Pathomechanisms in the neuronal ceroid lipofuscinoses

Pathomechanisms in the neuronal ceroid lipofuscinoses

Journal Pre-proof Pathomechanisms in the neuronal ceroid lipofuscinoses Hemanth R. Nelvagal, Jenny Lange, Keigo Takahashi, Marta A. Tarczyluk-Wells, ...

929KB Sizes 0 Downloads 64 Views

Journal Pre-proof Pathomechanisms in the neuronal ceroid lipofuscinoses

Hemanth R. Nelvagal, Jenny Lange, Keigo Takahashi, Marta A. Tarczyluk-Wells, Jonathan D. Cooper PII:

S0925-4439(19)30293-5

DOI:

https://doi.org/10.1016/j.bbadis.2019.165570

Reference:

BBADIS 165570

To appear in:

BBA - Molecular Basis of Disease

Received date:

5 August 2019

Revised date:

30 September 2019

Accepted date:

3 October 2019

Please cite this article as: H.R. Nelvagal, J. Lange, K. Takahashi, et al., Pathomechanisms in the neuronal ceroid lipofuscinoses, BBA - Molecular Basis of Disease(2019), https://doi.org/10.1016/j.bbadis.2019.165570

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.

Journal Pre-proof

Pathomechanisms in the Neuronal Ceroid Lipofuscinoses

Hemanth R Nelvagal1, Jenny Lange2,3, Keigo Takahashi1, Marta A TarczylukWells2,4, Jonathan D Cooper1

1

Pediatric Storage Disorders Laboratory, Department of Pediatrics, Division of

of

Genetics and Genomics, Washington University in St. Louis, School of Medicine,

-p

ro

St Louis, MO, 63110, USA.

2

re

Department of Basic and Clinical Neuroscience, Institute of Psychiatry,

Department of Neurodegenerative Disease, Institute of Neurology, University

na

3

lP

Psychology & Neuroscience, King's College London, London SE5 9NU, UK.

Centre for Brain Research, Faculty of Medical and Health Sciences, University

Jo

4

ur

College London, London WC1N 3BG.

of Auckland, New Zealand.

Authors for correspondence: [email protected] or [email protected]

1

Journal Pre-proof ABSTRACT The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative lysosomal storage disorders (LSDs), traditionally grouped together based on shared clinical symptoms. The recent emergence of new forms of NCL along with an improved understanding of endo-lysosomal system function have necessitated the reassessment of their classification and pathogenesis. Novel clinical findings, as well as observations

of

in various animal models of NCL, have revealed significant pathological changes in

ro

regions outside the brain, as well as progression of disease along connected anatomical

-p

pathways. The characterization of animal models of NCLs has not only highlighted the

re

vulnerability of certain neuron populations but has also revealed glial cells to be adversely affected and actively contribute to disease progression. While the lysosome

lP

has been thought of as being the ‘waste-disposal’ unit of the cell, recent evidence of the

na

endo-lysosomal system playing a crucial role in nutrient sensing and cellular homeostasis have shown that NCL mutations have far-ranging effects on cellular

ur

functions including autophagy and synaptic dysfunction. The discovery of the machinery

Jo

controlling endo-lysosomal function via transcription factor EB (TFEB) and mTORC1, have also shed light on potential mechanisms by which NCL mutations may exert their effect. While the NCLs share many common down-stream pathologies, there is a growing body of evidence for unique pathogenic pathways in each form. In light of the rapid advances in therapeutic strategies for the NCLs and LSDs, these new lessons learnt about unique NCL pathomechanisms will be key for informing the targeting, timing and strategies for future treatments.

2

Journal Pre-proof KEYWORDS:

Neuronal

ceroid

lipofuscinoses,

Lysosomal

storage

disorders,

Jo

ur

na

lP

re

-p

ro

of

Pathogenesis, Neurodegeneration, Glial dysfunction, Synaptopathy.

3

Journal Pre-proof INTRODUCTION The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative lysosomal storage disorders (LSDs) that mainly affect children and young adolescents and are the most common cause of childhood dementia [1,2]. The NCLs continue to be classified together based on common and broadly similar clinical features that present in the first two decades of life - including loss of vision leading to blindness, epileptic

of

seizures and a progressive decline of motor and cognitive abilities. However, the order

-p

ro

and age at which symptoms present varies greatly depending on the form of NCL [3].

re

To date, there are up to 13 different forms of NCLs, each having distinct monogenetic defects in genes encoding proteins in the endo-lysosomal system [4]. Largely, these

lP

can be classified into – a) soluble lysosomal enzyme or cytosolic protein deficiencies or

na

b) insoluble transmembrane protein defects. These transmembrane proteins may either be present in the lysosomal membrane or the endoplasmic reticulum (ER) which are

ur

involved in the endo-lysosomal system [Reviewed in 5]. Crucially however, the exact

Jo

mechanisms by which these mutations lead to the common downstream phenotypes remains largely unresolved. These include the pathognomic accumulation of autofluorescent storage material (AFSM), dysregulated autophagy as well as significant and progressive glial activation and neuronal death within the nervous system [6–8]. It is important to note that since the NCLs arise from distinct monogenetic mutations, each form may have unique pathomechanisms that affect the endo-lysosomal system that can result in these phenotypes [5,6,9]. Nevertheless, these diseases ultimately end in broadly similar pathological appearances. The characteristic AFSM accumulation, which

4

Journal Pre-proof actually contains a complex mixture of different lipids and proteins in each form [10–12], has hampered any consideration and classification of the NCLs as being distinct disorders, albeit ones that share certain features. Indeed, many of the pathological phenotypes seen in the NCLs are common to other LSDs as well as other neurodegenerative disorders [13–15].

of

Understanding the underlying pathological mechanisms that operate in individual NCLs

ro

is important on at least three fronts - A) Timing and targeting of therapy to the

-p

appropriate affected tissues and in the correct therapeutic windows, B) Elucidating the

re

up- and down-stream interactions of these affected proteins that could lead to novel therapeutic strategies and C) Insights into lysosomal physiology that can greatly

lP

improve our knowledge of pathogenesis in LSDs and other diseases as well as help

na

design novel therapeutic strategies. This review summarizes what is currently known about pathological changes in different NCLs and how this information may shape

Jo

ur

future studies and therapies.

Modelling NCL pathology

The generation of a variety of animal models of the NCLs has provided researchers with tools to investigate the effects of these gene deficiencies in vivo (reviewed separately in this issue). In many neurodegenerative diseases including other LSDs, there are commonly a subset of tissues or cell populations that are selectively vulnerable to pathogenic insult [14,16,17]. The characterization of animal models, particularly the widely used mouse models of NCLs has allowed us to investigate disease phenotypes

5

Journal Pre-proof at an organismal level, as they largely recreate certain disease-relevant phenotypes, within obvious species constraints [16-26]. Comparative studies in the NCLs have also been greatly aided by crossing these murine models on a common genetic background [29,30]. Recently, with the advent of better technologies to generate mouse models with specific mutations, efforts have been made to re-create the most common human disease-causing mutations in mice in order to better replicate the pathological changes

of

seen in human NCL [31–34]. In addition to mouse models, naturally-occurring larger

have

proved

very

useful

in

understanding

the

anatomical

and

-p

models

ro

animal models of NCLs have been identified in dogs [35–40] and sheep [41]. These

re

pathophysiological spread of disease as they more closely mimic the human disease and provide a means to test the delivery and dosing of therapeutic agents in a way that

lP

is not possible in mice. The advent of CRISPR-Cas9 technology has also allowed for

na

the generation of a genetically accurate sheep model of CLN1 [42], and a pig model of CLN3 disease [43], and it is likely that similar models will be generated for other forms

ur

of NCLs. Together, the analysis of both mouse and larger animal models of NCLs have

Jo

given us significant new perspectives on disease progression including novel sites of pathology, cell type specific pathology and novel disease mechanisms.

Anatomical perspectives in NCL pathogenesis Cerebral and cerebellar atrophy along with an enlargement of lateral ventricles in the brain is a consistent finding in the NCLs. However, such atrophy does not occur in a uniform fashion with some regions affected before others [7,8,44–46]. Previous studies in mouse models revealed the thalamus and cerebellum to be particularly vulnerable

6

Journal Pre-proof regions, across different forms of NCL and that somatosensory regions of the cortex are affected earlier and more severely than motor regions [24,47–50]. This is evidenced by marked glial activation, AFSM accumulation and neuron loss, in addition to pronounced interneuron loss within the cortex and hippocampus. The staging of and progression of pathology has also been defined in larger animal models of NCLs, confirming that these

of

regions are indeed likely to be clinically relevant [39,40,42,51–55].

ro

The identification of patterns of pathology occurring along thalamocortical and

-p

cerebellar pathways has also opened the possibility of similar pathology occurring within

re

interconnected nuclei that lie up- or down-stream of affected structures. Recent evidence suggests this concept extends outside the brain, or even outside the CNS

lP

[56,57]. As most NCL proteins are widely expressed in various tissues and cell types

na

[58–60], it is highly probable that other organ systems in the body are affected by deficiency in these proteins. While this may not be to the same extent as the brain, but it

ur

is probable that these effects will nonetheless require therapeutic intervention. In this

Jo

context, treating the brain alone is likely to prove insufficient to alleviate disease burden, and as such identifying these unexpected sites of pathology has considerable translational importance. Treating these previously overlooked pathologies may provide additional clinical benefit improving life quality. Given the significant sensory and motor deficits seen in the NCLs [3,61], it was perhaps not surprising that exploration of the spinal cord revealed significant pathology in this region in CLN1 disease [62]. Various observations in other animal models, as well as human autopsy studies suggest that this spinal pathology is very likely present in multiple NCLs [7,42,43,63–65].

7

Journal Pre-proof

Similarly, NCL patients, with only few exceptions, present with loss of vision [2,3] and as such the visual pathway has been explored in great detail. Pronounced retinal degeneration is observed in NCL patients [3,66,67], and this is recapitulated in animal models of multiple forms of NCLs, together with degeneration of the optic nerve [57,68– 81]. However, the limitations of mouse models should also be kept in mind, as mouse

of

models of Cln3 disease do not display significant retinal degeneration [73], other than

ro

that as a complication of strain background [82]. Nevertheless, mouse models do

-p

display significant pathology in central visual pathways within dorsal-lateral geniculate

re

nucleus of the thalamus and visual cortex across multiple forms of NCL [24,47–49], and it is likely that other retinorecipient nuclei are also affected. Another consideration of

lP

mouse models is that rodent species depend far more on sensory information from their

na

whiskers than visual input [83], which may explain why the somatosensory pathways through the ventral posterior nucleus of the thalamus to the somatosensory barrel-field

ur

cortex are so severely affected in mouse models of NCL [48–50,84–88], even more

Jo

than the central visual pathways [24,47–49].

There is also a growing body of evidence for significant cardiac pathology from both clinical and experimental observations [89–93]. These are best established in CLN3 disease, and also include evidence for disturbances in autonomic nervous system function [94]. Furthermore, the range of bowel problems NCL children display clinically are suggestive of enteric disturbances across multiple NCLs [3,95]. Work is ongoing to explore these phenotypes in mouse models of NCL, and it will be important to

8

Journal Pre-proof determine their relationship to events in the CNS. Better understanding of the sites and progression of pathology in each form of NCL will also greatly aid the timing and targeting of therapies.

