211
CHAPTER 9 PASSIVE DISPERSION F R O M STEADY SOURCES IN A TURBULENT
The problem of interest
ENVIRONMENT
is the
passive tracer) in a turbulent
spreading of a contaminant
flowfield
(or
such as the atmospheric wind.
It i s a d v e c t e d w i t h t h e flow a n d s p r e a d s l a t e r a l l y a n d v e r t i c a l l y a s a result o f turbulence in the e n v i r o n m e n t . T h e m o l e c u l a r diffusion is generally
small and
can
be
neglected, but
the
effects
of initial
m o m e n t u m a n d b u o y a n c y can b e important a n d will b e discussed in Chapter
10. For the p r o b l e m c o n s i d e r e d the m e t h o d s d i s c u s s e d
in
Chapter 8 can be used to calculate the concentration as function of d i s t a n c e f r o m t h e s o u r c e . T o t h i s e n d , it i s n e c e s s a r y t o e s t a b l i s h t h e relevant values of the apparent the directions normal to the
turbulent diffusivities K
y
flow;
and K
z
the contribution from K
in
to the
x
c o n t a m i n a n t transport is a s s u m e d negligible in c o m p a r i s o n w i t h that from advection. T h e m e t h o d described is general a n d w o u l d apply to releases in any turbulent
flow;
application
ocean, river or the test
of primary
interest,
flow
of a w i n d tunnel. The
however,
is
the
spreading
of
pollutants in the atmosphere. A l t h o u g h the K-theory is widely used for
this purpose,
the
complexity of the
flow
in the
atmospheric
boundary layer m a k e s our
simplifications questionable. Even
seemingly safe a s s u m p t i o n
o f negligible streamwise diffusion m a y
the
h a v e t o b e r e c o n s i d e r e d for flows o v e r c o m p l e x t e r r a i n , b u t p r o b l e m s arise
also
classical
for
flat
approach
terrain by
in
nominally steady
Pasquill
and
Gifford
conditions.
(see Turner
The
1973)
a t t e m p t e d t o e s t a b l i s h d i s p e r s i o n c o e f f i c i e n t s v a l i d for b r o a d c l a s s e s of p r o b l e m s , thereby m a k i n g dispersion analysis practical b u t at the expense of details a n d accuracy. The publication of Turner's Workbook
(1973) made
dispersion
a n a l y s i s s i m p l e a n d p r a c t i c a l a l s o for u s e r s n o t t r a i n e d a s b o u n d a r y layer meteorologists. T h e m e t h o d s
described therein
are
n o w so
widely u s e d a n d h a v e p r o v e d to b e so useful to so m a n y , that recent critique that the b o o k is t w e n t y y e a r s o u t of date is n o t likely to r e m o v e it f r o m c i r c u l a t i o n . W e n o t e h e r e t h e d i f f e r e n t r e q u i r e m e n t s p e r t a i n i n g t o p r e d i c t i o n m o d e l s for a t m o s p h e r i c d i s p e r s i o n . F o r r a p i d screening of the c o n s e q u e n c e s of an accidental release, approximate but simple m e t h o d s c a n b e v e r y useful. M e t h o d s w i t h h i g h accuracy are
meaningful
only
when
all
the
input
can
be
specified
with
Chapter 9
212
precision, an
impossible requirement
for a c c i d e n t a l r e l e a s e s .
For
r e g u l a t o r y p u r p o s e s , o n t h e o t h e r h a n d , it w i l l b e p o s s i b l e t o c a l c u l a t e the dispersion of a given release quite accurately b a s e d on k n o w n emission rates and local w e a t h e r statistics. For this purpose w e see n e w methods coming into use. I n w h a t f o l l o w s w e w i l l d i s c u s s first t h e d e v e l o p m e n t s l e a d i n g u p to the K-theory w i t h s o m e applications. In the last section w e will r e t u r n t o t h e c r i t i q u e o f t h i s a p p r o a c h a n d t h e p r e s e n t o u t l o o k for improvements.
9.1
T h e Problem of Turbulent Diffusion
Let us consider the p r o b l e m sketched in Fig. 9 - 1 . A steady source Q emits a contaminant into a turbulent stream. For our purposes w e m a y consider the emitted material as small particles w h i c h follow w i d e l y different a n d
irregular
trajectories
as
indicated. They
are
Collector
x
Wind
Concentration
Trajectories
L
u Fig.
9-1:
X
u
Particle trajectories and track angles experiment in turbulent diffusion.
X
for
hypothetical
Passive Dispersionfrom Steady Sources (Turbulent)
213
collected at a station l o c a t e d a d i s t a n c e L d o w n w i n d . If the
number
and radial positions of the collected particles are recorded, w e obtain after
long
time
a
distribution
as
indicated.
The
hypothetical
e x p e r i m e n t is m e a n i n g f u l o n l y a s l o n g a s t h e w i n d a n d t h e t u r b u l e n t properties
do not
change
during
the
s a m p l i n g p e r i o d . T h i s is
problem in a w i n d tunnel, but in the atmosphere
the conditions
o f t e n n o t fulfilled. I n t h e w i n d t u n n e l o n e w o u l d e x p e c t a nearly
symmetric
about
the
center
axis
inasmuch
no are
distribution as
the
flow
properties are statistically the s a m e in all m e r i d i a n planes. In
the
a t m o s p h e r e this is n o t the case. T h e velocity is nearly constant in the lateral direction but large distances statistical
v a r i e s significantly in the vertical at
from the ground. T h e turbulence,
not-too-
as m e a s u r e d
averages, depends therefore on position, and w e can
expect a symmetric distribution
by not
downstream.
T h e discussion h a s t o u c h e d o n s o m e properties w h i c h are u s e d to c h a r a c t e r i z e t u r b u l e n t f l o w f i e l d s ; first, s t a t i o n a r i t y , i . e . t h e
statistical
properties should not change with time, and homogeneity,
neither
s h o u l d they d e p e n d o n position a n d finally, isotropy, w h i c h i m p l i e s invariance to c h a n g e s in direction. The
diurnal
obviously
in
(day and conflict
night) variations
with
the
in the
stationarity
atmosphere
are
requirement,
and
h o m o g e n e i t y is c l e a r l y i n f l u e n c e d b y t h e t o p o g r a p h y . B u t i n r e s t r i c t e d p e r i o d s o f t i m e ( d u r a t i o n h o u r s ) , a n d o v e r flat t e r r a i n t h e f l o w c a n b e considered stationary a n d h o m o g e n e o u s . Isotropy on the other hand, is rarely possible inside the g r o u n d b o u n d a r y change in w i n d velocity, but
layer w i t h its
it i s o f t e n a s s u m e d
for s c a l e s
rapid much
s m a l l e r t h a n t h e d i s t a n c e to t h e g r o u n d ( l o c a l i s o t r o p y ) . If w e k n o w the s o u r c e strength,
the w i n d velocity, the distance L
and the resulting particle distribution,
w e could determine the K ' s
from the o b s e r v e d s t a n d a r d deviations a
y
discussion
and a
z
as indicated in the
of the diffusion equation in the preceding chapter. ( W e
considered here only the symmetric case implying isotropy.) T h e m e t h o d , a s p r o p o s e d , w o u l d b e n e i t h e r p r a c t i c a l n o r e l e g a n t . It is natural
to ask
if one could replace downstream
location
measurements with
a
of
single
the
at
measurement
at t h e s o u r c e . T h e quantities to b e m e a s u r e d w o u l d b e
the fluctuations
a
the
distribution
point
in w i n d direction and the m e a n w i n d velocity. O n e
w o u l d feel i n t u i t i v e l y t h a t t h e r e o u g h t t o b e a r e l a t i o n b e t w e e n wind characteristics
at the source at a g i v e n time, a n d the
the
resulting
lateral t r a n s p o r t o f e m i t t e d m a t e r i a l d o w n w i n d at a later t i m e . T h i s is another character
w a y of saying that the turbulent eddies maintain
their
as they are a d v e c t e d d o w n w i n d . T h e idea is formalized in
Chapter 9
214
meteorology as Taylor's hypothesis w h i c h expresses the equivalence of a point m e a s u r e m e n t
of a turbulent quantity
i n t i m e At t o t h e
s p a t i a l v a r i a t i o n o f t h e s a m e q u a n t i t y o v e r t h e l e n g t h L = U At w h e r e U is the m e a n w i n d speed (Stull, 1988). T h e variations in local w i n d directions can b e m e a s u r e d b y m e a n s of the so-called bivanes w h i c h give the instantaneous deviations from the
mean
wind direction
in
the
lateral
and
vertical plane.
