Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model

Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model

Applied Mathematics and Computation 171 (2005) 760–770 www.elsevier.com/locate/amc Periodic solutions and almost periodic solutions for a delay multi...

170KB Sizes 0 Downloads 127 Views

Applied Mathematics and Computation 171 (2005) 760–770 www.elsevier.com/locate/amc

Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model Fengde Chen School of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, People’s Republic of China

Abstract By using the method of fixed point theory and Lyapunov functional, a set of easily applicable criteria are established for the existence, uniqueness and global attractivity of positive periodic (almost periodic solution) of a delay multispecies Logarithmic population model. Ó 2005 Elsevier Inc. All rights reserved. Keywords: Periodic solution; Almost periodic solution; Lyapunov functional; Stability; Contraction principle

1. Introduction The aim of this paper is to investigate the existence, uniqueness and global attractivity of the positive periodic solution (almost periodic solution) of the following delay multispecies Logarithmic population model

E-mail addresses: [email protected], [email protected] 0096-3003/$ - see front matter Ó 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2005.01.085

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

" N_ i ðtÞ ¼ N i ðtÞ ri ðtÞ 

n X

aij ðtÞ ln N j ðtÞ 

j¼1



n X

cij ðtÞ

Z

n X

761

bij ðtÞ ln N j ðt  sij ðtÞÞ

j¼1

t

#

K ij ðt  sÞ ln N j ðsÞ ds ;

ð1:1Þ

1

j¼1

ri(t), aij,bij R2 C(R, (0, +1)), sij 2 C(R, R) are all continuous functions. Rwhere þ1 þ1 K sK ij ðsÞ ds < þ1: We consider (1.1) together with the ij ðsÞ ds ¼ 1; 0 0 following initial conditions N i ðhÞ ¼ /i ðhÞ P 0; h 2 ð1; 0;

/i ð0Þ > 0:

ð1:2Þ

For the ecological justification of Eq. (1.1), see [1–5]. Recently, by using MawhinÕs continuation theorem in [6], Liu [1] studied the existence of positive periodic solution of the following periodic Logarithmic population model " # n n X X N_ i ðtÞ ¼ N i ðtÞ ri ðtÞ  aij ðtÞ ln N j ðtÞ  bij ðtÞ ln N j ðt  sij ðtÞÞ ð1:3Þ j¼1

j¼1

together with the initial condition N i ðhÞ ¼ /i ðhÞ P 0; h 2 ðs ; 0;

/i ð0Þ > 0;

ð1:4Þ

where aij,bij 2 C (R, (0, +1)),ri, sij 2 C(R, R) are all continuous T-periodic function, s* = max16i,j6nmaxt2[0,T]{jsij(t)j}. By introducing the change of variable N i ðtÞ ¼ exi ðtÞ ;

i ¼ 1; 2; . . . ; n;

then system (1.3) is equal to x_ i ðtÞ ¼ ri ðtÞ 

n X

aij ðtÞxj ðtÞ 

j¼1

n X

bij ðtÞxj ðt  sij ðtÞÞ:

ð1:5Þ

j¼1

And the existence of positive periodic solution of system (1.3) is equal to the existence of periodic solution of system (1.5). Noticing that for system (1.5), corresponding to the operator equation Lx = kNx,k 2 (0, 1), one has " # n n X X aij ðtÞxj ðtÞ  bij ðtÞxj ðt  sij ðtÞÞ : ð1:6Þ x_ i ðtÞ ¼ k ri ðtÞ  j¼1

j¼1

T

Let x(t) = (x1(t), . . . , xn(t)) be any periodic solution of system (1.6), and let xi ðni Þ ¼ min xi ðtÞ; t2½0;T 

i ¼ 1; 2; . . . ; n:

762

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

Then in proving the theorem, Liu [1] had used the following inequality # Z T "X n n X ri T P aij ðtÞxj ðnj Þ þ bij ðtÞxj ðnj Þ dt 0