Cell-type specific vulnerability in NCLs

of

Apart from learning about which anatomical regions are vulnerable in disease, using

ro

animal models of the NCLs has provided insights into how different cell types within

-p

these regions might be affected by disease [29,30,96,97]. Neuronal dysfunction and

re

loss are critical pathological features of the NCLs with certain neuronal populations clearly being more vulnerable in these diseases [30]. Interneuron populations identified

lP

by various calcium-binding proteins or neuropeptides are lost in the thalamus, cortex

na

and hippocampus early in disease progression, as compared to other neurons [47,48,53,73,84,86]. Recently, these cell populations have been implicated in playing a

ur

major role in neurodegenerative pathways across various diseases such as epilepsy

Jo

[98], Alzheimer disease [99], amyotrophic lateral sclerosis (ALS) [100] and Parkinson disease [101]. The unique electrophysiological properties and bioenergetics of interneurons suggest that they are more vulnerable to disease [102]. Also, Purkinje cells of the cerebellum have also been shown to be especially vulnerable [103,104], and it appears that lysosomal function is critical in their normal physiology [33,105]. It is not clear whether this apparent vulnerability of Purkinje neurons is related to their need to maintain such a complex dendritic structure, or their greater dependence on overall lysosomal function, or some other as yet unidentified disease-specific mechanism.

9

Journal Pre-proof

Another major change in our understanding of NCL pathogenesis has been in reassessing the role that glial cells play in disease progression. Given the widespread neuronal dysfunction and loss, the NCLs have always been largely considered as predominantly ‘neuronal’ diseases, and this notion even extends to the naming of these diseases as the ‘neuronal ceroid lipofuscinoses’[1], despite AFSM accumulating in

of

many cell types [56,57,93]. However, a growing body of evidence has shown there to be

ro

a significant and early impact of disease upon other cells of the central nervous system,

-p

which also normally express the genes that are deficient in these disorders. These

re

include astrocytes and microglia which are observed to be in activated states, both biochemically and histologically [34,47,48,52,106]. Such glial activation typically occurs

lP

before neuron loss, and its initial localized distribution more accurately predicts where

na

loss of neurons occurs, than the appearance of storage material [2,6,10]. This apparent correlation raised the question of whether there is contributory role of glial activation in

ur

causing neuron loss in the NCLs, as has been suggested in various other lysosomal

Jo

[107] and neurodegenerative disorders [108–110]. Recently, primary cell culture experiments exploring the properties of glial cells derived from mouse models of CLN1 and CLN3 have shown that astrocytes and microglia themselves have significant functional, morphological and survival defects, although these differ markedly between these forms of NCL [111,112]. In co-culture systems, Cln3 deficient astrocytes and microglia appeared to harm or negatively impact the survival of both healthy and mutant neurons [111]. Furthermore, Cln1 astrocytes and microglia each adversely affected neuron morphology, and appeared to cross-prime one-another to cause neuron loss

10

Journal Pre-proof [112]. The mechanisms underlying these events remain unclear, and it will be important to validate these data in vivo by generating cell-type specific mutant mice. Nevertheless, these experiments further implicate the contributory role that glial cells appear to play in NCL pathogenesis. Apart from the innate immune changes evidenced by glial activation in the CNS, there is also evidence for an overall humoral immune response in the NCLs [113,114] with a possible autoimmune component, especially in CLN3 [115,116].

of

Building on these, some anti-inflammatory paradigms have been tested experimentally

-p

ro

in different models of NCLs [41,116–119] with mixed results.

re

While there is currently no mechanistic explanation for such cell-type specific vulnerability, it is becoming apparent that these will probably differ between types of

lP

NCL, as the primary consequences of gene deficiency will likely be different in each

na

disease subtype. It is probable that further investigation into the dysregulated signalling

ur

pathways in each form of NCL would yield specific therapeutic targets.

Jo

Intracellular defects in NCLs

Since the lysosome was first described by de Duve and colleagues [120], its function has largely been considered to be the breakdown and recycling of endogenous and internalized molecules [121]. However, research over the last few decades has shown that the lysosome plays a crucial role in overall cellular homeostasis, particularly in response to environmental changes as part of the greater endo-lysosomal compartment [122–124]. Apart from its traditional degradative roles, the lysosome is also involved in a

11

Journal Pre-proof variety of cellular processes such as nutrient sensing, calcium and bio-metal homeostasis, cell growth axonal transport and synaptic homeostasis [5,122,125].

As NCL mutations affect the endo-lysosomal system, it would follow that there would be defects in autophagic function in these diseases, as these systems are intrinsically linked. Autophagy is required for normal cellular homeostasis and altered autophagic

of

flux has been linked to a variety of lysosomal and neurodegenerative disorders [126–

ro

128]. While abnormal autophagy has been reported in various forms of NCL

-p

[33,88,129–133], the exact mechanisms by which individual NCL protein deficiencies

re

lead these alterations and in turn cause cell death remain uncertain .

lP

Synaptic dysfunction has been observed in various models of NCLs, evidenced by

na

changes in synaptic vesicle density, exocytosis as well as electrophysiological changes [49,54,85,87,132,134–138]. While lysosomes were shown to be trafficked to the

ur

synapse to facilitate synaptic remodelling, pre-synaptic autophagy, synaptic vesicle

Jo

sorting and overall synaptic homeostasis [139–142], the exact mechanisms by which NCL protein defects lead to synaptic dysfunction are still poorly understood. However, since these synaptic changes precede neuron loss, they may prove important in the steps that lead to it. This may plausibly be due to altered neural conductance as well as other intracellular signalling defects [143,144]. The involvement of astrocytes and microglia upon synaptic function must also be taken into account [145–148], and may represent another means by which these cell types may influence neuronal function in the NCLs. Other neuronal defects observed in NCLs include disturbances in calcium

12

Journal Pre-proof homeostasis in CLN3 [149,150], bio-metal homeostasis [151] and lipid metabolism defects [152–155].

Another major development in the field of lysosomal biology has been the discovery of cellular machinery that controls the expression of many endo-lysosomal proteins. The discovery of the CLEAR (coordinated lysosomal expression and regulation) transcription

of

initiation site, the transcription factor EB (TFEB) and its phosphorylation by mTORC1

ro

have provided a pathway by which lysosomal defects can exert a larger influence on

-p

cellular function [125,156–158]. This pathway has been shown to be dysregulated in a

re

number of NCLs, [158–162]. It is therefore foreseeable that this would make a viable therapeutic target downstream of the primary lysosomal defect in NCLs, as upregulating

lP

TFEB increases overall cellular clearance, which could circumvent existing lysosomal

na

dysfunction. Pre-clinical studies in CLN3 and CLN11 mice have provided promising

Jo

Conclusion

ur

evidence for this approach [163,164].

Research into the NCLs is primarily focused on devising the optimal therapeutic strategies for these devastating diseases. As in any field of biomedical research, a fundamental understanding of underlying pathology and disease mechanisms is critical to facilitating such treatments. While the common presentations and pathomechanisms that might be amenable to therapy across this group of disorders have taken precedence [2,5], it is becoming increasingly important to consider the distinct effects of deficiency in each of these genes as these phenotypes emerge. Nonetheless, the

13

Journal Pre-proof discoveries of certain pathomechanisms in the NCLs have directly informed the testing of a variety of pre-clinical strategies such as immunomodulatory agents [115– 117,119,165], modulators of endo-lysosomal function [164,166–169], enzyme mimetics [170–172] and glutamate receptor antagonists [173,174] with varying degrees of success. However, while some drugs such as the immunosuppressive agent mycophenolate mofetil [175, NCT01399047] and the PPT1 mimetic, cystagon [176,

of

NCT00028262] have been tested clinically, the benefits of these have only been modest

ro

in patients. This has further highlighted the importance of targeting pathomechanisms

-p

that are specific to each form of the disease. Nonetheless, targeting the known common

re

downstream phenotypes such as neuroinflammation and autophagy defects may help with the creation of important adjunct therapies that could greatly improve the

lP

therapeutic efficacy as compared to single-therapy strategies.

na

As reviewed elsewhere in this issue, there have been significant recent improvements in the efficacy of CNS-directed therapies for the NCLs. The discovery of pathology in

ur

unexpected sites within or outside the CNS will necessitate the development of

Jo

therapies that can be targeted to these tissues successfully. This may either be as combinatorial therapeutic approaches delivered via multiple routes, or the development of more holistic treatments [177]. Such knowledge of the anatomical and temporal spread of pathology in distinct forms of the NCLs is currently informing the design of various clinical trials including the intrathecal delivery of gene therapy for CLN6 disease (NCT02725580) and CLN3 (NCT03770572). Therefore, defining the timing of disease in these different tissues in relation to events in the CNS, will provide important information about effective therapeutic windows.

14

Journal Pre-proof

From a pathological perspective, the evidence of similar regions and cell types being affected across different forms of NCL has traditionally been taken as being indicative of common downstream mechanisms effected by the dysregulation of the endo-lysosomal system. Yet, understanding the emerging differences that exist between forms of NCLs is equally important. While there is undoubtedly a similar pathological endpoint in these

of

disorders, as we finally learn more about the consequences of deficiencies in each

ro

disease-causing gene, it is becoming more apparent that unique mechanisms will

re

-p

operate in different forms of NCL [59,164,178–181].

It is clear that there is still much work to be done in the field of NCL research. However,

lP

the advances made in the past few years has provided enough evidence to suggest the

na

path that lies ahead. Although major advances have been made in CNS-directed therapies, it is now important to consider the NCLs as diseases that can affect multiple

ur

organ systems, and not just the brain as has been the traditional view. Importantly, the

Jo

progression and anatomical spread of pathology may be unique to each form and will have to be mapped out appropriately to refine therapeutic delivery and timing. Furthermore, the generation of animal models in large animal species will dictate a comparative study of such biology across these different species so as to facilitate the accurate modelling of these diseases for the subsequent testing of various therapies.

The elucidation of cell-type specific contributions to disease such as vulnerable neuronal populations, glial contributions to pathogenesis and even pathology in non-

15

Journal Pre-proof CNS cell types like myocardiocytes may help us understand the mechanisms by which lysosomal biology differs between such cell populations. Lastly, understanding the role of lysosomes in different cell types and how their dysfunction leads to pathological and behavioural phenotypes in animal models and patients will provide important opportunities for mechanistic interventions that may still target the primary defects that

of

occur in each form of NCL.

ro

While the NCLs have much in common with each other in terms of pathology, the same

-p

is just as true for lysosomal diseases in general [30]. Thus, their classification as a common group of diseases should be re-considered, especially in light of the potential

re

‘novel’ forms of NCL and emerging evidence of the cell biology of individual NCL

lP

proteins. Elucidating the different pathomechanisms in each form of the NCLs also

na

allows researchers to probe the functions of the endo-lysosomal system. This not only improves our understanding of cellular function, but given the emergence of the

ur

lysosome as a therapeutic target in a host of pathologies [122,158,182], it will also help

Jo

to identify novel means of modulating its function for a broader range of diseases.