The
standard deviations of these directional variations can be evaluated; for s m a l l a n g l e s a a n d 0, t h e y a r e r e l a t e d t o t h e s t a n d a r d d e v i a t i o n s of the local velocities v a n d w as follows:
For
very
short
distances
downstream,
the
following
linear
relationships appear obvious (Fig. 9-1): °y = a a
To
develop a
relationship
>
x
valid
a
z
=
6
(~)
x
9
for l o n g e r
Taylor (1921, see Panofsky and Dutton, "Diffusion
a
distances
or
1984) suggested his
Theorem" which assumes homogeneous
and
2
time, famous
stationary
turbulence. For the lateral dispersion, these conditions are better m e t t h a n for t h e v e r t i c a l . I f t h e s t a n d a r d d e v i a t i o n o f t h e l a t e r a l direction
a
a
i s k n o w n , (it c o u l d b e m e a s u r e d
wind
at a n y point in this
restrictive case), the s t a n d a r d d e v i a t i o n (or w i d t h ) of the d o w n w i n d lateral distribution is given approximately b y Pasquill (1977): o
y
= a XJ{T)
(9-3)
a
w h e r e T is the diffusion time, X the d o w n w i n d d i s t a n c e
reached
in
t i m e T a n d / (T) a f u n c t i o n t a b u l a t e d b e l o w : Table 9-1:
PasquilVsfunctionf(T).
X[km]
0
0.1
0.2
0.4
1.0
2.0
4.0
10
>10
f(T)
1
0.8
0.7
0.65
0.6
0.4
0.4
0.33
0.33 V l O / X
( A s t h e w i n d v e l o c i t y v a r i e s r a p i d l y u p w a r d s , X (T) w i l l d e p e n d o n h e i g h t . O n a s s u m i n g a c o n s t a n t w i n d s p e e d , w e c a n r e p l a c e X (T) w i t h x, the coordinate aligned w i t h the w i n d vector.)
Passive Dispersionfrom Steady Sources (Turbulent) Although turbulence
the
assumption
of
homogeneous
215
and
stationary
is e v e n m o r e q u e s t i o n a b l e in the v e r t i c a l direction,
the
r e l e v a n t r e l a t i o n s h i p s b e t w e e n t h e d i r e c t i o n a l v a r i a b l e OQ a t a p o i n t and
the
vertical diffusion
Panofsky and Dutton,
scale
o , z
have been
worked out
(see
1984, p. 2 4 1 ) . W h e n e v e r local
measurements
are available, s u c h relations are v e r y useful since the
measurements
take
into
account
all the
special circumstances
pertaining
to
a
specific site, s u c h as t o p o g r a p h y , r o u g h n e s s a n d stability (yet to b e discussed). In w h a t follows w e will consider primarily the alternate
approach,
t h a t o f u s i n g s e m i - e m p i r i c a l r e l a t i o n s h i p s , v a l i d for b r o a d c l a s s e s o f problems.
Considerable
efforts
have
been
expended
by
highly
c o m p e t e n t meteorologists to measure, process and classify the data which
are
now
in
widespread
use
for
atmospheric
dispersion
e s t i m a t e s . W e w i l l d i s c u s s t h e i r u s e after w e h a v e d e t e r m i n e d w h a t information is n e e d e d to predict the d o w n w i n d c o n c e n t r a t i o n o n the basis of the diffusion equation.
9.2
T h e Turbulent Diffusion Equation for a Steady Source
T h e equation of interest is obtained b y omitting the unsteady in Eq. (8-28). A further
term
simplification is possible b y neglecting the
turbulent diffusion in the direction of the w i n d in c o m p a r i s o n w i t h the w i n d - d r i v e n transport. A l l the material emitted is a s s u m e d
to
c o m e from a n u p s t r e a m s o u r c e (or several s o u r c e s ) a n d n o additional sources or sinks are present in the d o m a i n of interest. T h e general flow situation is depicted in Fig. 9-2. T h e equation to b e solved is
dx
dy
ay
dX dz
dz
(9-4)
T h e boundary conditions require that the concentration
vanishes
at large distances from the s o u r c e ( s ) . In addition w e m u s t satisfy the global continuity condition that the flux of emitted material,
through
a n y c r o s s - p l a n e x = c o n s t . , m u s t e q u a l t h e s t r e n g t h o f t h e s o u r c e Q. S o m e difficulties associated w i t h this equation h a v e a l r e a d y b e e n discussed. unknown,
The but
turbulent
diffusivities
K
y
and
likely to b e c o m p l i c a t e d functions
K
z
are
not
only
of position
and
environmental factors; weather, topography, ground roughness
etc.
T h e m e a n w i n d U is not constant,
but
varies significantly in
the
v e r t i c a l d i r e c t i o n b o t h i n m a g n i t u d e a n d d i r e c t i o n . B u t it i s p o s s i b l e
Chapter 9
216
Fig.
9-2;
Steady ground the wind.
source
in coordinate
system
aligned
with
to i n t r o d u c e a p p r o x i m a t i o n s w h i c h m a k e s the task o f s o l v i n g equation
much
easier without
sacrificing too m u c h
in
terms
the of
a c c u r a c y or validity. T h e first a p p r o x i m a t i o n i s t o a s s u m e t h a t t h e m e a n w i n d v e l o c i t y is constant. T h e m e a s u r e m e n t s
of w i n d characteristics are normally
a v a i l a b l e a t a h e i g h t o f 10 m . I t a p p e a r s
reasonable
to u s e
the
a v e r a g e d v a l u e a t t h i s h e i g h t for s o u r c e s n o t t o o far f r o m t h e g r o u n d . A t greater heights an improved value could b e obtained b y m e a n s of k n o w n c o r r e l a t i o n s for t h e w i n d p r o f i l e , s u c h a s t h e s i m p l e p o w e r l a w or the l o g a r i t h m i c velocity profile familiar from
boundary-layer
theory, (Panofsky a n d Dutton, 1984). T h e error in the velocity will b e partially compensated in the semi-empirical exchange K
y
coefficients,
a n d K , a s t h e s e a r e e v a l u a t e d u s i n g t h e s a m e a p p r o x i m a t i o n for z
the w i n d speed. B y assuming that the K ' s are independent of y and z, Eq. (9-4) b e c o m e s linear a n d m o r e o v e r is satisfied b y the G a u s s i a n
distribution
f u n c t i o n f a m i l i a r f r o m t h e l a m i n a r t h e o r y o f C h a p t e r 8. W e r e w r i t e the governing equation as follows:
(9-5)
Passive Dispersionfrom Steady Sources (Turbulent)
217
with the generic solution in the form of the product of two Gaussian distributions, in the y - a n d z-directions respectively, given b y
exp
2
°y°z
exp
\a
(9-6)
2 Or
t
T h e v a r i a n c e s o f these distributions are related to the K ' s as follows: 2K
a
2K
=
— r
• a
=
x
(9-7)
T h i s c h a n g e f r o m K t o a* i s n o t j u s t a c h a n g e i n n o t a t i o n . It i s v e r y t
difficult t o o b t a i n a c c u r a t e d i s p e r s i o n d a t a i n t h e a t m o s p h e r e . It i s also v e r y costly to obtain m a n y point m e a s u r e m e n t s W h e n a set of v a l u e s of x measurements,
i
n
space
has
been
the corresponding values of K
t
simultaneously.
