Volume 2 l/Number 4/April 1990 Dundas, I., Johannessen, O. M., Berge, G. & Heimdal, B. (1989). Toxic algae bloom in Scandinavian waters, May-June 1988. Oceanogr. Mag. 2, 8-14. Elmgren, R. (1989). Maffs impact on the ecosystem of the Baltic Sea: energy flows today and at the turn of the century. Ambio 18, 326332. Eppley, R., Renger, E. W. & Becket, P. R. (1983). The residence time of particulate organic carbon in the surface layer of the ocean. DeepSea Res. 30, 311-323. Gargas, E., Mortensen, S. &/Ertebjerg Nielsen, G. (1980). Production and photosynthetic efficiency of phytoplankton in the open Danish waters 1975-1977. Ophelia, Suppl. 1,123-144. Graf, G. (1987). Benthic response to annual sedimentation pattern. In Seawater-Sediment Interactions in Caostal Waters (J. Ruhmor, E. Walgert and B. Zeitzschel, eds), pp. 84-91. Lecture Notes on Coastal and Estuarine Studies 13, Springer Verlag, Berlin. ICES. (1987). Assessment of environmental conditions in the Skagerrak and Kattegat. ICES Coop. Research Report No. 149 (R T. Hognestad, ed.). Kelly, J. R. & Nixon, S. W. (1984). Experimental studies of the effect of organic deposition on the metabolism of a coastal marine bottom community. Mar. Ecol. Prog. Ser. 17, 157-169. Larson, U., Elmgren, R. & Wulff, F. (1985). Eutrophication and the Baltic Sea: Causes and consequences. Ambio 14, 9-14. Nielsen, A. & ,z:Erteberg,G. (1984). Plankton blooms in Danish waters.
Ophelia, Suppl. 3, 181-188. Pearson, T. H., Josefson, A. B. & Rosenberg, R. (1985). Petersens benthos stations revisited. I. Is the Kattegat becoming eutrophic? J. Exp. Mar. Biol. EcoL 92, 157-206. Rosenberg, R. (1985). Eutrophication--the future marine coastal nuisance'? Mar. Pollut. Bull. 16,227-231. Rosenberg, R., Gray, J. S., Josefson. A. B. & Pearson, "12 H. (1987). Petersens benthic stations revisited. II. ls the Oslofjord and eastern Skagerrak enriched? J. Exp. Mar. Biol. EcoL 105,219-251. Rosenberg, R. & Loo, L. O. (1988). Marine eutrophication induced oxygen deficiency: effects on soft bottom fauna, western Sweden. Ophelia 29,213-225. Stigebrandt, A. & Wutff, F. (1987). A model for the dynamics of nutrients and oxygen in the Baltic proper. J. Mar Res. 45,729-759. Vollenweider, R. A. (1976). Advances in defining critical loading levels for phosphorus in lake eutrophication. Mern. 1st. ltal. Idrobiol. 33, 53-83. Wassmann, P. (1985). Sedimentation of particulate material in Nordfisvannet, a hypertrophic, land-locked fjord in western Norway. Mar. EcoL Prog. Ser. 22,259-271. Wassmann, P. (1990). Relationship between primary and export production in the boreal, coastal zone of the North Atlantic. Linmol. Oceanogr. 35, in press. Wulff, F. & Stigebrandt, A. (1989). A time-dependent budget model for nutrients in the Baltic Sea. Global BiogeochernicalCycles3, 63-78.
0 0 2 5 - 3 2 6 X / 9 0 $3.00+0 oo © 1990 Pergamon Press plc
Marine Pollution Bulletin, Volume 21, No, 4, pp. 187-189, 1990. Printed in Great Britain.
Patterns of Cyclic Organochlorine Contamination in Livers of Male Pleuronectiformes from the North Sea, Winter 1987 RAINER KNICKMEYER and HANS STEINHART
Institut B i o c h e m i e u n d LebensmitteIchemie der Universitdt, Grindelallee 117, 2000 H a m b u r g 13, Federal Republic o f Germany
Regional differences in some organochlorines during winter were determined in the livers of male pleuronectiformes of the North Sea. They were most contaminated with PCBs, followed by p,p'-DDE, Lindane and HCB. The contamination corresponds to the input pattern of rivers to the North Sea.
