Annals of Discrete Mathematics 27 (1985) 443-446 OElsevier Science Publishers B.V. (North-Holland)
443
PERIODIC POINTS OF SMALL PERIODS OF CONTINUOUS MAPPINGS OF TREES Wilf r i e d I m r ich
1
M o n t a n u n i v e r s i t a e t Leoben AUSTRIA
L e t f b e a c o n t i n u o u s s e l f - m a p o f a tree T w i t h e e n d p o i n t s . We show t h a t f h a s a p o i n t o f p e r i o d m , 1 < m 5 e , i f f has a periodic point of period > e .
91.
INTRODUCTION
I n [ l ] S a r k o v s k i i ' s t h e o r e m [21 on p e r i o d i c p o i n t s o f c o n t i n u o u s s e l f mappings o f t h e i n t e r v a l w a s g e n e r a l i z e d t o trees and c o n d i t i o n s were g i v e n under which t h e e x i s t e n c e o f a p e r i o d i c p o i n t o f p e r i o d s e l f - m a p o f a tree
T
of a continuous
i m p l i e s t h e e x i s t e n c e of p e r i o d i c p o i n t s o f o t h e r ,
Here w e show t h a t a c o n t i n u o u s s e l f - m a p o f a tree
l a r g e r periods.
e n d p o i n t s a l w a y s h a s a p e r i o d i c p o i n t of p e r i o d
,1<
m
with
T
, if
m C e
e
i t has
> 1.
p e r i o d i c p o i n t s of p e r i o d
52.
n
DEFINITIONS We c o n s i d e r trees a s m e t r i c s p a c e s , e v e r y e d g e b e i n g i s o m e t r i c t o t h e u n i t
interval.
If
x,y
a r e p o i n t s ( n o t n e c e s s a r i l y v e r t i c e s ) o f a tree
e x i s t s a unique s h o r t e s t path
[ x , y l from
x
to
y
in
.
T
i s o m e t r i c t o a n i n t e r v a l of t h e r e a l l i n e w e c a l l i t a n i n t e r u u l o f [x,yI\Ix,yl
we w r i t e
i n an i n t e r v a l
A s u s u a l we s a y 1 5 i < n. set
{fl(x)
2
v'
'Supported
in
is
For
x 6 T
has
f-period
Orb(x)
n
f 7
if
of a t r e e
[x,yl
fn(x)
f o r t h e o r b i t of
x
=
x
,
has a fixed
T
and i f
y 6 [x,f(y)]. but fi(x)
i.e.,
4x
for
for the
01.
For e v e r y s u b t r e e vertex
[x,yl i f [ f ( x ) , f ( y ) l
We f u r t h e r w r i t e
Ii
.
b u t f o r o n e r e f e r e n c e t o 11, Lemma 1 1 , w h e r e w e
u s e t h e s p e c i a l c a s e t h a t a c o n tin u o u s self-map z
T
(x,y).
The p a p e r i s s e l f - c o n t a i n e d point
there
T
[x,yl
As
S
of
T
t h e r e is a unique
which i s c o n t a i n e d i n e v e r y p a t h from
v
to
by NSERC
S
of
T
and every p o i n t
v
S
.
We c a l l
v1
W.Imrich
444 t h e projection
ps(v)
o r a n x-branch of
53.
of
to
S
.
If
f ,
f
Let
a
U
2 endpoints l e t
t
T
be t h e x-branch of
y
f(x)
b e t h e e n d p o i n t of
Thus t h e r e e x i s t p o i n t s
on
t
d
If
z
T
f(x).
d i f f e r e n t from 5 3)
U
9
has only
, otherwise
x
W
of
x such t h a t
let
y
which i s c l o s e s t t o U 0 f(U) =
0.
[x,yl w i t h for all
[x,yl w i t h d i s t a n c e
w e i n f e r by c o n t i n u i t y t h a t
y
W
If
of
s € [x,tl.
b e t h e supremum of t h e d i s t a n c e s of s u c h p o i n t s
b e t h e p o i n t on
z
i s i n the t-branch of
f(t)
containing
W
s C [x,f(x)]
Let
. z
t h e r e i s a neighbourhood
x
4x
f(x)
and
€ [x,zl.
be t h e r a m i f i c a t i o n p o i n t ( v e r t e x o f d e g r e e Since
,
x
a l s o contains a f i x e d point
can be chosen such t h a t
W
Let
f(x)
which contains
for a l l
z
Proof.
let
and
with respect to
T
be a continuous self-map o f a t r e e T
Moreover, z
containing
.