ACKNOWLEDGEMENTS The many studies from the Pediatric Storage Disorders Laboratory (PSDL) cited in this review were funded from a variety of sources: US National Institutes of Health, the Wellcome Trust, UK Medical Research Council, European Union FP6, FP7 and Horizon 2020 research and innovation programme under grant agreement No. 666918 (BATCure), Sparks Foundation, Batten Disease Support and Research Association

16

Journal Pre-proof (BDSRA), Batten Disease Family Association (BDFA), Beyond Batten Disease Foundation, NCL Stiftung, The Saoirse Foundation and Health Research Board of Ireland, The Natalie Fund, and The Bletsoe Family. The support of these organisations is greatly appreciated, as is the outstanding efforts of members of the laboratory past and present. We would also like to thank Dr. Alison Barnwell for constructive comments

Jo

ur

na

lP

re

-p

ro

of

on the manuscript.

17

Journal Pre-proof REFERNCES [1]

M. Haltia, H.H. Goebel, The neuronal ceroid-lipofuscinoses: A historical introduction, Biochim. Biophys. Acta - Mol. Basis Dis. 1832 (2013) 1795-800 doi:10.1016/j.bbadis.2012.08.012.

[2]

S.E. Mole, G. Anderson, H.A. Band, S.F. Berkovic, J.D. Cooper, S.M. Kleine Holthaus, T.R. McKay, D.L. Medina, A.A. Rahim, A. Schulz, A.J. Smith, Clinical

of

challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis,

A. Schulz, A. Kohlschutter, J. Mink, A. Simonati, R. Williams, NCL diseases perspectives,

Biochim

Biophys

Acta.

1832

(2013)

1801–1806.

re

clinical

-p

[3]

ro

Lancet Neurol. 18 (2019).107-116 doi:10.1016/S1474-4422(18) 30368-5.

doi:10.1016/j.bbadis.2013.04.008.

S.E. Mole, S.L. Cotman, Genetics of the neuronal ceroid lipofuscinoses (Batten Biochim

Biophys

Acta.

1852

(2015)

2237–2241.

na

disease),

lP

[4]

doi:10.1016/j.bbadis.2015.05.011. A.B. Mukherjee, A.P. Appu, T. Sadhukhan, S. Casey, A. Mondal, Z. Zhang, M.B.

ur

[5]

Jo

Bagh, Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses, Mol. Neurodegener. 16 (2019). 1-4. doi:10.1186/s13024-018-0300-6. [6]

J.D. Cooper, Pathogenesis of neuronal ceroid lipofuscinosis, Clin. Neuropathol. 762 (2012). 873-89. doi:10.5414/NPPAbs1204.

[7]

G.W. Anderson, H.H. Goebel, A. Simonati, Human pathology in NCL, Biochim Biophys Acta. 1832 (2013) 1807–1826. doi:10.1016/j.bbadis.2012.11.014.

[8]

J. Radke, W. Stenzel, H.H. Goebel, Human NCL Neuropathology, Biochim. Biophys.

Acta

-

Mol.

Basis

Dis.

1852

(2015)

2262-

18

Journal Pre-proof 6.doi:10.1016/j.bbadis.2015.05.007. [9]

A. Kohlschutter, A. Schulz, Towards understanding the neuronal ceroid lipofuscinoses, Brain Dev. 31 (2009) 499–502. doi:S0387-7604(08)00293-3 [pii]10.1016/j.braindev.2008.12.008.

[10] D.N. Palmer, L.A. Barry, J. Tyynela, J.D. Cooper, NCL disease mechanisms, Biochim

Biophys

Acta.

1832

1882–1893.

of

doi:10.1016/j.bbadis.2013.05.014.

(2013)

ro

[11] D.N. Palmer, M.J. Oswald, V.J. Westlake, G.W. Kay, The origin of fluorescence in

-p

the neuronal ceroid lipofuscinoses (Batten disease) and neuron cultures from

re

affected sheep for studies of neurodegeneration, Arch Gerontol Geriatr. 34 (2002) 343–357.

storage

material,

Neurobiol

Aging.

27

(2006)

576–588.

na

autofluorescent

lP

[12] S.S. Seehafer, D.A. Pearce, You say lipofuscin, we say ceroid: defining

doi:10.1016/j.neurobiolaging.2005.12.006.

ur

[13] C.R. Ferreira, W.A. Gahl, Lysosomal storage diseases, Metab. Dis. Found. Clin.

Jo

Manag. Genet. Pathol. 25 (2017). 1-71 doi:10.3233/978-1-61499-718-4-367. [14] F.M. Platt, A. D’Azzo, B.L. Davidson, E.F. Neufeld, C.J. Tifft, Lysosomal storage diseases., Nat. Rev. Dis. Prim. 4 (2018) 27.. doi:10.1038/s41572-018-0025-4. [15] A. Sun, Lysosomal storage disease overview, Ann. Transl. Med. 6 (2018) 476. doi:10.21037/atm.2018.11.39. [16] R.A. Nixon, D.S. Yang, J.H. Lee, Neurodegenerative lysosomal disorders: a continuum from development to late age, Autophagy. 4 (2008) 590–599. [17] H. Fu, J. Hardy, K.E. Duff, Selective vulnerability in neurodegenerative diseases,

19

Journal Pre-proof Nat. Neurosci. 21 (2018). 1350-1358 doi:10.1038/s41593-018-0221-2. [18] H.M. Mitchison, D.J. Bernard, N.D. Greene, J.D. Cooper, M.A. Junaid, R.K. Pullarkat, N. de Vos, M.H. Breuning, J.W. Owens, W.C. Mobley, R.M. Gardiner, B.D. Lake, P.E. Taschner, R.L. Nussbaum, Targeted disruption of the Cln3 gene provides a mouse model for Batten disease. The Batten Mouse Model Consortium

[corrected],

Neurobiol

Dis.

6

(1999)

321–334.

of

doi:10.1006/nbdi.1999.0267S096999619990267X [pii].

ro

[19] S. Ranta, Y. Zhang, B. Ross, L. Lonka, E. Takkunen, A. Messer, J. Sharp, R.

-p

Wheeler, K. Kusumi, S. Mole, W. Liu, M.B. Soares, M.F. Bonaldo, A. Hirvasniemi,

re

A. de la Chapelle, T.C. Gilliam, A.E. Lehesjoki, The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with

lP

mutations in CLN8, Nat Genet. 23 (1999) 233–236. doi:10.1038/13868.

na

[20] M. Koike, H. Nakanishi, P. Saftig, J. Ezaki, K. Isahara, Y. Ohsawa, W. SchulzSchaeffer, T. Watanabe, S. Waguri, S. Kametaka, M. Shibata, K. Yamamoto, E.

ur

Kominami, C. Peters, K. von Figura, Y. Uchiyama, Cathepsin D Deficiency

Jo

Induces Lysosomal Storage with Ceroid Lipofuscin in Mouse CNS Neurons, J. Neurosci. 20 (2018) 6898-906. doi:10.1523/jneurosci.20-18-06898.2000. [21] P. Gupta, A.A. Soyombo, A. Atashband, K.E. Wisniewski, J.M. Shelton, J.A. Richardson, R.E. Hammer, S.L. Hofmann, Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice, Proc Natl Acad Sci U S A. 98 (2001) 13566–13571. doi:10.1073/pnas.251485198. [22] H. Gao, R.-M.N. Boustany, J.A. Espinola, S.L. Cotman, L. Srinidhi, K.A. Antonellis, T. Gillis, X. Qin, S. Liu, L.R. Donahue, R.T. Bronson, J.R. Faust, D.

20

Journal Pre-proof Stout, J.L. Haines, T.J. Lerner, M.E. MacDonald, Mutations in a Novel CLN6Encoded Transmembrane Protein Cause Variant Neuronal Ceroid Lipofuscinosis in Man and Mouse, Am. J. Hum. Genet. 70 (2002) 324-35. doi:10.1086/338190. [23] O. Kopra, J. Vesa, C. von Schantz, T. Manninen, H. Minye, A.L. Fabritius, J. Rapola, O.P. van Diggelen, J. Saarela, A. Jalanko, L. Peltonen, A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals

of

neuropathology associated with early aging, Hum. Mol. Genet. 13 (2004) 2893-

ro

906. doi:10.1093/hmg/ddh312.

-p

[24] D.E. Sleat, J.A. Wiseman, M. El-Banna, K.H. Kim, Q. Mao, S. Price, S.L.

re

Macauley, R.L. Sidman, M.M. Shen, Q. Zhao, M.A. Passini, B.L. Davidson, G.R. Stewart, P. Lobel, A mouse model of classical late-infantile neuronal ceroid

lP

lipofuscinosis based on targeted disruption of the CLN2 gene results in a loss of

na

tripeptidyl-peptidase I activity and progressive neurodegeneration, J Neurosci. 24 (2004) 9117–9126. doi:10.1523/JNEUROSCI.2729-04.2004.

ur

[25] A. Jalanko, J. Vesa, T. Manninen, C. von Schantz, H. Minye, A.L. Fabritius, T.

Jo

Salonen, J. Rapola, M. Gentile, O. Kopra, L. Peltonen, Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of

interneurons,

Neurobiol

Dis.

18

(2005)

226–241.

doi:10.1016/j.nbd.2004.08.013. [26] C.-H. Tang, J.-W. Lee, M.G. Galvez, L. Robillard, S.E. Mole, H.A. Chapman, Murine Cathepsin F Deficiency Causes Neuronal Lipofuscinosis and Late-Onset Neurological

Disease,

Mol.

Cell.

Biol.

26

(2006)

2309-16.

doi:10.1128/mcb.26.6.2309-2316.2006.

21

Journal Pre-proof [27] Z. Ahmed, H. Sheng, Y.F. Xu, W.L. Lin, A.E. Innes, J. Gass, X. Yu, H. Hou, S. Chiba, K. Yamanouchi, M. Leissring, L. Petrucelli, M. Nishihara, M.L. Hutton, E. McGowan, D.W. Dickson, J. Lewis, Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging, Am. J. Pathol. 177 (2010) 311-24. doi:10.2353/ajpath.2010.090915. [28] P.J. Schultheis, S.M. Fleming, A.K. Clippinger, J. Lewis, T. Tsunemi, B. Giasson,

of

D.W. Dickson, J.R. Mazzulli, M.E. Bardgett, K.L. Haik, O. Ekhator, A.K. Chava, J.

ro

Howard, M. Gannon, E. Hoffman, Y. Chen, V. Prasad, S.C. Linn, R.J. Tamargo,

-p

W. Westbroek, E. Sidransky, D. Krainc, G.E. Shull, Atp13a2-deficient mice exhibit

re

neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-

doi:10.1093/hmg/ddt057.

lP

dependent sensorimotor deficits, Hum. Mol. Genet. 22 (2013) 2067-82.

na

[29] J.J. Shacka, Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics, Brain Res

ur

Bull. 88 (2012) 43–57. doi:10.1016/j.brainresbull.2012.03.003.

