Parity test for Ω− using polarized hydrogen target

Parity test for Ω− using polarized hydrogen target

Volume 18, number 3- PARITY P H Y S I C S LE T T E RS TEST FOR ~-USING POLARIZED 1 September 1965 HYDROGEN TARGET S. M. BILENKY and R. M. RY...

157KB Sizes 0 Downloads 38 Views

Volume 18, number 3-

PARITY

P H Y S I C S LE T T E RS

TEST

FOR

~-USING

POLARIZED

1 September 1965

HYDROGEN

TARGET

S. M. BILENKY and R. M. RYNDIN

Joint Institute for Nuclear Research, Laborato~'y of Theoretical Physics, Dubna, USSR Received 6 August 1965

An e x i s t e n c e of t h e ~ - h y p e r o n with s t r a n g e n e s s S = -3, i s o t o p i c spin I = 0, s p i n and p a r i t y J P = ~+ and with m a s s of about 1680 MeV was p r e d i c t e d on the b a s i s of t h e SU(3) s y m m e t r y of s t r o n g i n t e r a c t i o n s [1-3]. The v e r y d i s c o v e r y [4] of the n e g a t i v e l y c h a r g e d b a r y o n with s t r a n g e n e s s -3 and with m a s s c l o s e to the p r e d i c t e d one was a b r i l l i a n t c o n f i r m a t i o n of t h e SU(3) i n v a r i a n c e . T h i s i s , at the s a m e t i m e , "indirect e v i d e n c e f o r the a b o v e - m e n t i o n e d v a l u e s of the s p i n and p a r i t y of the ~ " hyperon. H o w e v e r , a d i r e c t e ~ e r i m e n t a l d e t e r m i n a t i o n of t h e s e quantum n u m b e r s i s , no doubt, of g r e a t i n t e r e s t . The spin of the ~ - p a r t i c l e c a n b e d e t e r m i n e d by studying any of i t s n o n - l e p t o n i c d e c a y s , which a r e weak d e c a y s of t h e t y p e d ~ ½ + 0 (d, ~,1 0 a r e the p a r t i c l e spins). F o r t h i s p u r p o s e , a s is shown in r e f s . 5, 6 ( s e e a l s o [7]), it i s n e c e s s a r y to m e a s u r e t h e a n g u l a r d i s t r i b u t i o n and p o l a r i z a tion of the p a r t i c l e with spin ½ in t h e d e c a y of t h e polarized ~- hyperons. From these measurem e n t s one i s a b l e to d e t e r m i n e a s well t h e p a r a m e t e r s a , ~ and ~ c h a r a c t e r i z i n g the a b o v e d e c a y mode. In t h i s l e t t e r we will d i s c u s s a p o s s i b l e m e t h o d f o r d e t e r m i n i n g the ~ - - h y p e r o n p a r i t y . Since t h e d e c a y s of ~ - p a r t i c l e s a r e due to w e a k i n t e r a c t i o n s , the ~ - p a r i t y can only b e d e t e r m i n e d by i n v e s t i g a t i n g t h e s t r o n g and e l e c t r o m a g n e t i c processes for their production. Strangeness cons e r v a t i o n in s t r o n g and e l e c t r o m a g n e t i c i n t e r a c t i o n s and the l a r g e value of the ~ - s t r a n g e n e s s l e a d to t h e f a c t that t h e p r o c e s s e s of ~ - p r o d u c tion will involve, a s a r u l e , t h r e e and m o r e p a r t i c l e s in the final s t a t e . A d e t e r m i n a t i o n of the p a r i t y in t h e s e r e a c t i o n s can b e m a d e only by a n a l y s i n g t h o s e c a s e s in which t h e m o m e n t a of a l l p a r t i c l e s l i e in the s a m e p l a n e . H o w e v e r , the e x i s t e n c e of the b o s o n r e s o n a n c e (K K), having s t r a n g e n e s s 2, i s o t o p i c s p i n 1, z e r o spin and p o s i t i v e p a r i t y (its d i s c o v e r y by F e r r o - L u z z i et al. was r e p o r t e d by P r o f . S. G o l d h a b e r at the E r e v a n S u m m e r School [8]), a l l o w s u s to c o n s i d e r , 346

f o r ~ - p a r i t y d e t e r m i n a t i o n , a r e a c t i o n involving two p a r t i c l e s in the final s t a t e K- + p - ~ Q- + 0 ÷ ( K + K O) .