obtained
through
can be found only b y
numerical differentiation, a very inaccurate procedure. T h e a, t
on the
o t h e r h a n d , c a n b e f o u n d b y fitting a G a u s s i a n c u r v e t h r o u g h t h e d a t a . F r o m the viewpoint of numerical problem. The constant
accuracy,
this is a m u c h
C is d e t e r m i n e d from the global
easier
continuity
condition; the flux of x through a n y cross-plane x = constant,
must
equal the rate at w h i c h material is e m i t t e d at the source:
9 O n s u b s t i t u t i n g x (x,y,z)
•fir-"'
dy
dz
(9-8)
from ( 9 - 6 ) into the double integral, w e obtain
the solution o f interest:
x{x,y,z)
=
Q jtUO O y
exp
z
W
2
°;
(9-9)
N o t e t h a t i n t h e i n t e g r a t i o n o f t h e flux, E q . ( 9 - 8 ) , t h e r a n g e i n z i s from z = 0 to » . T h i s takes into account the perfect reflection from the g r o u n d plane, n o material is d e p o s i t e d or absorbed. A s written, the
solution
represents
a
ground
source
only,
w e will
consider
e l e v a t e d s o u r c e s a n d t h e i r r e f l e c t i o n s l a t e r i n t h i s c h a p t e r . B u t first
Chapter 9
218
w e will discuss the K ' s w h i c h determine the widths, a
y
a n d a , of the z
p l u m e in the lateral a n d vertical directions. T h e m o s t obvious choice w o u l d b e to a s s u m e constant values of K
y
and K , w h i c h according to Eq. (9-7) w o u l d give p l u m e
growth
z
proportional to V x \ i.e. a parabolic form. T h i s is not in a c c o r d w i t h the p l u m e forms o b s e r v e d . D i s p e r s i o n p l u m e s g r o w m o s t often m u c h faster
with x
particularly
t
in u n s t a b l e air.
The case K = c o n s t ,
c o r r e s p o n d s p h y s i c a l l y t o a s i t u a t i o n w h e r e all e d d i e s a r e o f t h e s a m e size, a n d hence the rate of g r o w t h constant as in laminar flow. In reality the atmospheric turbulence sizes, and
i s c h a r a c t e r i z e d b y e d d i e s o f all
as the p l u m e g r o w s , the larger eddies gain in relative
i m p o r t a n c e g i v i n g a h i g h e r t r a n s v e r s e r a t e o f g r o w t h . T h i s effect
can
b e reproduced in our theory b y m a k i n g the K ' s functions of x, the d o w n w i n d d i s t a n c e . A s i m p l e a n d a t t r a c t i v e c h o i c e w o u l d b e to m a k e K a power of x, but there is n o universal value of this power w h i c h w o u l d fit all e n v i r o n m e n t a l s i t u a t i o n s . T h e p a r t i c u l a r c h o i c e o f K (or equivalently o
y
and a ) , h i n g e s o n w h a t is d e n o t e d the z
atmospheric
"stability". T h e t e r m stability atmosphere. enhanced
refers to the turbulent exchange processes in the
These are
suppressed
w h e n the atmosphere
under
stable
is unstable.
conditions
and
The general ideas of
stability, as related to density gradients in the vertical direction, w e r e discussed
in Chapter 2. W i t h r e g a r d to p l u m e f o r m b o t h the w i n d
s p e e d a n d its g r a d i e n t ( t h e w i n d s h e a r ) a r e i m p o r t a n t . W i t h i n c r e a s i n g w i n d s p e e d the p l u m e b e c o m e s m o r e elongated or slender, a n d m o r e rapidly
diluted
turbulence.
irrespective
of
the
nature
of the
atmospheric
But the w i n d also influences the turbulence.
At wind
speeds in excess o f 6 m / s , the stability is determined b y the w i n d . T h e interaction of the w i n d w i t h vegetation, buildings a n d
topography,
also gives rise to turbulent e x c h a n g e processes w h i c h can b e
taken
into account only crudely in any theory. A nice physical discussion of the atmospheric processes w h i c h control the turbulent exchange, with r e f e r e n c e t o p l u m e b e h a v i o u r , i s g i v e n b y S t u l l ( 1 9 8 8 , C h a p t e r 1). A very useful compilation o f data w i t h brief discussions,
can also be
found in Turner's W o r k b o o k (1973). T h e W o r k b o o k m a k e s use of the c l a s s i f i c a t i o n s c h e m e for a t m o s p h e r i c s t a b i l i t y p r e p a r e d b y P a s q u i l l and
Gifford.
The
atmospheric
conditions
of interest
are
divided into
five
c a t e g o r i e s , A , B , C , D , E a n d F, w h e r e A i s t h e m o s t u n s t a b l e ( s t r o n g thermal
convection),
D represents
the
neutral
condition
(purely
m e c h a n i c a l turbulence), a n d F the stably stratified case w h e r e mechanical turbulence
the
is strongly d a m p e d . T h e v a r i o u s categories
Passive Dispersion from Steady Sources (Turbulent)
219
a n d their characteristics, are t a b u l a t e d in T a b l e 9-2 ( r e p r o d u c e d
from
Panofsky and Dutton, 1984). Table 9-2; Key to Pasquill categories. Day Surface wind speed (at 10 m) (m/s)
Night
Incoming Solar Radiation
< 2 2 - 3 3 -5 5 -6 > 6
Strong
Moderate
Slight
Thinly Overcast or * 4/8 Low Cloud
A A- B B C C
A- B B B -C C -D D
B C C D D
E D D D
Clear or ^ 3 / 8 Cloud
F E D D
Note: The neutral class, D, should be assumed for overcast conditions during day or night.
For
each
variation
category,
of a
prepared the
y
and
a
Pasquill z
as
and
function
diagrams shown
Gifford
determined
of downwind
the
"best"
distance
x
and
in Fig. 9-3. W i t h this information
it
b e c o m e s possible to calculate the d o w n w i n d concentration, due to a s t e a d y s o u r c e , for a w i d e r a n g e o f c o n d i t i o n s .
Table 9-3: Formulas for a (x) and a (x) y
Pasquill Type
z
(10? < x < 10 m). 4
a (m)
a
a (m)
y
z
Open-Country Conditions A
0.22 x (1 + 0.0001 x)'
B
0.16 x (1 + 0.0001 x) '
C
1
/
2
0.20 x 0.12 x
1
/
2
0.11 x (1 + 0.0001 A : ) '
1
/
2
0.08 A : (1 + 0.0002 x ) "
/
2
0.06 x (I + 0.0015 * ) "
1
/
D
0.08 A: (1 +0.0001 x)'
1
E
0.06 x (1 + 0.0001 x ) '
1
/
2
0.03 x (1 + 0.0003 x ) "
F
0.04 x (1 + 0.0001 x ) '
1
/
2
0.016 x (1 + 0.0003 x ) "
1
/
2
2
1
1
Urban Conditions A -B
0.32 J C ( 1 + 0.0004 A : ) "
1
/
2
/
2
0.24 A: (1 + 0.001 x)
1
/
2
C
0.22 x (1 + 0.0004 A : ) -
D
0.16 A : ( 1 + 0.0004 A : ) "
1
/
2
0.14 x {I + 0.0003 x ) "
E-F
0.11 x ( l +0.0004 A : ) "
1
/
2
0.08 x (I +0.00015 A : ) "
a
f r o m Briggs (1973).