Jo

[30] J.D. Cooper, M.A. Tarczyluk, H.R. Nelvagal, Towards a new understanding of NCL pathogenesis, Biochim. Biophys. Acta - Mol. Basis Dis. 1852 (2015) 2256– 2261. doi:10.1016/j.bbadis.2015.05.014. [31] A. Bouchelion, Z. Zhang, Y. Li, H. Qian, A.B. Mukherjee, Mice homozygous for c.451C>T mutation in Cln1 gene recapitulate INCL phenotype, Ann Clin Transl Neurol. 1 (2014) 1006–1023. doi:10.1002/acn3.144. [32] J.N. Miller, A.D. Kovacs, D.A. Pearce, The novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression

22

Journal Pre-proof therapy, Hum Mol Genet. 24 (2015) 185–196. doi:10.1093/hmg/ddu428. [33] L. Brandenstein, M. Schweizer, J. Sedlacik, J. Fiehler, S. Storch, Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7, Hum. Mol. Genet. 25 (2016) 777-791. doi:10.1093/hmg/ddv615. [34] R.D. Geraets, L.M. Langin, J.T. Cain, C.M. Parker, R. Beraldi, A.D. Kovacs, J.M.

of

Weimer, D.A. Pearce, A tailored mouse model of CLN2 disease: A nonsense

ro

mutant for testing personalized therapies, PLoS One. 12 (2017) e0176526.

-p

doi:10.1371/journal.pone.0176526.

re

[35] M.L. Katz, S. Khan, T. Awano, S.A. Shahid, A.N. Siakotos, G.S. Johnson, A mutation in the CLN8 gene in English Setter dogs with neuronal ceroidBiochem

Biophys

lP

lipofuscinosis,

Res

Commun.

327

(2005)

541–547.

na

doi:10.1016/j.bbrc.2004.12.038.

[36] T. Awano, M.L. Katz, D.P. O’Brien, J.F. Taylor, J. Evans, S. Khan, I. Sohar, P.

ur

Lobel, G.S. Johnson, A mutation in the cathepsin D gene (CTSD) in American

Jo

Bulldogs with neuronal ceroid lipofuscinosis, Mol Genet Metab. 87 (2006) 341– 348. doi:10.1016/j.ymgme.2005.11.005. [37] D.N. Sanders, F.H. Farias, G.S. Johnson, V. Chiang, J.R. Cook, D.P. O’Brien, S.L. Hofmann, J.Y. Lu, M.L. Katz, A mutation in canine PPT1 causes early onset neuronal ceroid lipofuscinosis in a Dachshund, Mol Genet Metab. 100 (2010) 349–356. doi:10.1016/j.ymgme.2010.04.009. [38] M.L. Katz, F.H. Farias, D.N. Sanders, R. Zeng, S. Khan, G.S. Johnson, D.P. O’Brien, A missense mutation in canine CLN6 in an Australian shepherd with

23

Journal Pre-proof neuronal ceroid lipofuscinosis, J Biomed Biotechnol. 2011 (2011) 198042. doi:10.1155/2011/198042. [39] M. Hirz, M. Drögemüller, A. Schänzer, V. Jagannathan, E. Dietschi, H.H. Goebel, W. Hecht, S. Laubner, M.J. Schmidt, F. Steffen, M. Hilbe, K. Köhler, C. Drögemüller, C. Herden, Neuronal ceroid lipofuscinosis (NCL) is caused by the entire deletion of CLN8 in the Alpenländische Dachsbracke dog, Mol. Genet.

of

Metab. 120 (2017) 269-277. doi:10.1016/j.ymgme.2016.12.007.

ro

[40] M.L. Katz, E. Rustad, G.O. Robinson, R.E.H. Whiting, J.T. Student, J.R. Coates,

-p

K. Narfstrom, Canine neuronal ceroid lipofuscinoses: Promising models for

doi:10.1016/j.nbd.2017.08.017.

re

preclinical testing of therapeutic interventions, Neurobiol. Dis. 108 (2017) 277-28.

lP

[41] D.N. Palmer, N.J. Neverman, J.Z. Chen, C.T. Chang, P.J. Houweling, L.A. Barry,

na

I. Tammen, S.M. Hughes, N.L. Mitchell, Recent studies of ovine neuronal ceroid lipofuscinoses from BARN, the Batten Animal Research Network, Biochim

ur

Biophys Acta. 1852 (2015) 2279–2286. doi:10.1016/j.bbadis.2015.06.013.

Jo

[42] S.L. Eaton, C. Proudfoot, S.G. Lillico, P. Skehel, R.A. Kline, K. Hamer, N.M. Rzechorzek, E. Clutton, R. Gregson, T. King, C.A. O’Neill, J.D. Cooper, G. Thompson, C.B. Whitelaw, T.M. Wishart, CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease)., Sci. Rep. 9 (2019) 9891. doi:10.1038/s41598-019-45859-9. [43] T.B. Johnson, D.A. Sturdevant, K.A. White, A. V. Drack, S. Bhattarai, C. Rogers, J.D. Cooper, D.A. Pearce, J.M. Weimer, Characterization of a novel porcine model of CLN3-Batten disease, Mol. Genet. Metab. 126 (2019) S81.

24

Journal Pre-proof doi:10.1016/J.YMGME.2018.12.198. [44] T. Autti, R. Raininko, P. Santavuori, S.L. Vanhanen, V.P. Poutanen, M. Haltia, MRI of neuronal ceroid lipofuscinosis. II. Postmortem MRI and histopathological study of the brain in 16 cases of neuronal ceroid lipofuscinosis of juvenile or late infantile type, Neuroradiology. 39 (1997) 371-377. doi:10.1007/s002340050427. [45] U. Löbel, J. Sedlacik, M. Nickel, S. Lezius, J. Fiehler, I. Nestrasil, A. Kohlschütter,

of

A. Schulz, Volumetric description of brain atrophy in neuronal ceroid lipofuscinosis

ro

2: Supratentorial gray matter shows uniform disease progression, Am. J.

-p

Neuroradiol. 37 (2016) 1938-1943. doi:10.3174/ajnr.A4816.

re

[46] E.H. Baker, S.W. Levin, Z. Zhang, A.B. Mukherjee, MRI brain volume measurements in infantile neuronal ceroid lipofuscinosis, Am. J. Neuroradiol. 38

lP

(2017) 376-382. doi:10.3174/ajnr.A4978.

na

[47] C.C. Pontikis, S.L. Cotman, M.E. MacDonald, J.D. Cooper, Thalamocortical neuron loss and localized astrocytosis in the Cln3Deltaex7/8 knock-in mouse

ur

model of Batten disease, Neurobiol Dis. 20 (2005) 823–836. doi:S0969-

Jo

9961(05)00153-1 [pii]10.1016/j.nbd.2005.05.018. [48] C. Kielar, L. Maddox, E. Bible, C.C. Pontikis, S.L. Macauley, M.A. Griffey, M. Wong, M.S. Sands, J.D. Cooper, Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis, Neurobiol Dis. 25 (2007) 150–162. doi:10.1016/j.nbd.2006.09.001. [49] C. von Schantz, C. Kielar, S.N. Hansen, C.C. Pontikis, N.A. Alexander, O. Kopra, A. Jalanko, J.D. Cooper, Progressive thalamocortical neuron loss in Cln5 deficient mice: Distinct effects in Finnish variant late infantile NCL, Neurobiol Dis. 34 (2009)

25

Journal Pre-proof 308–319. http://www.ncbi.nlm.nih.gov/pubmed/19385065. [50] M. Kuronen, A.E. Lehesjoki, A. Jalanko, J.D. Cooper, O. Kopra, Selective spatiotemporal patterns of glial activation and neuron loss in the sensory thalamocortical pathways of neuronal ceroid lipofuscinosis 8 mice, Neurobiol Dis. 47 (2012) 444–457. doi:S0969-9961(12)00164-7 [pii]10.1016/j.nbd.2012.04.018. [51] N. Perentos, A.Q. Martins, R.J. Cumming, N.L. Mitchell, D.N. Palmer, S.J.

of

Sawiak, A.J. Morton, An EEG Investigation of Sleep Homeostasis in Healthy and

-p

doi:10.1523/JNEUROSCI.4295-15.2016.

ro

CLN5 Batten Disease Affected Sheep, J Neurosci. 36 (2016) 8238–8249.

re

[52] M.J. Oswald, D.N. Palmer, G.W. Kay, S.J. Shemilt, P. Rezaie, J.D. Cooper, Glial activation spreads from specific cerebral foci and precedes neurodegeneration in

lP

presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6), Neurobiol Dis. 20

na

(2005) 49–63. doi:S0969-9961(05)00044-6 [pii]10.1016/j.nbd.2005.01.025. [53] M.J. Oswald, D.N. Palmer, G.W. Kay, K.J. Barwell, J.D. Cooper, Location and

ur

connectivity determine GABAergic interneuron survival in the brains of South

Jo

Hampshire sheep with CLN6 neuronal ceroid lipofuscinosis, Neurobiol. Dis. 32 (2008) 50-65. doi:10.1016/j.nbd.2008.06.004. [54] I.S. Amorim, N.L. Mitchell, D.N. Palmer, S.J. Sawiak, R. Mason, T.M. Wishart, T.H. Gillingwater, 2015. Molecular neuropathology of the synapse in sheep with CLN5 Batten disease, Brain Behav. 5, e00401. doi:10.1002/brb3.401. [55] K.N. Russell, N.L. Mitchell, N.G. Anderson, C.R. Bunt, M.P. Wellby, T.R. Melzer, G.K. Barrell, D.N. Palmer, 2018.

Computed tomography provides enhanced

techniques for longitudinal monitoring of progressive intracranial volume loss

26

Journal Pre-proof associated

with

regional

neurodegeneration

in

ovine

neuronal

ceroid

lipofuscinoses, Brain Behav. 8, e01096. doi:10.1002/brb3.1096. [56] J.F. Staropoli, L. Haliw, S. Biswas, L. Garrett, S.M. Hölter, L. Becker, S. Skosyrski, P. da Silva-Buttkus, J. Calzada-Wack, F. Neff, B. Rathkolb, J. Rozman, A. Schrewe, T. Adler, O. Puk, M. Sun, J. Favor, I. Racz, R. Bekeredjian, D.H. Busch, J. Graw, M. Klingenspor, T. Klopstock, E. Wolf, W. Wurst, A. Zimmer, E.

of

Lopez, H. Harati, E. Hill, D.S. Krause, J. Guide, E. Dragileva, E. Gale, V.C.

ro

Wheeler, R.M. Boustany, D.E. Brown, S. Breton, K. Ruether, V. Gailus-Durner, H.

-p

Fuchs, M.H. de Angelis, S.L. Cotman, 2012. Large-scale phenotyping of an

the

central

nervous

re

accurate genetic mouse model of JNCL identifies novel early pathology outside system,

PLoS

One.

7,

e38310.

lP

doi:10.1371/journal.pone.0038310.

na

[57] N. Galvin, C. Vogler, B. Levy, A. Kovacs, M. Griffey, M.S. Sands, A murine model of infantile neuronal ceroid lipofuscinosis-ultrastructural evaluation of storage in

ur

the central nervous system and viscera, Pediatr Dev Pathol. 11 (2008) 185–192.

Jo

doi:10.2350/07-03-0242.1.