(I)

In ref. 8, for the processes of such a type (0 + ½ -~ J + O) there were obtained inequalities imposing restrictions on possible values of the spin and internal parity, allowing us to determine, in principle, their values. In order to determine the ~--hyperon parity u n a m b i g u o u s l y we p r o p o s e to u s e the r e l a t i o n s connecting the a s y m m e t r y in r e a c t i o n (1) on a p o l a r i z e d p r o t o n t a r g e t with the p o l a r i z a t i o n c h a r a c t e r i s t i c s of t h e ~ - when t h e p r o t o n s a r e u n p o l a r i z e d . T h i s method i s s i m i l a r to that p r o p o s e d f o r d e t e r m i n i n g t h e p a r i t y of A, ~ and ~. h y p e r o n s in r e a c t i o n s with a p o l a r i z e d p r o t o n t a r g e t [10, 11]. A s was shown by A. B o h r [12], i n v a r i a n c e u n d e r r e f l e c t i o n in the r e a c t i o n p l a n e p e r m i t s u s to f o r m u l a t e the g e n e r a l s e l e c t i o n r u l e which r e l a t e s the i n t e r n a l p a r i t i e s of p a r t i c l e s to the v a l u e s of the spin p r o j e c t i o n s on t h e n o r m a l to t h e r e a c t i o n plane. But in o r d e r to obtain the a b o v e m e n t i o n e d r e l a t i o n s b e t w e e n the o b s e r v a b l e q u a n t i t i e s it i s m o r e convenient to u s e the i n v a r i a n c e condition u n d e r r e f l e c t i o n s in the r e a c tion p l a n e in the m a t r i x f o r m [13]. In the c a s e u n d e r c o n s i d e r a t i o n we get

R - 1 M ( p f , P i ) i o . , -- rM(pf, Pi) •

(2)

H e r e M{pf,pi ) i s t h e r e a c t i o n m a t r i x , pi(pf) is t h e i n i t i a l (final) m o m e n t u m in the c . m . s . , n = = Pi × P f / t P i ×Pf ] i s t h e n o r m a l to the r e a c t i o n p l a n e , R = exp (iTrs. n) and ia.n a r e the o p e r a t o r s of the spin r o t a t i o n of the ~ - p a r t i c l e and of the p r o t o n at an a n g l e ~ a r o u n d the n o r m a l , while ? = ?f/l i i s the r e l a t i v e p a r i t y (Ii, If a r e the i n t e r n a l p a r i t i e s of the i n i t i a l and final s t a t e s ) . T h e o p e r a t o r R can be e a s i l y expanded [13] in t e r m s of the t o t a l s y s t e m of spin t e n s o r s T lm :

Volume 18, number 3

2J R =l

~=0

PHYSICS LETTERS

l m=-l

m ,

4

~ff

1

where

al : (_1)J2/(2/+1) ~ F (2J-l)! 7½ (J--~l)! L(2J+/+I):(2J+I)J (4) f o r odd l and a l = 0 f o r even l ( J ] s h a l f - i n t e g e r ) . We c o n s i d e r p r o c e s s (1) in t h e c a s e when the p r o t o n t a r g e t i s p o l a r i s e d . The a s y m m e t r y is a s follows

~i~ - a_p e - ~P + (~_~ ( P ' n )

Sp( M q . n M +) Sp(MM+ )

,

(5)

w h e r e P i s t h e t a r g e t p o l a r i z a t i o n , while ap i s the d i f f e r e n t i a l c r o s s s e c t i o n f o r t h e p r o c e s s on the t a r g e t with the p o l a r i z a t i o n P. Using (2), (3) and (5) we find _1

e = fP.n

~

lodd

( - i ) a l ~ 0 Y~rn(n)(~+l) e" (6) m

H e r e ^ Sp(TlmMM+)/Sp(MM +) i s t h e m e a n v a l u e of t h e ~ o p e r a t o r T l m , in r e a c t i o n (1) on the u n p o l a r i z e d t a r g e t . D i r e c t i n g t h e z - a x i s along n and s u p p o s i n g t h a t the t a r g e t p o l a r i z a t i o n i s orthogonal to t h e r e a c t i o n p l a n e (P = Pn), we g e t =