T
T
RESULTS LEMMA 1.
x
i s a p o i n t of
x
U {XI i s c a l l e d a b r m c h of
U
T.
Then t h e x-braneh of of
v
T {XI then
component of
d
from
from
t
.
x
x
and
s a t i s f i e s t h e a s s e r t i o n s of t h e
z
Lemma. If
i t is still possible t h a t
z = y
implies
f(z)
=
z
However, i f
if
w
f(y)
f
W
, which
LEMMA 2. [f
(x), f ( y ) l
a c o n t i n u i t y argument shows t h a t
y
W
containing
f(y).
f
[x,yl.
be a continuous self-rap of (x,y)
Then
v € [x,f(v)l
and
If
a € [x,bl
f o l l o w s from [l, Lemma 1 1 . a € [b,yl. a-branch o f Suppose
a
, whereas
n
[y,f(v)l
By c o n t i n u i t y t h e r e are p o i n t s
f ( b ) = y.
z = y
y € [x,f(y)l.
But
I t h a s fewer e n d p o i n t s
(and
T
and suppose
contains e i t h e r a f i x e d p o i n t or a point
such that
Proof.
also
a l l o w s t o conclude t h e proof by i n d u c t i o n .
Let
3
z
h a s o n l y two e n d p o i n t s .
t h e n w e c o n s i d e r t h e y-branch of than
f ( z ) = z , and t h e n
I n p a r t i c u l a r , we note t h a t
s a t i s f i e s t h e a s s e r t i o n s of t h e Lemma.
a
.
and
b
in
[x,yl
with
b C [x,al
By Lemma 1 t h i s i m p l i e s t h a t t h e r e e x i s t s a f i x e d p o i n t x
b € [a,zl.
Then
f(b)
(and
b).
f(b) = y
Let
f(a) = x
the existence of a fixed point
b € [a,yl)
We can t h e r e f o r e assume t h a t
T containing
v
z
and i n the
z
b e such a f i x e d p o i n t .
is i n t h e
b-branch of
would have t o be i n t h e b-branch of
T
T
containing
containing z
by
Periodic Points of Small Periods in Trees Lemma 1.
1
b
Thus
[a,zl.
T h i s means t h a t
t a i n i n g a and t h e r e f o r e t h e p r o j e c t i o n z
iu
is not already
f(z')
(a,b),
i s i n t h e 2'-branch
THEOREM 1.
T
containing
z
2'
c [a,f(z')l
n
5 e
If
By Lemma 1,
[b,f(z')l.
T
be a continuous self-map of a f i n i t e t r e e
o f period
con-
T
[a,bl is i n (a,b).
and t h e r e f o r e
have a periodic point of period
f
y
periodic point
f
Let
endpoints and l e t
onto
z
must b e a r a m i f i c a t i o n p o i n t .
2'
of
i s i n t h e b-branch o f
z
of
z'
445
n > e
.
.
Then
T
and
Lth f
e
has a
I t s u f f i c e s t o prove
Let
THEOREM 2 .
be a continuous self-map o f a t r e e
f
periodic point of period
.
n
1 < m < n , i f the subtree o f
T
Then T
x
a
has a periodic point of period
m
Orb(x)
spanned b y
has fewer than n
,
end-
points. Proof. period
m
It o b v i o u s l y s u f f i c e s t o show t h e e x i s t e n c e of a p e r i o d i c p o i n t o f
,1<
of t h e s u b t r e e
m < n.
is a fixed p o i n t
w
fixed point or
w
if
v f S
L e t t h e n o t a t i o n be chosen s u c h t h a t
spanned by
S
v of
i n the
fs
of
ft
Orb(x).
i n the
i s n o t f i x e d by
Suppose
the
v'
v'-branch
of
T
containing
We wish t o show t h a t
If
fS-l(v')
{
B
x
v
f(v')
v
.