[58] A.L. Fabritius, J. Vesa, H.M. Minye, I. Nakano, H. Kornblum, L. Peltonen, Neuronal ceroid lipofuscinosis genes, CLN2, CLN3 and CLN5 are spatially and temporally co-expressed in a developing mouse brain, Exp Mol Pathol. 97 (2014) 484–491. doi:10.1016/j.yexmp.2014.10.003. [59] J. Cárcel-Trullols, A.D. Kovács, D.A. Pearce, Cell biology of the NCL proteins: What they do and don’t do, Biochim. Biophys. Acta - Mol. Basis Dis. 1852 (2015) 2242-55. doi:10.1016/j.bbadis.2015.04.027.

27

Journal Pre-proof [60] H.M. Minye, A.L. Fabritius, J. Vesa, L. Peltonen, Data on characterizing the gene expression patterns of neuronal ceroid lipofuscinosis genes: CLN1, CLN2, CLN3, CLN5 and their association to interneuron and neurotransmission markers: Parvalbumin

and

Somatostatin,

Data

Br.

8

(2016)

741–749.

doi:10.1016/j.dib.2016.06.027. [61] C.C. Barney, J. Hoch, B. Byiers, A. Dimian, F.J. Symons, A case-controlled

Clin.

J.

Pain.

31

(2015)

998-1003.

ro

lipofuscinosis,

of

investigation of pain experience and sensory function in neuronal ceroid

-p

doi:10.1097/AJP.0000000000000192.

re

[62] C. Shyng, H.R. Nelvagal, J.T. Dearborn, J. Tyynela, R.E. Schmidt, M.S. Sands, J.D. Cooper, Synergistic effects of treating the spinal cord and brain in CLN1 Proc

Natl

Acad

Sci

lP

disease,

U

S

A.

144

(2017)

E5920-E5929.

na

doi:10.1073/pnas.1701832114.

[63] T. Awano, M.L. Katz, D.P. O’Brien, I. Sohar, P. Lobel, J.R. Coates, S. Khan, G.C.

ur

Johnson, U. Giger, G.S. Johnson, A frame shift mutation in canine TPP1 (the

Jo

ortholog of human CLN2) in a juvenile Dachshund with neuronal ceroid lipofuscinosis,

Mol

Genet

Metab.

89

(2006)

254–260.

doi:10.1016/j.ymgme.2006.02.016. [64] M.L. Katz, L. Tecedor, Y. Chen, B.G. Williamson, E. Lysenko, F.A. Wininger, W.M. Young, G.C. Johnson, R.E. Whiting, J.R. Coates, B.L. Davidson, AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease, Sci Transl Med. 7 (2015) 313ra180. doi:10.1126/scitranslmed.aac6191.

28

Journal Pre-proof [65] M. Hirz, M. Drogemuller, A. Schanzer, V. Jagannathan, E. Dietschi, H.H. Goebel, W. Hecht, S. Laubner, M.J. Schmidt, F. Steffen, M. Hilbe, K. Kohler, C. Drogemuller, C. Herden, Neuronal ceroid lipofuscinosis (NCL) is caused by the entire deletion of CLN8 in the Alpenlandische Dachsbracke dog, Mol Genet Metab. 120 (2017) 269–277. doi:10.1016/j.ymgme.2016.12.007. [66] M.J. Bennett, D. Rakheja, The neuronal ceroid-lipofuscinoses, Dev Disabil Res

of

Rev. 17 (2013) 254–259. doi:10.1002/ddrr.1118.

ro

[67] S. Dulz, L. Wagenfeld, M. Nickel, G. Richard, R. Schwartz, U. Bartsch, A.

-p

Kohlschütter, A. Schulz, Novel morphological macular findings in juvenile CLN3

re

disease, Br. J. Ophthalmol. 100 (2016) 824-8. doi:10.1136/bjophthalmol-2015307320.

lP

[68] G.M. Seigel, A. Lotery, A. Kummer, D.J. Bernard, N.D. Greene, M. Turmaine, T.

na

Derksen, R.L. Nussbaum, B. Davidson, J. Wagner, H.M. Mitchison, Retinal pathology and function in a Cln3 knockout mouse model of juvenile Neuronal

ur

Ceroid Lipofuscinosis (batten disease), Mol Cell Neurosci. 19 (2002) 515–527.

Jo

doi:10.1006/mcne.2001.1099. [69] H. Leinonen, V. Keksa-Goldsteine, S. Ragauskas, P. Kohlmann, Y. Singh, E. Savchenko, J. Puranen, T. Malm, G. Kalesnykas, J. Koistinaho, H. Tanila, K.M. Kanninen, Retinal Degeneration in A Mouse Model of CLN5 Disease Is Associated

with

Compromised

Autophagy,

Sci.

Rep.

7

(2017)

1597.

doi:10.1038/s41598-017-01716-1. [70] M.N. Preising, M. Abura, M. Jäger, K.H. Wassill, B. Lorenz, Ocular morphology and function in juvenile neuronal ceroid lipofuscinosis (CLN3) in the first decade

29

Journal Pre-proof of

life,

Ophthalmic

Genet.

38

(2017)

252-259.

doi:10.1080/13816810.2016.1210651. [71] C. Volz, M. Mirza, T. Langmann, H. Jägle, Further characterization of the predominant inner retinal degeneration of aging Cln3 Δex7/8 knock-in mice, Adv. Exp. Med. Biol. 1074 (2018) 403-411. doi:10.1007/978-3-319-75402-4_50. [72] J. Groh, D. Stadler, M. Buttmann, R. Martini, Non-invasive assessment of retinal

of

alterations in mouse models of infantile and juvenile neuronal ceroid lipofuscinosis

-p

(2014) 54. doi:10.1186/2051-5960-2-54.

ro

by spectral domain optical coherence tomography, Acta Neuropathol. Commun. 2

re

[73] J.M. Weimer, A.W. Custer, J.W. Benedict, N.A. Alexander, E. Kingsley, H.J. Federoff, J.D. Cooper, D.A. Pearce, Visual deficits in a mouse model of Batten

lP

disease are the result of optic nerve degeneration and loss of dorsal lateral

na

geniculate thalamic neurons, Neurobiol Dis. 22 (2006) 284–293. doi:S09699961(05)00311-6 [pii]10.1016/j.nbd.2005.11.008.

ur

[74] G.M. Seigel, J. Wagner, A. Wronska, L. Campbell, W. Ju, N. Zhong, Progression

Jo

of early postnatal retinal pathology in a mouse model of neuronal ceroid lipofuscinosis, Eye. 19 (2005) 1306-12. doi:10.1038/sj.eye.6701770. [75] M. Koike, M. Shibata, Y. Ohsawa, H. Nakanishi, T. Koga, S. Kametaka, S. Waguri, T. Momoi, E. Kominami, C. Peters, K. Figura, P. Saftig, Y. Uchiyama, Involvement of two different cell death pathways in retinal atrophy of cathepsin Ddeficient

mice,

Mol

Cell

Neurosci.

22

(2003)

146–161.

https://www.ncbi.nlm.nih.gov/pubmed/12676526. [76] M.L. Katz, G.S. Johnson, G.E. Tullis, B. Lei, Phenotypic characterization of a

30

Journal Pre-proof mouse model of juvenile neuronal ceroid lipofuscinosis, Neurobiol Dis. 29 (2008) 242–253. doi:S0969-9961(07)00202-1 [pii]10.1016/j.nbd.2007.08.017. [77] C. Follo, M. Ozzano, V. Mugoni, R. Castino, M. Santoro, C. Isidoro, 2011. Knockdown of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish, PLoS One. 6, e21908. doi:10.1371/journal.pone.0021908.

of

[78] M. Mirza, C. Volz, M. Karlstetter, M. Langiu, A. Somogyi, M.O. Ruonala, E.R.

ro

Tamm, H. Jägle, T. Langmann, 2013. Progressive Retinal Degeneration and Glial

Effect

of

DHA

and

Curcumin

Supplementation,

PLoS

One.

re

Beneficial

-p

Activation in the CLN6nclf Mouse Model of Neuronal Ceroid Lipofuscinosis: A

8(10),e75963. doi:10.1371/journal.pone.0075963.

lP

[79] J. Guo, G.S. Johnson, H.A. Brown, M.L. Provencher, R.C. da Costa, T. Mhlanga-

na

Mutangadura, J.F. Taylor, R.D. Schnabel, D.P. O’Brien, M.L. Katz, A CLN8 nonsense mutation in the whole genome sequence of a mixed breed dog with

ur

neuronal ceroid lipofuscinosis and Australian shepherd ancestry, Mol. Genet.

Jo

Metab. 112 (2014) 302-9. doi:10.1016/j.ymgme.2014.05.014. [80] W. Jankowiak, L. Brandenstein, S. Dulz, C. Hage, S. Storch, U. Bartsch, Retinal degeneration in mice deficient in the lysosomal membrane protein CLN7, Investig. Ophthalmol. Vis. Sci. 57 (2016) 4989-4998. doi:10.1167/iovs.16-20158. [81] M.M. Ouseph, M.E. Kleinman, Q.J. Wang, Vision loss in juvenile neuronal ceroid lipofuscinosis (CLN3 disease), Ann. N. Y. Acad. Sci. 1371 (2016) 55-67. doi:10.1111/nyas.12990. [82] S.L. Cotman, V. Vrbanac, L.A. Lebel, R.L. Lee, K.A. Johnson, L.R. Donahue, A.M.

31

Journal Pre-proof Teed, K. Antonellis, R.T. Bronson, T.J. Lerner, M.E. MacDonald, Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth, Hum Mol Genet. 11 (2002) 2709–2721. http://www.ncbi.nlm.nih.gov/pubmed/12374761. [83] J.P. Gavornik, M.F. Bear, Higher brain functions served by the lowly rodent primary visual cortex, Learn. Mem. 15 (2014) 527-33. doi:10.1101/lm.034355.114.

of

[84] E. Bible, P. Gupta, S.L. Hofmann, J.D. Cooper, Regional and cellular

ro

neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model

-p

of infantile neuronal ceroid lipofuscinosis, Neurobiol Dis. 16 (2004) 346–359.

re

doi:10.1016/j.nbd.2004.02.010S0969996104000440 [pii]. [85] C. Kielar, T.M. Wishart, A. Palmer, S. Dihanich, A.M. Wong, S.L. Macauley, C.H.

lP

Chan, M.S. Sands, D.A. Pearce, J.D. Cooper, T.H. Gillingwater, Molecular

na

correlates of axonal and synaptic pathology in mouse models of Batten disease, Hum Mol Genet. 18 (2009) 4066–4080. doi:10.1093/hmg/ddp355.

ur

[86] J.P. Morgan, H. Magee, A. Wong, T. Nelson, B. Koch, J.D. Cooper, J.M. Weimer,

Jo

2013. A murine model of variant late infantile ceroid lipofuscinosis recapitulates behavioral and pathological phenotypes of human disease, PLoS One. 8, e78694 doi:10.1371/journal.pone.0078694. [87] S. Partanen, A. Haapanen, C. Kielar, C. Pontikis, N. Alexander, T. Inkinen, P. Saftig, T.H. Gillingwater, J.D. Cooper, J. Tyynela, Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis, J Neuropathol Exp Neurol. 67 (2008) 16–29. doi:10.1097/nen.0b013e31815f3899.