1
0.20 A : 1
/
2
1
/
2
Chapter 9
220
Fig.
9-3;
Pasquill and (b) vertical
distance/mm
source
[m ]
distancefrom
source
[m ]
Gifford's
dispersion
diagrams,
(a)
lateral;
Passive Dispersionfrom Steady Sources (Turbulent)
221
I n t h e a g e o f t h e P C t h e d i a g r a m s a r e p r o b a b l y l e s s useful t h a n t h e a n a l y t i c fits s u g g e s t e d b y B r i g g s ( 1 9 7 3 ) . T h e s e r e v i s e d d a t a
also
i n c l u d e v a l u e s r e l e v a n t for r o u g h ( u r b a n ) t e r r a i n . B r i g g s ' fits a r e g i v e n in Table 9-3, (reproduced from Panofsky a n d Dutton, 1984).
9.3
Plumes from Elevated Sources and Associated Phenomena
Problems
with
ground
pollution
can
be
alleviated simply
by
r e l e a s i n g the effluent at s o m e h e i g h t f r o m the g r o u n d . A familiar situation is illustrated in Fig. 9-4. T h e s m o k e from a stack is carried d o w n w i n d in the form of a growing p l u m e . A t a certain point plume
outline
concentration
touches
the
ground,
is o b s e r v e d further
and
an
increased
d o w n w i n d as
level
the of
result of ground
reflection. (The visible outline of a s m o k e p l u m e corresponds r o u g h l y to a ten per cent concentration level, Gifford, 1959.) W e c a n calculate t h e effect o f r e f l e c t i o n ( a n d s a t i s f y t h e b o u n d a r y
condition in
the
g r o u n d plane) b y placing an i m a g e source at an equal (negative) height b e l o w the g r o u n d as indicated in the figure. E q . ( 9 - 5 ) is linear, so the
Image
Fig.
9-4:
Stack plume and its reflection effective stack height is the sum and the added height AH.
in the ground plane; of the geometric height
the H g
Chapter 9
222
solution of interest
is the s u m
of the two contributions,
from
the
s o u r c e a n d its i m a g e , r e s p e c t i v e l y , i . e . :
X{x,y,z;H)
9
=
exp
2jta a U y
2
z
exp
1
\o,
tz-H^
2
o
+ exp
(9-10)
2
7
T h e h e i g h t H is h e r e t h e effective h e i g h t o f r e l e a s e e q u a l t o t h e s u m o f the geometric height H
g
a n d t h e a d d e d h e i g h t AH d u e to initial i m p u l s e
a n d b u o y a n c y . V a r i o u s empirical relations are available to calculate AH.
Examples
are
found
in
Turner's
W o r k b o o k as
Williamson
(1973). W e will discuss the
momentum
later.
P l u m e s f r o m tall s t a c k s e x h i b i t m a n y i n t e r e s t i n g a n d flow
phenomena.
D o w n w a s h from the
well
as
effects of b u o y a n c y
in and
unexpected
stack itself and
downdraft
from buildings a n d structures nearby, can lead to critical levels of c o n c e n t r a t i o n s c l o s e r to t h e g r o u n d t h a n e x p e c t e d . A n i n i t i a l v e r t i c a l v e l o c i t y , t w e n t y t o t h i r t y p e r c e n t h i g h e r t h a n t h e w i n d s p e e d , suffices t o c u r e t h e p r o b l e m i n m o s t c a s e s . I n difficult s i t u a t i o n s w i n d t u n n e l t e s t i n g c o u l d b e c a l l e d for to o b t a i n s a t i s f a c t o r y s o l u t i o n s . S o m e interesting p h e n o m e n a associated w i t h the diurnal cycle, are i l l u s t r a t e d i n F i g . 9 - 5 . T h e looping
is associated w i t h the
daytime
o c c u r r e n c e o f w a r m p o c k e t s o f air ("thermals") rising t h r o u g h atmosphere.
From
continuity,
these
are
accompanied
by
the
colder
downdrafts, a n d the result is visible in the f o r m of the w a v y outline o f t h e p l u m e . T h e n e t r e s u l t i s a v e r y r a p i d m i x i n g o f t h e effluent w i t h a t m o s p h e r i c air. ( B u o y a n t p l u m e s c a n a l s o o s c i l l a t e i n h e i g h t d u e t o stratification,
the basic p h e n o m e n a
and
the "buoyancy frequency"
w e r e discussed in Chapter 2.) A s the daytime heating of the g r o u n d ceases, n e w large eddies (generated b y the thermals) are n o longer formed, and the decays
into
smaller
and
smaller
eddies.
A
turbulence
"residual
eventually formed in w h i c h the turbulence has near equal
layer"
is
intensity
i n all d i r e c t i o n s . A p l u m e r e l e a s e d i n t h i s r e s i d u a l l a y e r w i l l s p r e a d i n all d i r e c t i o n s at t h e s a m e r a t e ; w e s e e t h e p h e n o m e n o n o f Later in the night, the residual layer is further
coning.
stabilized b y its
contact with the (cold) ground. T h e rate of spreading in the horizontal direction will in the e n d greatly e x c e e d that in the vertical, a n d w e see the p h e n o m e n o n of
fanning.
Passive Dispersion from Steady Sources (Turbulent)
223
Coning
Looping Stable
Mixing Stable
Fanning
Mixing Stable
Stable
New Mixing
Lofting Fig.
9-5;
Layer
Fumigation Plume flow phenomena the atmosphere.
associated
with diurnal
changes
in
A s this stable layer g r o w s from the g r o u n d up, a p l u m e released in t h e r e s i d u a l l a y e r a b o v e t h e s t a b l e l a y e r , w i l l g r o w faster u p w a r d . T h e d o w n w a r d dispersion is b l o c k e d b y the stable layer. In this case w e see the p h e n o m e n o n of
lofting.
A n o t h e r p h e n o m e n o n w h i c h is also c a u s e d b y the interaction of t w o l a y e r s , i s t h a t o f f u m i g a t i o n . T h i s o c c u r s , t y p i c a l l y , s h o r t l y after sunrise. The new well-mixed
layer w h i c h forms, serves to
bring
Chapter 9
224
d o w n w a r d s to the g r o u n d level, the pollutants trapped in the l a y e r s a b o v e . T h i s "old" p o l l u t e d m a t e r i a l
could have
stable
undergone
c h e m i c a l c h a n g e s w h i c h w o u l d a d d to its n u i s a n c e v a l u e . The situation of a well-mixed layer b e l o w and a stable layer above, w h i c h effectively p u t s a lid o n the h e i g h t o f the p l u m e , is l o o s e l y r e f e r r e d to a s a n i n v e r s i o n . ( M o r e p r e c i s e l y , a n i n v e r s i o n
represents
the case w h e n the temperature increases w i t h height.) In the presence of s u c h a n u p p e r l i d o n p l u m e g r o w t h , t h e d i s p e r s i o n a n a l y s i s m u s t b e modified. A r o u g h p r o c e d u r e is o u t l i n e d in T u r n e r ' s W o r k b o o k . T h e s o l u t i o n g i v e n b y E q . ( 9 - 1 0 ) i s u s e d d o w n w i n d o n l y to a d i s t a n c e x ' w h e r e the estimated value of o
z
is about half the height o f the stable
layer as measured from the p l u m e centerline. T h e concentration the
level of the
stable
layer, is t h e n a b o u t
centerline value. A t a d o w n w i n d distance
ten per
of 2 x
cent
of
at the
t h e flow i n t h e
"channel" b e t w e e n t h e g r o u n d a n d t h e l i d , i s a s s u m e d to b e w e l l m i x e d in the vertical w i t h a uniform concentration. Further dilution occurs only as a result of lateral p l u m e g r o w t h a n d the Gaussian applies only to the
distribution
y-direction.