T h e d e s c r i p t i o n of regional differences in o r g a n o c h l o r i n e residues in livers of flatfishes from the N o r t h Sea has b e e n the subject of extensive research (Dethlefsen & H u s c h e n b e t h , 1986; Biither, 1988a, b). T h e s e a u t h o r s used livers from females or p o o l e d s a m p l e s of male a n d female tissues for m o n i t o r i n g . H o w e v e r , investigations c o n d u c t e d by K n i c k m e y e r & Steinhart ( 1 9 9 0 ) indicate that d e p l e t i o n of lipids from the female liver d u r i n g ovary m a t u r a t i o n is an i m p o r t a n t excretory
p a t h w a y of cyclic o r g a n o c h l o r i n e s d u r i n g spawning. H i g h e r c o n c e n t r a t i o n s of P C B s were f o u n d in male livers c o m p a r e d to their female c o u n t e r p a r t s . N o correlation was o b s e r v e d , however, within the same area. G o o d e x a m p l e s to illustrate the status of c o n t a m i n a t i o n of flatfish are d a b ( L i m a n d a limanda), rough d a b (Hippoglossoides platessoides) a n d plaice (Pleuronectes platessa). D a b a n d plaice were f o u n d in m o s t areas of the s o u t h e r n a n d n o r t h - e a s t e r n N o r t h Sea, rought d a b in the o t h e r areas u p to the b o r d e r of the c o n t i n e n t a l shelf. All species show the same feeding b e h a v i o u r a n d s p a w n b e t w e e n J a n u a r y a n d M a y ( S t r e s e m a n n , 1974; K n u s t , 1 9 8 6 ; M a c D o n a l d & W a i w o o d , 1987). Males of p l e u r o n e c t i f o r m e s are therefore ideal for m o n i t o r i n g o r g a n i c p o l l u t i o n s d u r i n g winter.
Materials and Methods T h e s p e c i m e n s a n a l y s e d in the p r e s e n t study were collected in the N o r t h Sea with the FS Valdivia, from 26 187
Marine Pollution Bulletin TABLE 1 January-9 March, 1987, and with the FFS Walter Position of the stations, number (n) and species of pooled makes. Herwig, from 2 February-3 March, 1987. Only sexually Lipid/ Y-7PCB HCB p,p'-DDE Lindane mature males were used. The samples were wrapped in Position dry wt ICES aluminum foil (precleaned with ethylacetate and n % gg. g-L ng .g-~ ng. g-l ng. g-l n-hexane) and transported to the laboratory in a frozen N 3*16' E 2L 62.5 0.94 3 60 26 condition (-25"C). The livers were removed from the 51"57' 52"13' N 2"40' E 3L 36.6 2.1 5 120 77 fishes, pooled for each station, and lyophilized. Extrac- 52*35'N 2"45'E 2L 58.3 0.36 2 56 15 1.0 6 69 41 tion and chromatographic procedures are described by 52*20'N 4*00' E 3P 73.7 3L 78.4 2.3 22 350 62 Knickmeyer & Steinhart (1989). A Carlo Erba HRGC 52*40'N3*31'E 53*00'N 3"00'E 2L 57.8 0.56 6 47 38 5300 gas chromatograph equipped with a 63Ni-ECD 53"20' N 4"50' E 3P 67.3 1.8 6 155 48 0.37 7 66 5 (300*C) was used for the detection of the organo- 53*20'N 3*00' E 3L 74.9 4L 61.0 0.38 4 100 20 chlorines. The column for GC-analysis was a 50 m SE 53*30'N1*55'E 53*41'N4*38'E 4P 58.8 1.1 9 140 43 54 fused silica column with 0.32 mm ID and a 0.25 gm 53"41' N 6"25' E 2L 61.5 2.1 34 52 71 1.6 7 165 42 film. The carrier gas was helium at a flow rate of 2 ml 53"50' N 7"13' E 4L 37.1 