¼

n X

j¼1

ð aij þ  bij Þxj ðnj ÞT > ð aii þ  bii Þxi ðni ÞT ;

j¼1

RT where ri ¼

0

ri ðtÞ dt T

j¼1

RT ;  aij ¼

0

aij ðtÞ dt T

;  bij ¼

RT 0

bij ðtÞ dt T

ð1:7Þ

; and so

ri : xi ðni Þ 6  bii aii þ  We point out that the positivity of Ni(t) could not guarantee the positivity of xi(t) and so, xj(nj) might be negative, in this case, inequality (1.7) may not hold, and the proof of Theorem 1 of [1] is incomplete. The aim of this paper is to give a set of new conditions to guarantee the existence, uniqueness and stability of the periodic solution (almost periodic solution) of system (1.1) and (1.2). The outline of the paper is as follows. In Section 2, we first introducing a new transformation, where some new adjustable real parameter di > 0 are introduced; After that, by using contraction principle, some new results on the existence of positive periodic solutions (almost periodic solutions) of system (1.1) and (1.2) are established. In Section 3, by constructing a suitable Lyapunov functional, we derive a set of easily verifiable criteria for the global asymptotic stability of positive periodic solutions (almost periodic solution) of (1.1) and (1.2). We must point out, the idea of introducing parameter is stimulate by the works of Chen et al. [7] and Xie and Wang [8]. However, to the best of the authors knowledge, this is the first time such a technique is applied to the ecosystem. 2. Periodic solutions and almost periodic solutions A very basic and important ecological problem associated with the study of multispecies population interactions in a periodic environment (almost periodic environment) is the global existence of positive periodic solution (almost periodic solution) which plays the role played by the equilibrium of the autonomous models. It is reasonable to ask for conditions under which the resulting periodic (almost periodic) nonautonomous system would have a periodic solution (almost periodic solution). To our knowledge, no such work has been done on the global existence of positive periodic solution (almost periodic solutions) of (1.1) and (1.2). Lemma 2.1. The domain Rnþ ¼ fðx1 ; . . . ; xn Þjxi > 0; i ¼ 1; 2; . . . ; ng is invariant with respect to (1.1) and (1.2).

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

763

Following we will discuss the existence of positive periodic solution of system (1.1) and (1.2). To do so, we assume that: (H1) ri(t), aij(t), bij(t), sij(t), cij(t) are continuous, real-valued T-periodic functions on R such that Z T ri ðtÞ dt P 0; aii ðtÞ > 0; aij ðtÞ P 0ði 6¼ jÞ; bij ðtÞ P 0; cij ðtÞ P 0: 0

Also, s0ij ðtÞ < 1: Our main result on the global existence of a positive periodic solution of (1.1) and (1.2) is stated in the following theorem. Theorem 2.1. In addition to (H1), there are positive constants di, i = 1,2, . . . , n such that n n X X d j aij ðtÞ þ d 1 d j ðbij ðtÞ þ cij ðtÞÞ: ð2:1Þ aii ðtÞ > d 1 i i j¼1 j6¼i

j¼1

Then (1.1) and (1.2) has unique T-periodic solution with strictly positive components, say N  ðtÞ ¼ ðN 1 ðtÞ; N 2 ðtÞ; . . . ; N n ðtÞÞT . Proof. Make the change of variables N i ðtÞ ¼ expfd i xi ðtÞg;

i ¼ 1; 2; . . . ; n;

ð2:2Þ

then (1.1) can be reformulated as n n X X 1 x_ i ðtÞ ¼ aii ðtÞxi ðtÞ  d 1 d a ðtÞx ðtÞ  d d j bij ðtÞxj ðt  sij ðtÞÞ j ij j i i  d 1 i

n X

j¼1 j6¼i t

d j cij ðtÞ

Z

1

j¼1

j¼1

K ij ðt  sÞxj ðsÞ ds þ d 1 i ri ðtÞ:

ð2:3Þ

Let B ¼ fuðtÞju : R ! Rn is continuousT —periodic functiong; then under the norm kuk = sup{ku(t)k:t 2 [0, T]}, B is a Banach space. For any u(t) = (u1 (t), . . . , un(t))T 2 B, we consider the periodic solution xu(t) of periodic differential equation n n X X 1 d a ðtÞu ðtÞ  d d j bij ðtÞuj ðt  sij ðtÞÞ x_ i ðtÞ ¼ aii ðtÞxi ðtÞ  d 1 j ij j i i  d 1 i

n X j¼1

j¼1 j6¼i t

d j cij ðtÞ

Z

1

j¼1

K ij ðt  sÞuj ðsÞ ds þ d 1 i r i ðtÞ;

i ¼ 1; 2; . . . ; n: ð2:4Þ

764

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

Since aii(t) > 0, we know that the linear system of system (2.4) x_ i ðtÞ ¼ aii ðtÞxi ðtÞ;

i ¼ 1; 2; . . . ; n

ð2:5Þ

admits exponential dichotomies on R, and so, system (2.4) has unique periodic solution xu(t), which can be expressed as T

xu ðtÞ ¼ ðx1u ðtÞ; . . . ; xnu ðtÞÞ Z t  Z t  ¼ exp  a11 ðsÞ ds h1u ðsÞ ds; . . . ; Z