e = I P ~ (-i)a/
1 September 1965

s y m m e t r y a r e d e t e r m i n e d by t h e d y n a m i c s . E v i dently, f o r the p a r i t y d e t e r m i n a t i o n i t i s n e c e s s a r y to c h o o s e s u c h e n e r g i e s and a n g l e s f o r which t h e s e v a l u e s a r e not s m a l l . If in t h e a v a i l a b l e i n t e r v a l s of a n g l e s and e n e r g i e s the v a l u e s e n t e r i n g (6) t u r n out to be s m a l l , then f o r t h e p a r i t y d e t e r m i n a t i o n one can u s e o t h e r r e l a t i o n s following f r o m (2). We give h e r e one of t h e m lodd

(~p

+ff_p

-

= ?p .

(8)

H e r e p = (1/ap).Sp(TlOM½(l+a.P)M~is the m e a n v a l u e of T lO in the c a s e when the t a r g e t i s polarized. In c o n c l u s i o n we note that t h e method s t a t e d a b o v e c a n a l s o be a p p l i e d to t h e r e a c t i o n K-+p~K

++K °+~-.

(9)

One should, h o w e v e r , c h o o s e only such c a s e s when the m o m e n t a of a l l p a r t i c l e s l i e in t h e s a m e p l a n e , a s was m e n t i o n e d above. The a u t h o r s a r e g r a t e f u l to L. I. L a p i d u s and Ja. A. S m o r o d i n s k y f o r the d i s c u s s i o n of t h e s e problems.

(7)

Thus, in o r d e r to d e t e r m i n e the p a r i t y of the ~ h y p e r o n it i s n e c e s s a r y to c o m p a r e the r e s u l t s of two e x p e r i m e n t s . The f i r s t one c o n s i s t s in m e a s u r i n g t h e a s y m m e t r y of r e a c t i o n (1) on a p o l a r i z e d t a r g e t . In the s e c o n d e x p e r i m e n t we m u s t d e t e r m i n e t h e m e a n v a l u e s of T lO in the r e a c t i o n with an u n p o l a r i z e d t a r g e t . If t h e p a r a m e t e r a i s l a r g e , t h e m e a n v a l u e s 0 f o r t h e odd l can be d e t e r m i n e d , a c c o r d i n g to B y e r s and F e n s t e r [5], by m e a s u r i n g the a n g u l a r d i s t r i b u tion of h y p e r o n s in n o n - l e p t o n i c d e c a y s of t h e ~ - . H a i s s m a l l , then 0 with odd l can b e d e t e r m i n e d [5] f r o m the m e a s u r e m e n t s of t h e l o n gitudinal p o l a r i z a t i o n of h y p e r o n s . At p r e s e n t p o l a r i z e d t a r g e t s with the p r o t o n p o l a r i z a t i o n of about 70% have b e e n c o n s t r u c t e d . T h e m e a n v a l u e s 0 and the v a l u e of the a -

References 1. 2. 3. 4.

M.Gell-Mann, Phys. Rev. 125 (1962) 1067. Y.Ne'eman, Nucl. Phys. 26 (1961) 222. S.Olmbo, Progr. Theoret. Phys. 27 (1962) 949. V.E.Barnes, P.L.Connolly, D.S.Crennell, B.B. Culwiek et al., Phys. Rev. Letters 12 (1964) 204. 5. N. Byers and S. Fenster, Phys.Rev. Letters 11 (1963) 52. 6. M.Ademollo and R.Gatto, Phys. Rev. 133 (1964) B531.

7. Y.Dothan, Phys. Rev. 137 (1965)B637. 8. S.Goldlmber, (1965). 9. G, Shapiro, Phys. Rev. 134 (1964) B1393. 10. S.M. Bflenky and R. M. Ryndin, Zh. Eksp. i Teor. Fiz.35 (1959) 826. 11. S.M.Bilenky, Nuovo Cim. 10 (1959) 1049. .12. A. Bohr, Nucl. Phys. 10 (1959) 486. 13. S. M. Bilenky and R. M. Ryndin, Physics Letters 13 (~964) 159.

347