Problems associated with inversions in valleys can be particularly severe a n d n o e a s y p r e d i c t i o n m e t h o d is available w h i c h c a n this
case.
More
detailed
discussions
on
air
pollution
and
solve the
properties a n d effects o f c o m m o n pollutants, will b e found in L y o n s and Scott (1990).
9.4
Line Sources, Area Sources and Approximations
T h e s o l u t i o n s d i s c u s s e d s o far r e p r e s e n t p o i n t s o u r c e s o n t h e g r o u n d or from e l e v a t e d stacks etc. T h e r e are m a n y situations o f practical interest, w h e r e the point-source m o d e l w o u l d b e u n a c c e p t a b l e for d i s p e r s i o n e s t i m a t e s . A l a r g e b u r n i n g d u m p w o u l d b e o n e e x a m p l e . A t l a r g e d i s t a n c e s it c o u l d b e r e p r e s e n t e d a s a p o i n t s o u r c e , b u t at d i s t a n c e s n o t m u c h g r e a t e r t h a n t h e w i d t h o f t h e d u m p , better m e t h o d s w o u l d b e called for. T h i s is a n e x a m p l e o f a n a r e a source with continuous (distributed) strength. A large area containing m a n y different sources, such as an u r b a n region, can also b e considered an area source although the emission really c o m e s from m a n y isolated (stationary or m o v i n g ) s o u r c e s . Line s o u r c e s c a n b e associated w i t h stretches of h i g h w a y or airport r u n w a y s , w h e r e the large n u m b e r of m o v i n g sources can b e converted to a constant line strength per unit length a n d time. The linearity of the
diffusion
equation
makes
it e a s y t o
find
Passive Dispersion from Steady Sources (Turbulent)
225
approximate a n s w e r s . B y replacing the c o n t i n u o u s area or line source with a large number
of point sources,
solution can be found.
In practice
a mathematically
accurate
only a few point sources
required to obtain an acceptable answer. ( T h e p r o b l e m of relevant dispersion coefficients remains,
the tabulated
are
finding
the
values have
b e e n v e r i f i e d o n l y for p o i n t s o u r c e s . ) For a line source of constant strength,
it i s s t r a i g h t f o r w a r d
to
obtain an analytic solution. This solution shows, moreover, w h e n the a p p r o x i m a t i o n o f "infinite l e n g t h " b e c o m e s a c c e p t a b l e . W e will consider a line g r o u n d source o f strength q (per unit length and time) a n d of total length L . Let us a s s u m e that the w i n d b l o w s n o r m a l to the line. A s before, let the c o o r d i n a t e x b e aligned w i t h the m e a n w i n d a n d t h e o r i g i n o f o u r c o o r d i n a t e s y s t e m (x,y,z)
fixed
at t h e
midpoint of the line, (Fig. 9-6). T h e solution of interest is obtained f r o m E q . ( 9 - 9 ) b y i n t e g r a t i n g t h e k n o w n s o l u t i o n dx
for t h e
point
s o u r c e o f s t r e n g t h q dy o v e r t h e l e n g t h o f t h e l i n e L .
a) Line source. Fig.
9-6:
Coordinate system point sources.
b) Approximate sources. for
line source
and
system
of
approximation
point by
Chapter 9
226
c h a n g i n g t o t h e n e w v a r i a b l e p = y /(a
On
y
solution as
y[2 ) w e c a n r e w r i t e
the
follows
"^)lf ^ e
w h e r e p \ - L/(a
y
"
2]dP
(9 12)
2>f2).
O n c h e c k i n g that the (integral) continuity c o n d i t i o n is satisfied, w e find
Uxdz Jo The
integral solution, E q . ( 9 - 1 2 ) , is familiar from our
discussions
i n C h a p t e r s 6 a n d 8. W e k n o w t h a t w h e n p\ = 2 o r g r e a t e r , t h e i n t e g r a l c a n b e a p p r o x i m a t e d b y i t s v a l u e for p\
= oo a s u p p e r l i m i t , i . e . ^/~JI/2.
Estimates b a s e d o n infinite length are therefore reasonable as long as L exceeds about six times o . y
The case w h e n the w i n d direction is not n o r m a l to the line, c a n b e a p p r o x i m a t e d b y r e p l a c i n g U b y its n o r m a l c o m p o n e n t U . n
This gives
reasonable answers as long as the angle b e t w e e n the line source
and
the w i n d vector is greater than 45 degrees. W h e n a h i g h w a y o r r u n w a y i s m o d e l l e d b y a l i n e s o u r c e , it w i l l b e necessary
to take into a c c o u n t
the m e c h a n i c a l m i x i n g due
to
the
m o v i n g v e h i c l e s . A s i m p l e f i x i s t o m a k e u s e o f a "virtual" l i n e s o u r c e l o c a t e d f u r t h e r u p w i n d t h a n t h e r e a l s o u r c e . T h e d i l u t i o n w i t h air a t t h e r e a l s o u r c e , d e t e r m i n e s h o w far u p w i n d t h e v i r t u a l s o u r c e s h o u l d be located. Area sources with source strength a function of both coordinates x a n d y , are m o r e difficult to solve analytically. W e c a n b u i l d s i m p l e m o d e l s where w e m a k e use not only of point sources, but also of line sources,
or a
combination
of both,
as
indicated
in Fig. 9-7.
An
attractive alternative, in cases w h e n the emitted material is m i x e d w i t h air a l r e a d y i n t h e s o u r c e r e g i o n , i s t o m a k e u s e o f o n e (or m o r e ) virtual
source(s) located upwind.
With
this
model
a
reasonable
e s t i m a t e far d o w n w i n d c a n b e o b t a i n e d w i t h a m i n i m u m o f effort. B u t all d i s p e r s i o n e s t i m a t e s o f t h e t y p e d i s c u s s e d h e r e , a r e b a s e d o n l o n g - t i m e a v e r a g e d o b s e r v a t i o n s . T h e r e is l i t t l e c h a n c e t h a t s h o r t t e r m or i n s t a n t a n e o u s o b s e r v a t i o n s w o u l d a g r e e w i t h these results.
Passive Dispersion from Steady Sources (Turbulent)
a)
Area source source.
approximated
b)
Area source strength.
modelled
by six line sources
227
and
one
point
U
Fig.
9.5
9-7a,b:
Approximate
by a virtual point
models for area
source
of
equivalent
sources.
T h e Outlook for I m p r o v e d Dispersion Models
V a r i o u s s h o r t c o m i n g s o f t h e p r e d i c t i o n m e t h o d s for a t m o s p h e r i c dispersion, b a s e d on the Pasquill-Gifford approach, have b e e n k n o w n for s o m e t i m e . T h e s t a b i l i t y c l a s s i f i c a t i o n a p p e a r s t o b e s t r o n g l y biased towards neutral stability, e v e n w h e n convective conditions actually exist. T h e empirical data are furthermore b a s e d o n passive
Chapter 9
228
releases
from ground
dispersion
level
sources,
from elevated sources,
and
such
their as
use
tall
in
predicting
stacks,
is
highly
questionable. In convective conditions the atmosphere has regions of updraft
(plumes, thermals) a n d from continuity also downdraft. T h e
d o w n w a r d m o v e m e n t extends over the larger area ( 6 0 % ) and a passive tracer
released from an
elevated source
is m o r e likely to
spread
d o w n w a r d s towards the ground. A g r o u n d release will on the
other
h a n d initially rise and return to g r o u n d level highly diluted from the m i x i n g aloft. T h i s d i f f e r e n c e b e t w e e n t h e t w o t y p e s o f r e l e a s e s i s n o t a p p a r e n t f r o m t h e P a s q u i l l - G i f f o r d a p p r o a c h , b u t it h a s
considerable
practical consequences. The
dispersion
different
models, in present
w a y s . A s i m p l e fix, w i t h
use,
some
could be i m p r o v e d in
success,
is to shift
the
classification s c h e m e t o w a r d s the u n s t a b l e side to eliminate the bias towards
neutral
Panofsky
and
conditions.
