKNOWLEDGEMENTS

The author acknowledges t h e assistance o f the SERC and o f t h e T.I. Research Laboratories who sponsored t h i s work u n d e r a CASE Project. The author also wishes t o acknowledge the s u p p o r t a n d advice g i v e n by t h e s t a f f o f the Department o f Aeronautical Engineering at the U n i v e r s i t y o f Bristol.

References FLOYD, C G "A S t u d y o n frictional losses o f enclosed r o t o r s a t high Reynolds numbers" Ph. D. Thesis, U n i v e r s i t y o f Bristol, September 1982. PAI, S I " T u r b u l e n t flow between r o t a t i n g cylinders" NACA Tech. Note 892, 1943. USTIMENKO, B P e t al " T u r b u l e n t t r a n s f e r in r o t a r y flows o f an incompressible fluid". F l u i d Mech. Soviet Research, p 121 1972,

1,

YAMADA, Y "Torque resistance Of a flow between r o t a t i n g coaxial c y l i n d e r s h a v i n g axial flow". Bull. JSME, 1962, 5. p 635 SULMONT, P. BOURGET, P L "Mesure experimentale du couple de frottement d'un c y l i n d r e t o u r n a n t dans un c y l i n d r e f i x e p o u r des faible e n t r e f e r s e t des g r a n d s nombres du Reynolds". Annales de Mechanique, Ecole Nat. de Mech., Nantes, 1969. ROBERTSON, J M. "On t u r b u l e n t plane Couette flow", 6th Mid West Conference o n F l u i d Mech., Univ. o f Texas 1959. BILGEN, E, BOULOS, R "Functional dependence o f t o r q u e coefficient o f coaxial c y l i n d e r s o n gap w i d t h a n d Reynolds numbers". Trans. ASME Ser. I . 1973 95, p 122.

-

GORLAND, S H e t al "Experimental windage losses f o r close clearance r o t a t i n g c y l i n d e r s in t h e t u r b u l e n t flow regime". NASA TM X-52851, 1970