1 t

s

 Z t  T exp  ann ðsÞ ds hnu ðsÞ ds ;

1

s

where hiu ðsÞ ¼ d 1 i

 d 1 i

n X j¼1 j6¼i n X

d j aij ðsÞuj ðsÞ  d 1 i

n X

d j bij ðsÞuj ðs  sij ðsÞÞ

j¼1

d j cij ðsÞ

Z

s 1

j¼1

K ij ðs  vÞuj ðvÞdv þ d 1 i ri ðsÞ;

i ¼ 1; 2; . . . ; n:

Now we define mapping T:B ! B, Tu(t) = xu(t). Following we will prove T is a contraction mapping. In fact, in view of the condition of Theorem 2.1, for any u(t) = (u1 (t), . . . , un(t))T and v(t) = (v1(t), . . . , vn(t))T, we have Z t  Z t  jjTu  Tvjj 6 sup max exp  a11 ðsÞ ds jh1u ðsÞ  h1v ðsÞj ds; . . . ; t2R 1  Zs t   Z t exp  ann ðsÞ ds jhnu ðsÞ  hnv ðsÞj ds Z 1  Zst  t < sup max exp  a11 ðsÞ ds a11 ðsÞjju  vjj ds; . . . ; t2R 1  Zs t   Z t exp  ann ðsÞ ds ann ðsÞjju  vjj ds 1

s

¼ jju  vjj;

ð2:6Þ

where we had use the fact jjhiu ðsÞ  hiv ðsÞj 6 d 1 i

n X

d j aij ðsÞjuj ðsÞ  vj ðsÞj þ d 1 i

j¼1 j6¼i

n X

 juj ðs  sij ðsÞÞ  vj ðs  sij ðsÞÞj þ d 1 i 

Z

d j bij ðsÞ

j¼1 n X j¼1

s

K ij ðs  sÞjuj ðsÞ  vj ðsÞjds 1

d j cij ðsÞ

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

6 d 1 i

n X

d j aij ðsÞjju  vjj þ d 1 i

j¼1 j6¼i

þ d 1 i 0 B 1 ¼B @d i

n X

n X

765

d j bij ðsÞjju  vjj

j¼1

d j cij ðsÞjju  vjj

j¼1 n X

1 d j aij ðsÞ þ d 1 i

j¼1 j6¼i

n X

d j bij ðsÞ þ d 1 i

j¼1

n X j¼1

C d j cij ðsÞC A

 jju  vjj < aii ðsÞjju  vjj: That is, jjTu  Tvjj < jju  vjj:

ð2:7Þ

This shows that T is a contraction mapping. Hence, there exists a unique fixed T point x ðtÞ ¼ ðx1 ðtÞ; . . . ; xn ðtÞÞ 2 B, that is Tx* = x*. Therefore, x*(t) is the unique periodic solution of system (2.4). From (2.2) we know that  T N  ðtÞ ¼ ðN 1 ðtÞ; . . . ; N n ðtÞÞT ¼ expfd 1 x1 ðtÞg; . . . ; expfd n xn ðtÞg is the unique positive periodic solution of system (1.1). This finish the proof of Theorem 2.1. Our next theorem concerned with the almost periodic solution of system (1.1) and (1.2). To do so, we assume that: (H2) ri(t),aij(t),bij(t),cij(t) are continuous, real-valued almost periodic functions on R such that Z 1 T ri ðtÞ dt > 0; aii ðtÞ > 0; aij ðtÞ P 0ði 6¼ jÞ; bij ðtÞ mðri ðtÞÞ ¼ lim t!þ1 T 0 P 0; cij ðtÞ P 0: sij(t)sij are positive constants.

h

Then we have Theorem 2.2. In addition to (H2), there are positive constants di,i = 1,2, . . . , n such that aii ðtÞ > d 1 i

n X j¼1 j6¼i

d j aij ðtÞ þ d 1 i

n X

d j ðbij ðtÞ þ cij ðtÞÞ:

ð2:8Þ

j¼1

Then (1.1) and (1.2) has unique almost periodic solution with strictly positive components, say N  ðtÞ ¼ ðN 1 ðtÞ; N 2 ðtÞ; . . . ; N n ðtÞÞT .