32

Journal Pre-proof [88] M. Thelen, M. Dae, M. Schweizer, C. Hagel, A.M.S. Wong, J.D. Cooper, T. Braulke, G. Galliciotti, 2012. Disruption of the autophagy-lysosome pathway is involved in neuropathology of the nclf mouse model of neuronal ceroid lipofuscinosis, PLoS One. 7, e35493. doi:10.1371/journal.pone.0035493. [89] K. Sakajiri, N. Matsubara, T. Nakajima, N. Fukuhara, T. Makifuchi, M. Wakabayashi, S. Oyanagi, E. Kominami, A Family with Adult Type Ceroid

Intern.

Med.

34

(2008)

1158–1163.

ro

Cases.,

of

Lipofuscinosis (Kufs’ Disease) and Heart Muscle Disease: Report of Two Autopsy

-p

doi:10.2169/internalmedicine.34.1158.

re

[90] J.R. Ostergaard, T.B. Rasmussen, H. Molgaard, Cardiac involvement in juvenile neuronal ceroid lipofuscinosis (Batten disease), Neurology. 76 (2011) 1245–1251.

lP

doi:10.1212/WNL.0b013e31821435bd.

na

[91] S. Fukumura, Y. Saito, T. Saito, H. Komaki, E. Nakagawa, K. Sugai, M. Sasaki, A. Oka, I. Takamisawa, Progressive conduction defects and cardiac death in late

ur

infantile neuronal ceroid lipofuscinosis, Dev. Med. Child Neurol. 54 (2012)663-6.

Jo

doi:10.1111/j.1469-8749.2011.04170.x. [92] A. Ashwini, A. D’Angelo, O. Yamato, C. Giordano, G. Cagnotti, T. HarcourtBrown, T. Mhlanga-Mutangadura, J. Guo, G.S. Johnson, M.L. Katz, Neuronal ceroid lipofuscinosis associated with an MFSD8 mutation in Chihuahuas, Mol. Genet. Metab. 118 (2016) 326-32. doi:10.1016/j.ymgme.2016.05.008. [93] M.L. Katz, G.C. Johnson, S.B. Leach, B.G. Williamson, J.R. Coates, R.E.H. Whiting, D.P. Vansteenkiste, M.S. Whitney, Extraneuronal pathology in a canine model of CLN2 neuronal ceroid lipofuscinosis after intracerebroventricular gene

33

Journal Pre-proof therapy that delays neurological disease progression, Gene Ther. 24 (2017) 215223. doi:10.1038/gt.2017.4. [94] J.R. Ostergaard, Paroxysmal sympathetic hyperactivity in Juvenile neuronal ceroid lipofuscinosis (Batten disease), Auton. Neurosci. Basic Clin. 214 (2018) 15–18. doi:10.1016/j.autneu.2018.07.003. [95] J.R. Ostergaard, Juvenile neuronal ceroid lipofuscinosis (Batten disease): current Degener.

Neurol.

Neuromuscul.

Dis.

of

insights.,

(2016)

73–83.

ro

doi:10.2147/DNND.S111967.

6

-p

[96] K. Takakusaki, Neurophysiology of gait: from the spinal cord to the frontal lobe,

re

Mov Disord. 28 (2013) 1483–1491. doi:10.1002/mds.25669. [97] K.M.E. Faller, R. Gutierrez-Quintana, A. Mohammed, A.A. Rahim, R.I. Tuxworth,

lP

K. Wager, M. Bond, The neuronal ceroid lipofuscinoses: Opportunities from model

na

systems, Biochim. Biophys. Acta - Mol. Basis Dis. 1852 (2015) 2267-78. doi:10.1016/j.bbadis.2015.04.022.

ur

[98] D. Wei, F. Yang, Y. Wang, F. Yang, C. Wu, S.X. Wu, W. Jiang, Degeneration and

Jo

Regeneration of GABAergic Interneurons in the Dentate Gyrus of Adult Mice in Experimental Models of Epilepsy, CNS Neurosci. Ther. 21 (2015) 52-60. doi:10.1111/cns.12330. [99] G. Vargova, T. Vogels, Z. Kostecka, T. Hromadka, Inhibitory interneurons in Alzheimer’s

disease.,

Bratisl.

Lek.

Listy.

119

(2018)

205–209.

doi:10.4149/BLL_2018_038. [100] H. Tsuiji, I. Inoue, M. Takeuchi, A. Furuya, Y. Yamakage, S. Watanabe, M. Koike, M. Hattori, K. Yamanaka, TDP-43 accelerates age-dependent degeneration of

34

Journal Pre-proof interneurons, Sci. Rep. 7 (2017) 14972. doi:10.1038/s41598-017-14966-w. [101] M.M. Conti, N. Chambers, C. Bishop, A new outlook on cholinergic interneurons in Parkinson’s disease and L-DOPA-induced dyskinesia, Neurosci. Biobehav. Rev. 92 (2018) 67-82. doi:10.1016/j.neubiorev.2018.05.021. [102] O. Kann, The interneuron energy hypothesis: Implications for brain disease, Neurobiol. Dis. 90 (2016) 75-85. doi:10.1016/j.nbd.2015.08.005.

of

[103] S.L. Macauley, D.F. Wozniak, C. Kielar, Y. Tan, J.D. Cooper, M.S. Sands,

mouse,

Exp

Neurol.

(2009)

124–135.

re

doi:10.1016/j.expneurol.2009.01.022.

217

-p

deficient

ro

Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-

[104] J.M. Weimer, J.W. Benedict, A.L. Getty, C.C. Pontikis, M.J. Lim, J.D. Cooper,

lP

D.A. Pearce, Cerebellar defects in a mouse model of juvenile neuronal ceroid

na

lipofuscinosis, Brain Res. 1266 (2009) 93–107. doi:S0006-8993(09)00291-1 [pii]10.1016/j.brainres.2009.02.009.

ur

[105] S.U. Walkley, J. Sikora, M. Micsenyi, C. Davidson, K. Dobrenis, Lysosomal

Jo

compromise and brain dysfunction: examining the role of neuroaxonal dystrophy, Biochem. Soc. Trans. 38 (2010) 1436-41. doi:10.1042/bst0381436. [106] O. Wirths, H. Breyhan, A. Marcello, M.C. Cotel, W. Bruck, T.A. Bayer, Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease, Neurobiol Aging. 31 (2010) 747–757. doi:10.1016/j.neurobiolaging.2008.06.011. [107] M.E. Bosch, T. Kielian, Neuroinflammatory paradigms in lysosomal storage diseases, Front Neurosci. 9 (2015) 417. doi:10.3389/fnins.2015.00417.

35

Journal Pre-proof [108] C.J. Garwood, L.E. Ratcliffe, J.E. Simpson, P.R. Heath, P.G. Ince, S.B. Wharton, Review: Astrocytes in Alzheimer’s disease and other age-associated dementias: a supporting player with a central role, Neuropathol. Appl. Neurobiol. 43 (2017) 281298. doi:10.1111/nan.12338. [109] C.E.G. Leyns, D.M. Holtzman, Glial contributions to neurodegeneration in tauopathies, Mol. Neurodegener. 12 (2017) 50. doi:10.1186/s13024-017-0192-x.

of

[110] S.A. Wolf, H.W.G.M. Boddeke, H. Kettenmann, Microglia in Physiology and

ro

Disease, Annu. Rev. Physiol. 79 (2017) 619-643. doi:10.1146/annurev-physiol-

-p

022516-034406.

re

[111] L. Parviainen, S. Dihanich, G.W. Anderson, A.M. Wong, H.R. Brooks, R. Abeti, P. Rezaie, G. Lalli, S. Pope, S.J. Heales, H.M. Mitchison, B.P. Williams, J.D.

lP

Cooper, Glial cells are functionally impaired in juvenile neuronal ceroid

na

lipofuscinosis and detrimental to neurons, Acta Neuropathol. Commun. 5 (2017) 74. doi:10.1186/s40478-017-0476-y.

ur

[112] J. Lange, L.J. Haslett, E. Lloyd-Evans, J.M. Pocock, M.S. Sands, B.P. Williams,

Jo

J.D. Cooper, Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis, Acta Neuropathol. Commun. 6 (2018) 74. doi:10.1186/s40478-018-0575-4. [113] J. Groh, T.G. Kühl, C.W. Ip, H.R. Nelvagal, S. Sri, S. Duckett, M. Mirza, T. Langmann, J.D. Cooper, R. Martini, Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis, Brain. 136 (2013) 1083–1101. doi:10.1093/brain/awt020. [114] J. Groh, E. Ribechini, D. Stadler, T. Schilling, M.B. Lutz, R. Martini, Sialoadhesin

36

Journal Pre-proof promotes neuroinflammation-related disease progression in two mouse models of CLN disease, Glia. 64 (2016) 792-809. doi:10.1002/glia.22962. [115] S. Chattopadhyay, M. Ito, J.D. Cooper, A.I. Brooks, T.M. Curran, J.M. Powers, D.A. Pearce, An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease, Hum Mol Genet. 11 (2002) 1421– 1431. http://www.ncbi.nlm.nih.gov/pubmed/12023984.

of

[116] S.S. Seehafer, D. Ramirez-Montealegre, A.M. Wong, C.H. Chan, J. Castaneda,

ro

M. Horak, S.M. Ahmadi, M.J. Lim, J.D. Cooper, D.A. Pearce, Immunosuppression

-p

alters disease severity in juvenile Batten disease mice, J Neuroimmunol. 230

re

(2011) 169–172. doi:S0165-5728(10)00405-4 [pii]10.1016/j.jneuroim.2010.08.024. [117] S.L. Macauley, A.M. Wong, C. Shyng, D.P. Augner, J.T. Dearborn, Y. Pearse,

lP

M.S. Roberts, S.C. Fowler, J.D. Cooper, D.M. Watterson, M.S. Sands, An anti-

na

neuroinflammatory that targets dysregulated glia enhances the efficacy of CNSdirected gene therapy in murine infantile neuronal ceroid lipofuscinosis, J

ur

Neurosci. 34 (2014) 13077–13082. doi:10.1523/JNEUROSCI.2518-14.2014.

Jo

[118] E.F. Augustine, J.W. Mink, Juvenile NCL (CLN3 Disease): Emerging DiseaseModifying Therapeutic Strategies, Pediatr Endocrinol Rev. 13 Suppl 1 (2016) 655–662. https://www.ncbi.nlm.nih.gov/pubmed/27491213. [119] J. Groh, K. Berve, R. Martini, Fingolimod and Teriflunomide Attenuate Neurodegeneration in Mouse Models of Neuronal Ceroid Lipofuscinosis, Mol Ther. 25 (2017) 1889-1899. doi:10.1016/j.ymthe.2017.04.021. [120] C. De Duve, R. Wattiaux, Functions of lysosomes, Annu Rev Physiol. 28 (1966) 435–492. doi:10.1146/annurev.ph.28.030166.002251.

37

Journal Pre-proof [121] A. Vellodi, Lysosomal storage disorders, Br J Haematol. 128 (2005) 413–431. doi:10.1111/j.1365-2141.2004.05293.x. [122] P.P.Y. Lie, R.A. Nixon, Lysosome trafficking and signaling in health and neurodegenerative

diseases,

Neurobiol.

Dis.