Dutton,
(Weil
1984,
and
B r o w e r as
Chapter
10.)
discussed
More
radical
by new
approaches h a v e b e e n suggested, h o w e v e r , to m a k e better use of the improved understanding of atmospheric boundary-layer physics; Weil (1985)
lists
the
"impingement" model.
probability-density
model
as
Neither procedure
alternatives can
take
method to
into
the
as
well
improved
account
the
as
an
Gaussian streamwise
diffusion; for t h i s p u r p o s e C s a n a d y ' s p u f f m o d e l , d i s c u s s e d i n C h a p t e r 8, h a s b e e n p r o p o s e d . F o r t h e a v e r a g e u s e r o f m e t h o d s o r c o m p u t e r c o d e s for d i s p e r s i o n estimates,
based
on
Pasquill-Gifford's ideas,
i m p r o v e m e n t of the present
procedures
appear
the
updating
most
and
attractive.
A
m o r e r e f i n e d a p p r o a c h r e q u i r e s m o r e t h a n a n e w s e t o f c u r v e s for t h e dispersion
coefficients,
however.
New parameters
have
to
be
introduced w h i c h reflect i m p o r t a n t physical p h e n o m e n a . T o evaluate these
parameters
above
the
additional
limited
data
information will be needed
(windspeed
and
qualitative
o b s e r v a t i o n s ) r e q u i r e d for a P a s q u i l l - G i f f o r d d i s p e r s i o n That
part
of the
atmosphere,
friction a n d h e a t transfer boundary
over
weather
estimate.
w h i c h is strongly influenced
from the ground, is called the
layer ( P B L ) or the a t m o s p h e r i c
boundary
and
by
planetary
l a y e r ( A B L ) . It
extends from the g r o u n d to a h e i g h t o f the order of o n e kilometer. Over
this height
the
wind vector changes
from
its
velocity
and
direction near the g r o u n d to its geostrophic m a g n i t u d e a n d direction. (The E k m a n layer w a s discussed briefly in Chapter 7.) T h e top o f the boundary
layer is c h a r a c t e r i z e d
also b y the vanishing of vertical
transport of heat and m o m e n t u m , b u t a precise value of the height h can not b e given. Close to the g r o u n d there are strong gradients
in
Passive Dispersionfrom Steady Sources (Turbulent)
velocity and
potential
temperature,
but
the
229
shear stress is
nearly
constant as reflected in the logarithmic w i n d velocity profile familiar from turbulent wall boundary layers. T h e turbulence
in this part of
the layer is g e n e r a t e d b y wind-shear. The
convective (day-time) boundary
layer,
(sometimes
CBL), includes a second source of turbulent production,
denoted a
strong
v e r t i c a l m i x i n g d r i v e n b y t h e g r o u n d h e a t flux w h i c h i n t u r n d e p e n d s on insolation, ground
temperature
and
moisture,
re-radiation
etc.
A b o v e a certain height L, generally referred to as the M o n i n - O b u k h o v length,
the
convective turbulence
dominates
over w i n d shear. A t
m i d d a y the vertical extent o f the c o n v e c t i v e r e g i o n is typically ten times the height o f the region of w i n d shear close to the g r o u n d . T h e understanding of CBL physics has improved more rapidly than
the
u n d e r s t a n d i n g of its counterpart, the stable (night-time) b o u n d a r y layer
(SBL). Accurate prediction
dispersion
of the
rates) is still b e y o n d reach,
CBL character but
(including
w h e n properly scaled,
s e e m i n g l y different b e h a v i o r can b e described b y the
same
set of
(scaled) variables. In technical applications of turbulent boundary-layer theory, i d e a o f s c a l i n g is o f f u n d a m e n t a l
the
importance. Distances from the wall
are scaled b y the thickness of the b o u n d a r y layer, a n d the velocity b y the
free-stream
velocity. A more refined investigation of the
wall
r e g i o n r e v e a l s t h e seeding v e l o c i t y u . = Vr/p
a n d t h e s c a l i n g l e n g t h (or
viscous length) z . = v/u.. These quantities
a r e r e l e v a n t p r i m a r i l y for
smooth
walls.
In
the
presence
of wall
roughness
the
derived
( l o g a r i t h m i c ) v e l o c i t y p r o f i l e is s h i f t e d u p w a r d b y a r o u g h n e s s
height
z . T h i s scaling c a n b e carried over at the least to the lower p a r t of Q
t h e C B L w h e r e t h e flow i s d o m i n a t e d b y w i n d s h e a r . A b o v e the height corresponding to the M o n i n - O b u k h o v value L , the turbulence r a t i o z/L
is d o m i n a t e d b y b u o y a n t convection. T h e
can be seen as a stability parameter,
related to the gradient
Richardson number
dimensionless
a n d it c a n i n f a c t b e
defined in Chapter
2.
A c c o r d i n g t o P a n o f s k y a n d D u t t o n ( p . 1 4 1 ) w e h a v e a p p r o x i m a t e l y Ri = z/L
i n u n s t a b l e a i r . T h e u p p e r l i m i t o f t h e s c a l e d v a r i a b l e z/L
obviously
h/L
which
becomes
an
important
parameter
c o m p a r i n g d i f f e r e n t flow s i t u a t i o n s . A t h e i g h t s o f t h e o r d e r o f h, Coriolis
parameter*/
has
some importance,
and
to relate
f r i c t i o n a l effects, w e c a n f o r m t h e d i m e n s i o n l e s s p a r a m e t e r
is
when it
the to
u./h/.
The Coriolis parameter is proportional to the earth's speed of rotation at the latitude of interest; J- 1 Q sin 0 where Q is one revolution per day. It follows t h a t / is of the order of 10" radians per second. 4
Chapter 9
230
This discussion ( h / L , u . / h / , z /h) and
parameters,
brought
forth three
dimensionless
just from the dynamics of the
Q
of heat
has
mass
transfer
(humidity),
flow.
groups,
Considerations
would produce
additional
m a k i n g t h e h o p e f o r s i m p l e i m p r o v e m e n t s r e m o t e . It is
very fortunate
t h a t , for t h e p u r p o s e o f m o d e l i n g a t m o s p h e r i c
t h e p a r a m e t e r h/L
flows,
i s b y far t h e m o s t i m p o r t a n t ( H u n t e t al., 1 9 9 1 ) . B u t
d i f f i c u l t i e s r e m a i n a s ft a n d L a r e n o t a v a i l a b l e f r o m r o u t i n e w e a t h e r o b s e r v a t i o n s , sufficient for t h e P a s q u i l l - G i f f o r d
approach,
and
will
A d e t a i l e d p r o c e d u r e for c a l c u l a t i n g a t m o s p h e r i c p a r a m e t e r s ,
not
have to b e determined. determined directly from routine measurements,
is p r o p o s e d b y v a n
Ulden a n d Holtslag (1985). A m o n g the parameters
o f interest is the
h e a t flux t o t h e s u r f a c e , H . T h e h e a t c o n t e n t o f a u n i t v o l u m e o f air is p c
p
T whereas H represents
the heat transferred
per unit area
time. O n f o r m i n g the ratio o f the p r o d u c t g H z to p c
p
and
T, w e get a
q u a n t i t y w i t h d i m e n s i o n s v e l o c i t y c u b e d . T h i s v e l o c i t y i s , i n fact, t h e convective
velocity
scale
w+
of prime
importance
when
scaling
velocities in the convective layer.