766

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

Proof. Set C ¼ fuðtÞju : R ! Rn is continuous almost periodic functiong; then under the norm kuk = sup{ku(t)k:t 2 R}, C is a Banach space. Under the condition of Theorem 2.2, one could easily see that system (2.4) has a unique almost periodic solution which can be expressed as T

xu ðtÞ ¼ ðx1u ðtÞ; . . . ; xnu ðtÞÞ Z t  Z t  ¼ exp  a11 ðsÞ ds h01u ðsÞ ds; . . . ; 1

Z

t

1

s

 Z t  T exp  ann ðsÞ ds h0nu ðsÞ ds ; s

where h0iu ðsÞ ¼ d 1 i

n X

d j aij ðsÞuj ðsÞ  d 1 i

j¼1 j6¼i

 d 1 i

n X

n X

d j bij ðsÞuj ðs  sij Þ

j¼1

d j cij ðsÞ

j¼1

Z

s

1

K ij ðs  vÞuj ðvÞdv þ d 1 i ri ðsÞ; i ¼ 1; 2; . . . ; n:

The rest of the proof is similar to the proof of Theorem 2.1, and we omit the detail here. h

3. Global asymptotic stability In this section, we devote ourselves to the study of the global asymptotic stability of periodic solution (almost periodic solution) of system (1.1) and (1.2). Our method involves the construction of a suitable Lyapunov functional, which is based on an essential modification of Lyapunov functional introduced by Fan et al. [9]. Definition 3.1. Let N  ðtÞ ¼ ðN 1 ðtÞ; N 2 ðtÞ; . . . ; N n ðtÞÞT be a strictly positive periodic solution (almost periodic solution) of (1.1) and (1.2). We say N*(t) is globally asymptotically stable if any other solution Y(t) = (y1(t),. . .,yn(t)) of (1.1) and (1.2) has the property lim jN i ðtÞ  y i ðtÞj ¼ 0;

t!þ1

i ¼ 1; 2; . . . ; n:

Now we state our main results of this section below.

ð3:1Þ

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

767

Theorem 3.1. Assume that the conditions in Theorem 2.1 (or Theorem 2.2) hold. Moreover, if there are positive constants ki > 0 such that 8 > > < n n X X bji ðn1 ji ðtÞÞ inf k i aii ðtÞ  k j aji ðtÞ  kj 0 t2½0;þ1Þ > 1  sji ðn1 > j¼1 j¼1 ji ðtÞÞ : j6¼i 9 > > Z n = þ1 X  ð3:2Þ kj K ji ðsÞcji ðt þ sÞ ds > 0; i ¼ 1; 2; . . . ; n; > 0 > j¼1 ; where n1 ji ðtÞ are the inverse function of nji(t) = t  sji(t), i, j = 1,2, . . . , n, respectively. Then system (1.1) and (1.2) has a unique globally attractive periodic solution (almost periodic solution). Proof. We only proof the periodic case, since the almost periodic case is similar to that of periodic case. By Theorem 2.1, there exists a strictly positive periodic solution of (1.1) and (1.2), say N  ðtÞ ¼ ðN 1 ðtÞ; N 2 ðtÞ; . . . ; N n ðtÞÞT . To complete the proof, we only need to show that N*(t) is globally attractive. Let Y(t) = (y1 (t), . . . , yn(t))T be any solution of (1.1) and (1.2). Consider a Lyapunov functional V(t) = V(t, N*(t),Y(t)) defined by V ðtÞ ¼ V 1 ðtÞ þ V 2 ðtÞ þ V 3 ðtÞ; for t P 0, where n X k i j ln N i ðtÞ  ln y i ðtÞj; V 1 ðtÞ ¼ i¼1