3L 77.1 0.71 4 77 15 min-t. Make-up gas was argon-methane (90/10) at a 54*00'N1*23'E 54*04'N 3"41' E 3L 68.3 0.86 63 290 22 flow rate of 30 ml min -~. The temperature programme 54*05' N 4*26' E 2L 57.7 1.2 18 240 47 1.1 13 165 54 started at 70"C and increased to 1500C within 40°C 54"10' N 6"35' E 2L 69.6 N 7"35' E 5L 56.6 0.87 15 150 95 min -1 followed by an increase of 4°C min -~ to 280*C. 54"17' 54*27'N1*12'E 3L 73.8 0.87 13 160 26 Isothermal runs at 280°C oven temperature were 54*27'N0*30'E 3H 50.4 1.1 6 135 14 0.32 6 80 4 employed for 12 min. A Merck-Hitachi 2000 inte- 54*27' N 3*00' E 3L 63.2 7*00' E 2L 50.0 0.87 5 150 59 grator was used for peak identification and quantifica- 54*33'N 54"40' N 5"35' E 4L 54.7 0.84 15 115 48 tion using ~-Hexachlorocyclohexane (e-HCH) as an 54*45'N 4"06'E 4L 60.2 0.18 8 36 2 1.2 18 260 23 internal standard. The standard mixture contained the 54*50'N0*11"E 2L 37.8 3H 57.6 0.70 6 52 15 seven PCB congeners on the primary list issued by 54*53'N0*58'E 54*55'N5*10"E 3L 47.5 0.74 7 110 26 ICES, p,p'-DDE, HCB, y-HCH (Lindane) and e-HCH. 55*00'N7*10'E 3L 52.2 1.2 7 180 54 0.56 2 115 36 The standard solution was injected every twentieth 55*03" N 6*09' E 4L 65.2 55*09"N 3*00' E 3L 40.4 0.82 6 305 20 injection for recalibration. 55"20' N 0"18' W 3H 35.4 0.65 7 150 21
R e s u l t s and D i s c u s s i o n The livers were most contaminated with PCBs (Z7PCB 0.18-2.3 g g - g - l n-hexane extractable lipid), followed by p,p'-DDE (15-915 n g - g -~ n-hexane extractable lipid), Lindane (2-95 ng. g-1 n-hexane extractable lipid) and HCB (2-62 n g - g -1 n-hexane extractable lipid) (Table 1). Revelation of the widespread contamination of marine environments by anthropogenic substances has provided an impetus for concern regarding the entrance, transport and fate of these substances in the North Sea. The results reported here correspond well with the input pattern of rivers to the North Sea. which were calculated by model simulation studies (MiillerNavarra & Mittelstaedt, 1985, 1988). The results of the present_investigations show that the continental rivers as well as the Tyne are important sources of PCB in flatfish (Fig. 1). This was also demonstrated by Knickmeyer & Steinhart (1988a) and Biither (1988a, b). Samples from the southern North Sea, the northern British east coast and the Dogger Bank are more contaminated with p,p'-DDE compared to the other areas (Fig. 2). In accordance with Dethlefsen (1988) highest concentrations of p,p'-DDE have not been found nearshore but in the central North Sea. Males from the international ocean combustion area in the centre of the southern North Sea, the Ems-Dollard region and the Scottish east coast, as well as a station in the Southern Bight and the northeastern Dogger Bank had accumulated maximum amounts of HCB in their tissues (Fig. 3). The contamination of the flatfishes reflected the contamination of their prey and the sediments (Cowan, 1981; Knickmeyer & Steinhart, 1988a, b; Lohse, 1988;
188