122

(2019)

94-105.

doi:10.1016/j.nbd.2018.05.015. [123] C.Y. Lim, R. Zoncu, The lysosome as a command-and-control center for cellular

of

metabolism, J. Cell Biol. 214 (2016) 653-64. doi:10.1083/jcb.201607005.

ro

[124] A. Ballabio, The awesome lysosome, EMBO Mol. Med. 8 (2016) 73-6.

-p

doi:10.15252/emmm.201505966.

re

[125] C. Settembre, A. Fraldi, D.L. Medina, A. Ballabio, Signals from the lysosome: a control centre for cellular clearance and energy metabolism, Nat Rev Mol Cell

lP

Biol. 14 (2013) 283–296. doi:10.1038/nrm3565.

na

[126] A.P. Lieberman, R. Puertollano, N. Raben, S. Slaugenhaupt, S.U. Walkley, A. Ballabio, Autophagy in lysosomal storage disorders, Autophagy. 8 (2012) 719-30.

ur

doi:10.4161/auto.19469.

Jo

[127] E. Wong, A.M. Cuervo, Autophagy gone awry in neurodegenerative diseases, Nat Neurosci. 13 (2010) 805–811. doi:10.1038/nn.2575. [128] P. Boya, Lysosomal function and dysfunction: mechanism and disease, Antioxid Redox Signal. 17 (2012) 766–774. doi:10.1089/ars.2011.4405. [129] J. Adams, M. Feuerborn, J.A. Molina, A.R. Wilden, B. Adhikari, T. Budden, S.Y. Lee, Autophagy–lysosome pathway alterations and alpha-synuclein up-regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease, Sci. Rep. 9 (2019) 151. doi:10.1038/s41598-018-36379-z.

38

Journal Pre-proof [130] M. Koike, M. Shibata, S. Waguri, K. Yoshimura, I. Tanida, E. Kominami, T. Gotow, C. Peters, K. Von Figura, N. Mizushima, P. Saftig, Y. Uchiyama, Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease), Am. J. Pathol. 167 (2005) 1713-28. doi:10.1016/S0002-9440(10)61253-9. [131] Y. Cao, J.A. Espinola, E. Fossale, A.C. Massey, A.M. Cuervo, M.E. MacDonald,

ceroid

lipofuscinosis,

J.

Biol.

Chem.

281

(2006)

20483-93.

ro

neuronal

of

S.L. Cotman, Autophagy is disrupted in a knock-in mouse model of juvenile

-p

doi:10.1074/jbc.M602180200.

re

[132] H.L. Best, N.J. Neverman, H.E. Wicky, N.L. Mitchell, B. Leitch, S.M. Hughes, Characterisation of early changes in ovine CLN5 and CLN6 Batten disease neural

lP

cultures for the rapid screening of therapeutics, Neurobiol Dis. 100 (2017) 62–74.

na

doi:10.1016/j.nbd.2017.01.001.

[133] C. Ward, N. Martinez-Lopez, E.G. Otten, B. Carroll, D. Maetzel, R. Singh, S.

ur

Sarkar, V.I. Korolchuk, Autophagy, lipophagy and lysosomal lipid storage

Jo

disorders, Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 1861 (2016) 269-84. doi:10.1016/j.bbalip.2016.01.006. [134] M. Lehtovirta, A. Kyttala, E.L. Eskelinen, M. Hess, O. Heinonen, A. Jalanko, Palmitoyl protein thioesterase (PPT) localizes into synaptosomes and synaptic vesicles in neurons: implications for infantile neuronal ceroid lipofuscinosis (INCL),

Hum

Mol

Genet.

10

(2001)

69–75.

http://www.ncbi.nlm.nih.gov/pubmed/11136716. [135] T. Virmani, P. Gupta, X. Liu, E.T. Kavalali, S.L. Hofmann, Progressively reduced

39

Journal Pre-proof synaptic vesicle pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1

knockout

mice,

Neurobiol

Dis.

20

(2005)

314–323.

doi:10.1016/j.nbd.2005.03.012. [136] B. Grünewald, M.D. Lange, C. Werner, A. O’Leary, A. Weishaupt, S. Popp, D.A. Pearce, H. Wiendl, A. Reif, H.C. Pape, K. V. Toyka, C. Sommer, C. Geis, 2017. Defective synaptic transmission causes disease signs in a mouse model of neuronal

ceroid

lipofuscinosis,

Elife,

of

juvenile

pii:

e28685.

ro

doi:10.7554/eLife.28685.

6.

-p

[137] M. Llavero Hurtado, H.R. Fuller, A.M.S. Wong, S.L. Eaton, T.H. Gillingwater, G.

re

Pennetta, J.D. Cooper, T.M. Wishart, Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in

lP

vivo, Sci. Rep. 7 (2017) 12412. doi:10.1038/s41598-017-12603-0.

na

[138] K.P. Koster, W. Francesconi, F. Berton, S. Alahmadi, R. Srinivas, A. Yoshii, 2019. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid

ur

lipofuscinosis mouse model, Elife, 8. pii: e40316. doi:10.7554/eLife.40316.

Jo

[139] J. Di Giovanni, Z.-H. Sheng, Regulation of synaptic activity by snapin-mediated endolysosomal

transport

and

sorting,

EMBO

J.

34

(2015)

2059-77.

doi:10.15252/embj.201591125. [140] M.S. Goo, L. Sancho, N. Slepak, D. Boassa, T.J. Deerinck, M.H. Ellisman, B.L. Bloodgood, G.N. Patrick, Activity-dependent trafficking of lysosomes in dendrites and

dendritic

spines,

J.

Cell

Biol.

216

(2017)

2499-2513.

doi:10.1083/jcb.201704068. [141] N.D. Okerlund, R.J. Reimer, K. Schneider, S. Leal-Ortiz, C. Montenegro-Venegas,

40

Journal Pre-proof S.A. Kim, L.C. Garner, E.D. Gundelfinger, R.J. Reimer, C.C. Garner, Bassoon Controls Presynaptic Autophagy through Atg5, Neuron. 93 (2017) 897-913. doi:10.1016/j.neuron.2017.01.026. [142] I. Sambri, R. D’Alessio, Y. Ezhova, T. Giuliano, N.C. Sorrentino, V. Cacace, M. De Risi, M. Cataldi, L. Annunziato, E. De Leonibus, A. Fraldi, Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic

of

function prevents neurodegeneration in lysosomal storage diseases, EMBO Mol.

ro

Med. 9 (2017) 112-132. doi:10.15252/emmm.201606965.

-p

[143] K. Lepeta, M. V. Lourenco, B.C. Schweitzer, P. V. Martino Adami, P. Banerjee, S.

re

Catuara-Solarz, M. de La Fuente Revenga, A.M. Guillem, M. Haidar, O.M. Ijomone, B. Nadorp, L. Qi, N.D. Perera, L.K. Refsgaard, K.M. Reid, M. Sabbar, A.

Zhang,

C.

Seidenbecher,

Synaptopathies:

synaptic

dysfunction

in

na

X.D.

lP

Sahoo, N. Schaefer, R.K. Sheean, A. Suska, R. Verma, C. Vicidomini, D. Wright,

neurological disorders – A review from students to students, J. Neurochem. 138

ur

(2016) 785-805. doi:10.1111/jnc.13713.

Potential

Jo

[144] Y.C. Li, E.T. Kavalali, Synaptic Vesicle-Recycling Machinery Components as Therapeutic

Targets,

Pharmacol.

Rev.

69

(2017)

141-160.

doi:10.1124/pr.116.013342. [145] C. Shyng, M.S. Sands, Astrocytosis in infantile neuronal ceroid lipofuscinosis: friend

or

foe?,

Biochem

Soc

Trans.

42

(2014)

1282–1285.

doi:10.1042/BST20140188. [146] E. Blanco-Suárez, A.L.M. Caldwell, N.J. Allen, Role of astrocyte–synapse interactions

in

CNS

disorders,

J.

Physiol.

595

(2017)

1903-1916.

41

Journal Pre-proof doi:10.1113/JP270988. [147] M. Colonna, O. Butovsky, Microglia Function in the Central Nervous System During Health and Neurodegeneration, Annu. Rev. Immunol. 35 (2017) 441-468. doi:10.1146/annurev-immunol-051116-052358. [148] A. Singh, W.C. Abraham, Astrocytes and synaptic plasticity in health and disease, Exp. Brain Res. 235 (2017) 1645-1655. doi:10.1007/s00221-017-4928-1.

of

[149] U. Chandrachud, M.W. Walker, A.M. Simas, S. Heetveld, A. Petcherski, M. Klein,

ro

H. Oh, P. Wolf, W.N. Zhao, S. Norton, S.J. Haggarty, E. Lloyd-Evans, S.L.

-p

Cotman, Unbiased cell-based screening in a neuronal cell model of batten

CLN3

protein

function,

J.

Biol.

Chem.

290

(2015)

14361-80.

lP

doi:10.1074/jbc.M114.621706.

re

disease highlights an interaction between Ca2+ homeostasis, autophagy, and

na

[150] E. Lloyd-Evans, Acidic Ca2+ stores in neurodegeneration., Messenger (Los Angeles, Calif. Print). 5 (2016) 37–55. doi:10.1166/msr.2016.1054.

ur

[151] A. Grubman, E. Pollari, C. Duncan, A. Caragounis, T. Blom, I. Volitakis, A. Wong,

Jo

J. Cooper, P.J. Crouch, J. Koistinaho, A. Jalanko, A.R. White, K.M. Kanninen, Deregulation of biometal homeostasis: the missing link for neuronal ceroid lipofuscinoses?,

Metallomics.

6

(2014)

932–943.

http://www.ncbi.nlm.nih.gov/pubmed/24804307. [152] P.C. Nijssen, C. Ceuterick, O.P. van Diggelen, M. Elleder, J.J. Martin, J.L. Teepen, J. Tyynela, R.A. Roos, Autosomal dominant adult neuronal ceroid lipofuscinosis: a novel form of NCL with granular osmiophilic deposits without palmitoyl protein thioesterase 1 deficiency, Brain Pathol. 13 (2003) 574–581.

42

Journal Pre-proof https://www.ncbi.nlm.nih.gov/pubmed/14655761. [153] R. Goswami, M. Ahmed, J. Kilkus, T. Han, S.A. Dawson, G. Dawson, Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2, J Neurosci Res. 81 (2005) 208–217. doi:10.1002/jnr.20549. [154] A. Lyly, C. von Schantz, T. Salonen, O. Kopra, J. Saarela, M. Jauhiainen, A.

of

Kyttala, A. Jalanko, Glycosylation, transport, and complex formation of palmitoyl

-p

(2007) 22. doi:10.1186/1471-2121-8-22.

ro

protein thioesterase 1 (PPT1)--distinct characteristics in neurons, BMC Cell Biol. 8

re

[155] C. Settembre, A. Ballabio, Lysosome: regulator of lipid degradation pathways, Trends Cell Biol. 24 (2014) 743–750. doi:10.1016/j.tcb.2014.06.006.

as

disorders

of

autophagy,

Autophagy.

4

(2008)

113–114.

na

diseases

lP

[156] C. Settembre, A. Fraldi, D.C. Rubinsztein, A. Ballabio, Lysosomal storage

https://www.ncbi.nlm.nih.gov/pubmed/18000397.