If either
t'
a r e f i x e d by
to
S
B
.
is also i n
then there e x i s t s a
w
and v
.
and a
x
we have found a p e r i o d i c p o i n t o f p e r i o d
f
b e t h e p r o j e c t i o n of
B
By Lemma 1 t h e r e
containing
containing
T
i s a cut-point
x
C [xs,xtl.
T
x -branch o f
x -branch o f
W e can t h e r e f o r e assume t h a t b o t h let
x
f
By Lemma 1,
.
v
.
< n
Moreover,
fS(v')
is i n
Suppose t h i s i s n o t t h e c a s e .
v" € [ v ' , v l
with
fs-l(v")
=
v'
and
then f ( v ' ) = fs(v") by Lema 1,
Thus
fs-2(v'),fs-3(v'),
fS-l ( v ' )
...,f ( v ' )
S i m i l a r l y we d e f i n e e l e m e n t s of Let
P
Orb(x)
w'
C B.
R e p e a t i n g t h i s argument w e see t h a t
must a l l b e i n if
w
f
S.
T
B
.
Clearly neither
and b o t h are b r a n c h p o i n t s of
be t h e set of a l l branchpoints ps(f(b))
Since
f B
b
of
F
T
in
v'
nor
S
with
w'
can b e
= b.
h a s o n l y f i n i t e l y many b r a n c h p o i n t s i n
Further, l e t
.
T
d e n o t e t h e set of f i x e d p o i n t s o f
t h e set
S
f
in
S
is f i n i t e .
P
.
F
is closed.
W. Imrich
446 Setting x -branch of
containing
S
0
x -branch o f
for the
Ss
x
and a p o i n t
Further, l e t
x
%
and
j
d
b e p o i n t s of
Orb(x)
and
J
x
C [c,%]
t h e r e is a
f(k-')([c'yx.l) I Since
f j [ x ,dl
[x
3
dl
jy
c'-component of z
2
i s g r e a t e r t h a n t h a t of
If
z
which i s mapped i n t o t h e can show t h a t because most
k
xJ
f
lXj,C'1
3
*
in
> d(c,xo).
with
[xoydl
fk-j(c')
.
.
= x
Hence
.
To t e r m i n a t e t h e proof i t s u f f i c e s t o
from
f
z'
. f .
S i n c e t h e d i s t a n c e of
i t is c l e a r t h a t
x T
containing
i n t o t h i s component.
Hence t h e p e r i o d o f
is s m a l l e r than
n
.
z
z
by
z
from
cannot b e i n
z
i s a b r a n c h p o i n t of
psz
2'-branch of
a l s o maps
d(z',xo)
, which
c
we note t h a t
S
3
we have
i s a f i x e d p o i n t of
x
is not i n
x
F) fl S t .
0 < j < k 5 n-1.
J
cannot b e a f i x e d p o i n t of
Suppose t h a t
u
s a t i s f y i n g t h e a s s e r t i o n s of Lemma 1 i n t h e
z
containing
t
(P
with
C [c,x.l
[xo,\l
3
[xjyc'l
3
has a fixed point
show t h a t
in
' [c,"kI. c'
fk([c',x.l) J
Thus, f k
xo
[ C , X ~ + ~ and ] a fortiori
3
fk-j( [c,x.l) J Since
for the
d C [xo,\l.
Without l o s s of g e n e r a l i t y w e can assume t h a t f([c,x,l)
St
of maximal d i s t a n c e from
c
of maximal d i s t a n c e from
c C [x , x , l 0 3
Clearly
and
(P U F) fl St
and
Thus t h e r e e x i s t s a p o i n t
(P U F) fl S s
xs
w e o b s e r v e t h a t we have j u s t shown t h a t b o t h
t
(P U P) fl S s a r e nonempty.
containing
S
in
T
fk
.
S
But t h i s i s n o t p o s s i b l e
i s l a r g e r t h a n 1 and a t
REFERENCES
[l] W.
[21
A.N.
I m r i c h and R. Kalinowski, trees, see t h i s volume. Y
P e r i o d i c p o i n t s o f c o n t i n u o u s mappings of
v
S a r k o v s k i i , Coexistence o f c y c l e s of a continuous map o f a l i n e i n t o i t s e l f ( R u s s i a n ) , Ukr. Mat. 1 6 (1964) 61-74.
i.
.
[c',x.] J A s above one