55*28"N 7"13' E 55*38'N 6*42' E 55*44' N 7*56' E 55"49' N 0"18' E 55°49 ' N 3*00' E 55*55"N 5*38' E 56*00'N1"38"W 56"00' N 2"15' E 56°03'N 3"21' E 56°09' N 4"52" E 56*10'N5*21'E 56"21' N 4"08' E 56*26"N3*29"E 56"28" N 2"22' E 56*29' N 3*00' E 56*30"N 1"20' W 56*40"N 3°00 ' E 56"40" N 0°48' W 56*40"N 1"00' E 56"40' N 4"51" E 57"13" N 8"35" E 57*16'N 1"16"E 57*38'N0*16"E 57°50'N3"00"E
3L 3L 4L 3H 5H 2L 5H 3L 3H 5H 3L 3L 2H 2H 2L 3L 4L 4H 3H 3L 2L 3H 3H 3L
27.5 49.1 40.8 65.7 56.0 54.0 61.5 49.2 57.9 31.8 47.9 17.6 57.1 53.9 84.4 68.4 69.8 57.2 44.3 28.8 25.2 45.1 54.6 41.5
0.82 0.39 1.0 0.48 1.3 0.72 0.45 0.43 0.68 1.9 1.9 0.51 0.77 0.84 0.56 0.30 0.43 0.54 0.56 0.53 0.93 0.44 0.34 0.63
8 5 9
11 (--) 6 13 2 3 5 60 3 2 11 3 11 4 19 2 4 8 9 4 4
82 53 140 250 300 89 145 53 215 915 740 93 235 200 15 95 74 125 19 96 120 105 69 175
38 13 40 15 22 17 18 18 22 18 46 16 12 32 7 9 21 15 14 3 31 8 14 17
L =Limanda limanda, H = Hippoglossoides platessoides, P= Pleuronectes platessa, concentrations of organochlorines on n-hexane extractable lipid basis. (--) = not quantified.
Biither, 1989). Lindane contamination documented in Fig. 4 was influenced by the larger input of y-HCH by continental rivers compared to British rivers (Grogan, 1984; Carlson, 1986; Knickmeyer & Steinhart, 1988a; Bfither, 1988b). This investigation is part of the project 'Zirkulation und Schadstoffumsatz in der Nordsee, MFU 057650" siapported by the German 'Bundesminister fiir Forschung und Technologie'. We thank the Institut fiir Hydrobiologie und Fischereiwissenschaft, Universitfit Hamburg and the Bundesforschungsanstalt fiir Fischerei, Hamburg for the collection of the fishes. B/ither, H. (1988a). Distribution of chlorinated organic compounds in livers of dab (Limanda limanda) of the southern and central North
Volume 21/Number 4/April 1990 0 °
4 °
0
6 °
°
4 °
00
0.63
0,34
101
0.44
0.54
0.S6
0.43
0.30
5 6
o
~.,s
6 o
ii,11
~
Ill
74
9S
o.$1
o.oo
o.4a
1~[;
O,S3
0414 ° ' ~ . 7 7
110
lS | l l
03
ss
soo
I11 011
~
111QI I i
|11
560
t.* u
1.1
1111
|00
";
o.r2
IIio
I
0 ~
515
0.6S
o
o,o
-
o2o.10
"~
1.1
!10
o.14
O, 32
~
114
ILIllr
100
BO
77
,,
110
141
1tii
140
s:Z.
•
1 1114, el
.
•
". 0.37
5 2
IN loo
,,
0.38
1041
1111
tl
::
21 ..o
c
"" "'Y" I
....
0 o
4 °
6 o
Fig. 1 Concentrations of PCBs in livers of male pleuronectiformes from the North Sea. Concentration gg PCBs. g-t n-hexane extractable lipid. Dotted area with PCB contamination >0.8 gg" g-L 0 °
4 °
6
4 °
0 °
6 °
Fig. 3 Concentrations of p,p'-DDE in livers of male pleuronectiformes from the North Sea. Concentration ng p,p'-DDE • g-~ n-hexane extractable lipid. Dotted areas with p,p'-DDE contamination > 1 0 0 n g ' g 1. 0 ~
°
6
°
17
9
111
8
2
4 11
4
3
2
.
2
14
271
9 s
56
lS
3
0
3
W
0
6
s
s
56
~
5 6
°
~1
,8
~8
3 12
111
22
le
56
~r
°
22
7 14;
6
e
2 s
o
lS 4
Ill ~
7
23
I
15
20
341
14
'
7
6 111
5 111 11
• 1
,
~
1~
22
47
&4
4.1 4
20
5
4l
71 , # . d~' m " * '
el. 41
' '
0 2
52°
II
0
52o
~
0 o
4 °
6 °
52
~
0
o
_5,e 4 °
6 °
Fig. 2 Concentrations of HCB in livers of male pleuronectiformes from the North Sea. Concentration ng HCB. g-1 n-hexane extractable lipid. Dotted areas with HCB contamination > 10 ng. g-L
Fig. 4 Concentrations of Lindane in livers of male pleuronectiformes from the North Sea. Concentration ng Lindane-g-~ n-hexane extractable lipid. Dotted area with Lindane contamination > 30 ng-g-].