(9-13)
T h e s c a l i n g v e l o c i t y u«, i n t h e w i n d - s h e a r d o m i n a t e d s u r f a c e l a y e r is already k n o w n . A t the transition height b e t w e e n the t w o layers, the t w o s c a l i n g v e l o c i t i e s s h o u l d b e r o u g h l y e q u a l , i . e . w h e n z = L , w„ = u.. F r o m (9-13) w e obtain in this w a y the M o n i n - O b u k h o v length. A m o r e rigorous derivation based on wall-layer similarity, reveals that von Karman constant hence
k s h o u l d b e i n c l u d e d (k is d i m e n s i o n l e s s
of no consequence
analysis).
The
similarity
quantity w h e n the heat
in an
argument
analysis
flux
also
based
defines
on L as
the and
dimensional a
negative
i s p o s i t i v e or u p w a r d . ( F o r a d e t a i l e d
derivation, see Panofsky and Dutton, p 131-2.)
L = -
kgH
(9-14)
W e s e e t h a t i n s t a b l e a i r ( H < 0 ) , L > 0, i n n e u t r a l c o n d i t i o n s H = 0, L - » oo a n d i n u n s t a b l e air L < 0. Practical use o f the scaling p a r a m e t e r s requires that their v a l u e s are k n o w n , b u t the e v a l u a t i o n is n o t trivial, v a n U l d e n a n d H o l t s l a g (1985) suggest to derive L from M o n i n - O b u k h o v similarity theory. W e
Passive Dispersionfrom Steady Sources (Turbulent)
231
n o t e h e r e t h a t t h e s i m p l e r e l a t i o n for u . g i v e n a b o v e , w i l l h a v e t o b e c o r r e c t e d for h e a t t r a n s f e r a n d r o u g h n e s s e f f e c t s a s i n d i c a t e d b y v a n U l d e n a n d Holtslag. P a n o f s k y a n d D u t t o n s u g g e s t to obtain L v i a the gradient Ricardson
number.
D u e to the a s y m p t o t i c nature of the atmospheric b o u n d a r y layer, the specification o f height h is not simple. T h e layer height
changes
moreover with time. For the unstable layer, v a n Ulden a n d Holtslag s u g g e s t a r a t e e q u a t i o n for h. empirical relation relation is h It
n
=c
= c yju*L/J,
s
to
include
information
in
the
and direct numerical
dispersion parameters are
an
preferred dispersion
simulations of
s h o w excellent agreement
normalized w.r.t. h
nondimensional t i m e x/U
stable layer the
A detailed discussion is given in Weil ( 1 9 8 5 ) . H e notes
atmospheric values
For the
this
that laboratory measurements the
For the neutral layer they prefer
u*/f.
n
w h e r e / again is the Coriolis parameter.
s
remains
parameters.
h
d i s t a n c e X = w+x/(U
and
given as functions
of the
h), w h i c h i s t h e r a t i o o f t r a v e l
[x i s d o w n w i n d d i s t a n c e , U i s w i n d s p e e d ) t o t h e
t i m e s c a l e h/w*.
when
turbulent
F o r t h e s t r o n g l y c o n v e c t i v e c a s e w h e r e h / - L > 10, t h e
f o l l o w i n g r e l a t i o n i s s u g g e s t e d for t h e l a t e r a l d i s p e r s i o n
, °
h
6
coefficient:
(9-15)
X
+0.7X
w h e r e t h e v a l u e o f t h e coefficient 0 . 7 i s s o m e w h a t u n c e r t a i n . For a
z
the effects o f source height m a y b e important.
For
source
h e i g h t s a b o v e z = 0 . 1 h, a v a i l a b l e r e s u l t s i n d i c a t e t h e s i m p l e r e l a t i o n
^ = 0.6X h
(9-16)
b u t b e y o n d X = 0.7 the v a l u e c a n b e a s s u m e d to b e c o n s t a n t d u e to p l u m e trapping in the convective layer. For g r o u n d level sources Weil cites a s o m e w h a t complicated interpolation formula. W e n o t e h e r e t h a t a c o r r e c t i o n for a n e l e v a t e d s o u r c e a p p e a r s m o s t urgent as the conditions in N o r t h w e s t E u r o p e are close to neutral 70% o f t h e t i m e w i t h b o u n d a r y - l a y e r h e i g h t h, r a n g i n g f r o m 5 0 0 - 1 0 0 0 (Hunt
et al.,
1991). Dispersion
ground-level sources, typically
is
only one
calculations
are valid at best tenth
o f h.
based
on
in the surface
This
means
that
data
m
from
layer which dispersion
calculations b a s e d o n the Pasquill-Gifford dispersion coefficients, are m e a n i n g f u l o n l y for s t a c k h e i g h t s l e s s t h a n 5 0 m . T h e a c t u a l h e i g h t s
Chapter 9
232
of large industrial stacks are m u c h higher, and herein lies an obvious n e e d for b e t t e r m e t h o d s . Research
and
development of simple
validated
methods
currently u n d e r w a y w i t h the h o p e of arriving at international as
pollutants
important
in
the
atmosphere
know no
national
are
norms,
borders.
An
event in this regard, w a s the W o r k s h o p organized b y
E P A / A M S in 1984 (reviewed b y Weil, 1985).
Special Nomenclature /
Coriolis
J(T)
f u n c t i o n o f d i f f u s i o n t i m e , T a b l e 9-1
parameter
h
height of convective boundary layer
H
effective s o u r c e h e i g h t , H = H
g
+ AH
h e a t flux t o s u r f a c e k
von Karman constant
K
t u r b u l e n t diffusivity, d i r e c t i o n n
L
distance d o w n w i n d from source
n
length of line source M o n i n - O b u k h o v length, Eq. (9-14) p
argument, exponential function
q
strength of line source
Q
strength of point source
Ri
(gradient) Richardson
number
T
diffusion time, Eq. (9-3)
u*
wall velocity scale,
U
m e a n w i n d velocity
w*
convective velocity scale, Eq. (9-13)
X
n o n d i m e n s i o n a l d o w n w i n d d i s t a n c e , X = w„x/(U
X (T)
d i s t a n c e r e a c h e d i n t i m e T, T a b l e 9-1
y„
wall length scale,
z
Q
roughness height
a
n
d i s p e r s i o n coefficient, direction n
o ,OQ
standard deviation, direction of w i n d vector
X
concentration
a
=V
h)
= v/u.
REFERENCES B r i g g s , G . A . ( 1 9 7 3 ) D i f f u s i o n e s t i m a t e s for s m a l l e m i s s i o n s .
ATDL
Passive DispersionfromSteady Sources (Turbulent) Contribution
No.
79.
Atmospheric
233
Turbulence
and
Diffusion
Laboratory, Oak Ridge, Tennessee. C s a n a d y , G . T . ( 1 9 7 3 ) Turbulent Publishing, Dordrecht, Gifford,
Diffusion
F.A. (1959) Smoke plumes
i n d i c e s . Intern.
in the Environment.
D. Reidel
Holland.
J. Air Pollution
and
q u a n t i t a t i v e air
pollution
2, p p 4 2 - 5 2 .