Dysfunction,

Annu.

Rev.

Neurosci.

39

(2016)

277-95.

Jo

Lysosomal

ur

[157] A. Fraldi, A.D. Klein, D.L. Medina, C. Settembre, Brain Disorders Due to

doi:10.1146/annurev-neuro-070815-014031. [158] J. Sharma, A. di Ronza, P. Lotfi, M. Sardiello, Lysosomes and Brain Health, Annu. Rev. Neurosci. 41 (2018) 255-276. doi:10.1146/annurev-neuro-080317-061804. [159] M.B. Bagh, S. Peng, G. Chandra, Z. Zhang, S.P. Singh, N. Pattabiraman, A. Liu, A.B. Mukherjee, Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model, Nat. Commun. 8 (2017) 14612. doi:10.1038/ncomms14612.

43

Journal Pre-proof [160] T. Danyukova, K. Ariunbat, M. Thelen, N. Brocke-Ahmadinejad, S.E. Mole, S. Storch, Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation, Hum. Mol. Genet. 27 (2018) 1711-1722. doi:10.1093/hmg/ddy076. [161] V.W. Rebecca, M.C. Nicastri, C. Fennelly, C.I. Chude, J.S. Barber-Rotenberg, A. Ronghe, Q. McAfee, N.P. McLaughlin, G. Zhang, A.R. Goldman, R. Ojha, S. Piao,

of

E. Noguera-Ortega, A. Martorella, G.M. Alicea, J.J. Lee, L.M. Schuchter, X. Xu,

ro

M. Herlyn, R. Marmorstein, P.A. Gimotty, D.W. Speicher, J.D. Winkler, R.K.

derivatives

in

cancer,

Cancer

Discov.

9

(2019)

220-229.

re

chloroquine

-p

Amaravadi, PPT1 promotes tumor growth and is the molecular target of

doi:10.1158/2159-8290.CD-18-0715.

lP

[162] V.W. Rebecca, M.C. Nicastri, N. McLaughlin, C. Fennelly, Q. McAfee, A. Ronghe,

na

M. Nofal, C.Y. Lim, E. Witze, C.I. Chude, G. Zhang, G.M. Alicea, S. Piao, S. Murugan, R. Ojha, S.M. Levi, Z. Wei, J.S. Barber-Rotenberg, M.E. Murphy, G.B.

ur

Mills, Y. Lu, J. Rabinowitz, R. Marmorstein, Q. Liu, S. Liu, X. Xu, M. Herlyn, R.

Jo

Zoncu, D.C. Brady, D.W. Speicher, J.D. Winkler, R.K. Amaravadi, A unified approach to targeting the lysosome’s degradative and growth signaling roles, Cancer Discov. 7 (2017) 1266-1283. doi:10.1158/2159-8290.CD-17-0741. [163] C.J. Holler, G. Taylor, Z.T. McEachin, Q. Deng, W.J. Watkins, K. Hudson, C.A. Easley, W.T. Hu, C.M. Hales, W. Rossoll, G.J. Bassell, T. Kukar, Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: A novel therapeutic lead to treat frontotemporal dementia, Mol. Neurodegener. 11 (2016) 46. doi:10.1186/s13024-016-0114-3.

44

Journal Pre-proof [164] M. Palmieri, R. Pal, H.R. Nelvagal, P. Lotfi, G.R. Stinnett, M.L. Seymour, A. Chaudhury, L. Bajaj, V. V Bondar, L. Bremner, U. Saleem, D.Y. Tse, D. Sanagasetti, S.M. Wu, J.R. Neilson, F.A. Pereira, R.G. Pautler, G.G. Rodney, J.D. Cooper, M. Sardiello, mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases, Nat Commun. 8 (2017) 14338. doi:10.1038/ncomms14338.

of

[165] M.A. Tarczyluk-Wells, C. Salzlechner, A.R. Najafi, M.J. Lim, D. Smith, F.M. Platt,

ro

B.P. Williams, J.D. Cooper, Combined Anti-inflammatory and Neuroprotective

-p

Treatments Have the Potential to Impact Disease Phenotypes in Cln3−/− Mice,

re

Front. Neurol. 10 (2019) 963. doi:10.3389/fneur.2019.00963. [166] K. Kim, H.K. Kleinman, H.J. Lee, K. Pahan, Safety and potential efficacy of

lP

gemfibrozil as a supportive treatment for children with late infantile neuronal

na

ceroid lipofuscinosis and other lipid storage disorders, Orphanet J Rare Dis. 12 (2017) 113. doi:10.1186/s13023-017-0663-8.

and

drug

administration-approved

lipid-lowering

drugs,

up-regulate

Jo

food

ur

[167] A. Ghosh, G.T. Corbett, F.J. Gonzalez, K. Pahan, Gemfibrozil and fenofibrate,

tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor α: Implications for late infantile batten disease therapy, J. Biol. Chem. 287 (2012) 38922-35. doi:10.1074/jbc.M112.365148. [168] A. Ghosh, M. Jana, K. Modi, F.J. Gonzalez, K.B. Sims, E. Berry-Kravis, K. Pahan, Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: Implications for lysosomal storage disorders, J. Biol. Chem. 290 (2015) 10309-24. doi:10.1074/jbc.M114.610659.

45

Journal Pre-proof [169] M. Hong, K.D. Song, H.K. Lee, S.S. Yi, Y.S. Lee, T.H. Heo, H.S. Jun, S.J. Kim, Fibrates inhibit the apoptosis of Batten disease lymphoblast cells via autophagy recovery and regulation of mitochondrial membrane potential, Vitr. Cell. Dev. Biol. - Anim. 52 (2016) 349-355. doi:10.1007/s11626-015-9979-7. [170] Z. Zhang, J.D. Butler, S.W. Levin, K.E. Wisniewski, S.S. Brooks, A.B. Mukherjee, Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary

of

neurodegenerative disease of childhood, Nat Med. 7 (2001) 478–484.

ro

doi:10.1038/86554.

-p

[171] M.S. Roberts, S.L. Macauley, A.M. Wong, D. Yilmas, S. Hohm, J.D. Cooper, M.S.

re

Sands, Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis, J Inherit Metab

lP

Dis. 35 (2012) 847–857. doi:10.1007/s10545-011-9446-x.

na

[172] C. Sarkar, G. Chandra, S. Peng, Z. Zhang, A. Liu, A.B. Mukherjee, Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic

ur

implications for INCL, Nat Neurosci. 16 (2013) 1608–1617. doi:10.1038/nn.3526.

Jo

[173] A.D. Kovacs, A. Saje, A. Wong, S. Ramji, J.D. Cooper, D.A. Pearce, Agedependent therapeutic effect of memantine in a mouse model of juvenile Batten disease, Neuropharmacology. 63 (2012) 769-75. doi:S0028-3908(12)00248-1 [pii]10.1016/j.neuropharm.2012.05.040. [174] A.D. Kovacs, A. Saje, A. Wong, G. Szenasi, P. Kiricsi, E. Szabo, J.D. Cooper, D.A. Pearce, Temporary inhibition of AMPA receptors induces a prolonged improvement of motor performance in a mouse model of juvenile Batten disease, Neuropharmacology.

60

(2011)

405–409.

doi:S0028-3908(10)00280-7

46

Journal Pre-proof [pii]10.1016/j.neuropharm.2010.10.010. [175] E.F. Augustine, C.A. Beck, H.R. Adams, S. Defendorf, A. Vierhile, D. Timm, J.M. Weimer, J.W. Mink, F.J. Marshall, Short-term administration of mycophenolate is well-tolerated in CLN3 disease (Juvenile neuronal ceroid lipofuscinosis), JIMD Rep., 43 (2019) 117-124. doi:10.1007/8904_2018_113. [176] S.W. Levin, E.H. Baker, W.M. Zein, Z. Zhang, Z.M. Quezado, N. Miao, A.

of

Gropman, K.J. Griffin, S. Bianconi, G. Chandra, O.I. Khan, R.C. Caruso, A. Liu,

ro

A.B. Mukherjee, Oral cysteamine bitartrate and N-acetylcysteine for patients with

-p

infantile neuronal ceroid lipofuscinosis: a pilot study, Lancet Neurol. 13 (2014)

re

777–787. doi:10.1016/S1474-4422(14)70142-5.

[177] R.D. Geraets, S. Koh, M.L. Hastings, T. Kielian, D.A. Pearce, J.M. Weimer, towards

effective

therapeutic

lP

Moving

strategies

for

Neuronal

Ceroid

0414-2.

na

Lipofuscinosis, Orphanet J Rare Dis. 11 (2016) 40. doi:10.1186/s13023-016-

ur

[178] A. di Ronza, L. Bajaj, J. Sharma, D. Sanagasetti, P. Lotfi, C.J. Adamski, J.

Jo

Collette, M. Palmieri, A. Amawi, L. Popp, K.T. Chang, M.C. Meschini, H.C.E. Leung, L. Segatori, A. Simonati, R.N. Sifers, F.M. Santorelli, M. Sardiello, CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis, Nat. Cell Biol. 20 (2018) 1370-77. doi:10.1038/s41556-018-0228-7. [179] A. Yamashita, Y. Hiraki, T. Yamazaki, Identification of CLN6 as a molecular entity of endoplasmic reticulum-driven anti-aggregate activity, Biochem. Biophys. Res. Commun. 487 (2017) 917-922. doi:10.1016/j.bbrc.2017.05.002. [180] A. Lyly, C. von Schantz, C. Heine, M.L. Schmiedt, T. Sipila, A. Jalanko, A. Kyttala,

47

Journal Pre-proof Novel interactions of CLN5 support molecular networking between Neuronal Ceroid Lipofuscinosis proteins, BMC Cell Biol. 10 (2009) 83. doi:10.1186/14712121-10-83. [181] M. McLaren, S. Mathavarajah, R. Huber, 2019. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum, Cells. 8(2) pii: E115. doi:10.3390/cells8020115.

potential

therapeutic

target,

J

Mol

Cell

Biol.

5

(2013)

214–226.

ro

to

of

[182] H. Appelqvist, P. Waster, K. Kagedal, K. Ollinger, The lysosome: from waste bag

Jo

ur

na

lP

re

-p

doi:10.1093/jmcb/mjt022.

48

Journal Pre-proof

Source

Identifier

N/A

N/A

Jo

ur

na

lP

re

-p

ro

of

Resource N/A N/A

49

Journal Pre-proof Declarations of interest

Jo

ur

na

lP

re

-p

ro

of

JDC has been in receipt of research support from BioMarin Pharmaceutical Inc., Abeona Therapeutics Inc., Regenexbio Inc. and CereSpir Inc, but none of these projects relate directly to the subject of this review. The other authors have no declarations of interest.

50

Journal Pre-proof Highlights There is evidence that multiple novel organ systems are affected by NCL pathology.



Specific sub-populations of neurons are more vulnerable to NCL pathology.



Regional gliosis accurately predicts neuron loss, rather than AFSM accumulation.



Dysfunction in synaptic, autophagic and CLEAR pathways may cause phenotypes.



Novel pathological sites and mechanisms are targets for future therapies.

Jo

ur

na

lP

re

-p

ro

of



51