Sea. Mitt. GeoL-Paliiont. Inst. Univ. Hamburg65, 497-541. Bfither, H. (1988b). Regionale Verteilung und geobiochemische Bedeutung der Kontaminationsmuster schwerflfichtiger Organochlorverbindungen in Klieschen (Limanda limanda) der siidlichen und zentralen Nordsee. Verdffentl. Inst. Kiisten. Binnenfisch. Hamburg 99. Bfither, H. (1989). Kontamination der Kliesche (LKimanda limanda) und verschiedener Wirbelloser im internationalen Seeverbrennungsgebiet mit Organochlorverbindungen. Inform. Fischwirtschaft 36, 70-74. Carlson, H. (1986). Quality status of the North Sea. Dr. hydrogr Z. Erg.-H. B. 16. Cowan, A. A. (1981). Organochlorine compounds in mussels from Scottish coastal waters. Environ. Pollut. 28,129-143. Dethlefsen, V. (1988). Bericht fiber einen Workshop "Die Kliesche als Umweltindikator' vom 14.-16.06.1988 in Hamburg. Inform. Fischwirtschaft 3 5, 108-110. Dethlefsen, V. & Huschenbeth, E. (1986). Regional differences in organochlorine residues in livers of dab (Limanda limanda) and plaice (Pleuronectes platessa) of the southern North Sea. Arch. Fisch Wiss. 37, 25-42. Grogan, W. C. (1984). Input of Contaminants to the North Sea from the United Kingdom. Heriot-Watt University, Institute of Offshore Engineering, Edinburgh. Knickmeyer, R. & Steinhart, H. (1988a). Cyclic organochlorines in the hermit crabs Pagurus bernhardus and Pagurus pubescens from the North Sea. A comparison between winter and early summer situation. Neth. J. Sea Res. 22,237-251.
Knickmeyer, R. & Steinhart, H. (1988b). The distribution of cyclic organochlorines in North Sea sediments. Dr. hydrogr. Z. 41, 1-21. Knickmeyer, R. & Steinhart, H. (1989). Cyclic organochlorines in plancton from the North Sea in spring. Estuar. Coast• ShelfSci. 28, 117-127. Knickmeyer, R. 8.: Steinhart, H. (1990). On the distribution of polychlorinated biphenyl congeners and hexachlorobenzene in different tissues of dab (Limanda limanda) from the North Sea. Chemosphere 19, in press. Knust, R. (1986). Food selection of dab (Limanda limanda (L.)): diet and seasonal changes. ICES C. M. 1986/g: 63. Lohse, J. (1988). Ocean incineration of toxic wastes: a footprint in North Sea sediments. Mar. Pollut. Bull. 19, 366-371. MacDonald, J. S. & Waiwood, K. S. (1987). Feeding chronology and daily calculations for winter flounder (Pseudopleuronectes americanus), American plaice (Hippoglossoides platessoides), and ocean pout (Macrozoarces americanus) in Passamaquoddy Bay, New Brunswick. Can. Z Zool. 65,499-503. Mfiller-Navarra, S. & Mittelstaedt, E. (1985). Schadstoffausbreitung und Schadstoffbelastung in der Nordsee, Dtsch. Hydrogr. Inst. Hamburg. Miiller-Navarra, S. & Mittelstaedt, E. (1988). Modelluntersuchungen zur Ausbreitung kfinstlicher Radionuklide in der Nordsee. Dtsch. Hydrogr. Inst. Hamburg. Stresemann, E. (1974). Exkursionsfauna ffir die Gebiete der DDR und der BRD, Wirbeltiere. 6. Auflage, pp. 78-8l. Volk und Wissen Volkseigener Verlag Berlin. 189