Hunt, J.C.R., Holroyd, R.J., Carruthers, D.J., Robins, A . G . , Apsley, D.D., Smith, modelling Modeling
F.B., and
air
and
Thomson,
pollution
for
its Applications,
D.J.
regulatory
(1991) Developments uses.
I n Air
in
Pollution
viii ( E d s H . v a n D o p a n d D . G . S t e i n ) ,
p p 17-60. P l e n u m Press, N e w York, L o n d o n . Lyons,
T.J.
Meteorology.
and
Scott,
W . D . ( 1 9 9 0 ) Principles
of
Air
Pollution
Belhaven Press (Pinter Publishers), London.
P a n o f s k y , H . A . a n d D u t t o n , J . A . ( 1 9 8 4 ) Atmospheric
Turbulence.
John
Wiley and Sons, N e w York. P a s q u i l l , F . ( 1 9 7 7 ) s e e : H a n n a , S . R . , B r i g g s , G . A . Deardorff, J., B.A.,
Gifford,
F.A. and
Pasquill,
Egan,
F. ( 1 9 7 7 ) A M S W o r k s h o p
s t a b i l i t y c l a s s i f i c a t i o n s c h e m e s . Bull.
Am.
Meteorol.
Society
58,
on pp
1305-1309. S t u l l , R . B . ( 1 9 8 8 ) An
Introduction
to Boundary
Kluwer A c a d e m i c Publishers, Dordrecht, T u r n e r , D . B . ( 1 9 7 3 ) Workbook
of Atmospheric
Layer
Meteorology.
Holland. Dispersion
Estimates.
Environmental Protection A g e n c y R e p . N o A P - 2 6 , 6th van Ulden, A . P . and Holtslag, A . A . M . (1985) Estimation
of boundary
l a y e r p a r a m e t e r s for d i f f u s i o n a p p l i c a t i o n s . J. Clim. Appl. pp
US
Printing.
Met.
24,
1196-1207.
W e i l , J . C . ( 1 9 8 5 ) U p d a t i n g a p p l i e d diffusion m o d e l s . J. Clim. Appl. 24, p p
Met.
1111-1130.
W i l l i a m s o n , S.J. ( 1 9 7 3 ) Fundamentals Publishing Co., Reading, Mass.
of Air Pollution.
Addison Wesley
Chapter 9
234
PROBLEMS Problem
1. A p o i n t s o u r c e o f h e i g h t
100 m emits
nonbuoyant
material at the r a t e Q = 9 0 g / s . T h e w i n d velocity is 5 m / s a n d
the
w e a t h e r is m o d e r a t e l y s u n n y . F i n d t h e r e g i o n w i t h t h e h i g h e s t s u r f a c e concentration a n d the corresponding distance from the source. P r o b l e m 2. F i n d t h e h e i g h t r e q u i r e d t o r e d u c e t h e h i g h e s t s u r f a c e concentration to 2 . 5 - 1 0
4
g/m
for a w i n d s p e e d 3 m / s a n d a ( p o i n t )
3
source strength of 100 g / s . T h e w e a t h e r corresponds to B-stability. P r o b l e m 3 . A s s u m e t h a t t h e effective s o u r c e h e i g h t i s g i v e n b y t h e r e l a t i o n H = a + bin
w h e r e u is the w i n d s p e e d a n d a a n d b
are
constants. Find the w i n d speed w h i c h gives the highest concentration at surface level a n d the c o r r e s p o n d i n g c o n c e n t r a t i o n . E x p r e s s a n s w e r i n t e r m s o f a, b a n d
the
a . z
P r o b l e m 4. A p o i n t s o u r c e e m i t s p o l l u t a n t s a t t h e r a t e Q = 8 0 g / s at a n
effective
height of 80 m . T h e stability conditions vary with
height; b e t w e e n the surface and height
1 km, B-stability prevails.
A b o v e 1 k m , w e h a v e a stable layer. T h e w i n d s p e e d is 2 m / s . F i n d the concentration at surface level at distances 2 k m a n d 8 k m from
the
source. P r o b l e m 5. A p o w e r s t a t i o n b u r n s s u l f u r o u s
coal at the rate of
15,000 k g / h r . T h e coal contains 2 % Sulfur w h i c h in the c o m b u s t i o n p r o c e s s oxidizes to SO2. O n a given d a y w e h a v e southerly w i n d s at 2 m / s a n d w a r m s u n n y weather. F i n d the concentration of SO2 in a school yard
l o c a t e d 0.5
km
N - N E form
the
power
station.
The
effective s t a c k h e i g h t i s 10 m . Problem produces
a
6. A b u r n i n g w a s t e d u m p o f a b o u t foul
smelling gas
at
the
rate
1200 m
of 30
g/s.
2
fire a r e a , Find
the
c o n c e n t r a t i o n at the distance 3 0 0 m a n d 3 k m d o w n w i n d at n i g h t in overcast conditions and with winds of 7 m / s . Compare calculations b a s e d o n a ) four line sources, b ) a single line source through the center of the d u m p a n d c) a single (virtual) point source u p w i n d . T h e d u m p can b e considered a square w i t h o n e edge perpendicular to the w i n d direction. P r o b l e m 7. A m a j o r h i g h w a y r u n s i n d i r e c t i o n N o r t h - S o u t h . O n a day with overcast conditions and westerly wind of 4 m / s , about 8000
PASSIVE DISPERSIONFROM STEADY SOURCES (TURBULENT)235 automobiles
pass
through
the
1
straight-line segment o f interest w i t h an average velocity of 120 HC
km/hr. The emission as
function
typical
characteristics,
of velocity,
a u t o m o b i l e , is
for
given
a in
60
the diagram. T h e percentage scale can be reinterpreted in terms of
NO
absolute values on knowing that the
averaged
emission
40
hydrocarbon
( H C ) at
60
km/hr
X
is
2-lO- g/s. 2
Estimate
the
concentration at a distance m
d o w n w i n d from
20
hydrocarbon 300
the highway.
H o w m u c h can the concentration
60
be reduced w h e n w e legislate a
80
100
130
n e w speed limit o f 100 k m / h r ? Consider
the
same
problem
the
fc
NO -emission x
using
the
information given in the diagram. Problem elevated
8.
S o m e t i m e s it i s o f i n t e r e s t
concentration
to define a region of
above a specified level % , but
below
Q
the
m a x i m u m c o n c e n t r a t i o n XM- T h e c u r v e o f c o n s t a n t c o n c e n t r a t i o n XO = XO (x,y,H)
i s d e n o t e d a n i s o p l e t h a n d it e n c l o s e s t h e p o i n t o f m a x i m u m
c o n c e n t r a t i o n XM- C o n s i d e r t h e f o l l o w i n g p r o b l e m : W e h a v e a p o i n t source o f strength Q = 8 0 g / s . T h e w i n d s p e e d is 5 m / s , H = 2 0 m a n d the
stability
of Class
C.
Find
the
region on
the
ground
with
c o n c e n t r a t i o n e x c e e d i n g XO = 10~ g / m . 4
3
( H i n t : C h e c k first t h e m a x i m u m v a l u e a l o n g t h e c e n t e r l i n e y = 0, t o s e e i f XM > XO- W h e n n o t , s u c h a r e g i o n d o e s n o t e x i s t . W h e n XM > XO* y o u c a n f i n d t w o v a l u e s o f x , i . e . X\ a n d x x (XM)-
J
n
s
o
t h a t x\ <
t h e r a n g e x\ < x < X 2 , f i n d t h e v a l u e s o f y for
w h i c h X(X>Y>0) = XO)Problem
9.
Plot
and
compare
P r o b l e m 8 at h e i g h t s z = 0 a n d z = H .
the
isopleths
X ~ XO (x,y;H)
of