V 2 ðtÞ ¼

n X

ki

i¼1

V 3 ðtÞ ¼

n X

n Z X j¼1

ki

i¼1

tsij ðtÞ

n Z X j¼1

bij ðn1 ij ðsÞÞ

t

0

1  s0ij ðn1 ij ðsÞÞ

þ1

K ij ðsÞ

Z

j ln N j ðsÞ  ln y j ðsÞj ds;

t

cij ðh þ sÞj ln N j ðhÞ  ln y j ðhÞj dh ds:

ts

From the definition of V(t), it is not difficult to show that V ð0Þ < þ1;

ð3:3Þ

and V ðtÞ P

n X i¼1

k i j ln N i ðtÞ  ln y i ðtÞj;

t P 0:

ð3:4Þ

768

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

Calculating the upper right derivative D+V(t) of V(t) along the solution of (1.1) and (1.2), by computation, one could obtain n n n X X X k i aii ðtÞj ln N i ðtÞ  ln y i ðtÞj þ ki aij ðtÞj ln N j ðtÞ Dþ V ðtÞ 6  i¼1

i¼1 n X

 ln y j ðtÞj þ

ki

n X

i¼1 n X

þ

n X

ki

i¼1 n X

þ

i¼1 n X



i¼1 n X

þ

n X

n X

bij ðn1 ij ðtÞÞ

j¼1

1  s0ij ðn1 ij ðtÞÞ

j ln N j ðtÞ  ln y j ðtÞj

bij ðtÞj ln N j ðt  sij ðtÞÞ  ln y j ðt  sij ðtÞÞj

ki

þ1

K ij ðsÞcij ðt þ sÞj ln N j ðtÞ  ln y j ðtÞj ds 0

j¼1 n Z X

ki

þ1

K ij ðsÞcij ðtÞj ln N j ðt  sÞ  ln y j ðt  sÞj ds 0

j¼1

(

n X

n X

k i aii ðtÞ 

k j aji ðtÞ 

j¼1;j6¼i

i¼1



K ij ðt  sÞj ln N j ðsÞ  ln y j ðsÞj ds

n X

n Z X

i¼1

6

t

j¼1

i¼1



cij ðtÞ

1

n X

ki

bij ðtÞj ln N j ðt  sij ðtÞÞ  ln y j ðt  sij ðtÞÞj

j¼1

Z

j¼1

ki

j¼1;j6¼i

Z

n X

kj

j¼1

bji ðn1 ji ðtÞÞ 1  s0ji ðn1 ji ðtÞÞ

)

þ1

K ji ðsÞcji ðt þ sÞ ds j ln N i ðtÞ  ln y i ðtÞj:

kj 0

j¼1

From (3.2), it follows that there exists a constant K > 0 and T > 0 such that for all t P T, k i aii ðtÞ 

n X

k j aji ðtÞ 

j¼1;j6¼i



n X j¼1

Z kj

n X j¼1

kj

bji ðn1 ji ðtÞÞ 1  s0ji ðn1 ji ðtÞÞ

þ1

K ji ðsÞcji ðt þ sÞ ds > K:

0

Hence, for t P T, it follows that n X j ln N i ðtÞ  ln y i ðtÞj: Dþ V ðtÞ 6 K i¼1

ð3:5Þ

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

769

Then, by using (3.3) and (3.5), similar to the analysis of [9, p. 816], one could obtain n X lim j ln N i ðtÞ  ln y i ðtÞj ¼ 0: t!þ1

i¼1

From this, one could easily obtain lim j ln N i ðtÞ  ln y i ðtÞj ¼ 0;

t!þ1

which means N*(t) is globally attractive. This completes the proof.

h

Finally, to show the feasibility of our results, letÕs consider the following two species competition Logarithmic model. Example  x_ 1 ðtÞ ¼ x1 ðtÞ½3  ð12 þ cos2 tÞ ln x1 ðtÞ  44 ln x2 ðtÞ; x_ 2 ðtÞ ¼ x2 ðtÞ½1 þ 2 sin t  12 ln x1 ðtÞ  ð50  sin tÞ ln x2 ðtÞ:

ð3:6Þ

In this case, we have r1(t) = 3, r2(t) = 1 + 2 sin t, a11 ðtÞ ¼ 12 þ cos2 t, a12(t) = 44, a21(t) = 12, a22(t) = 50  sin t. Now we take d1 = 4,d2 = 1 then a11 ðtÞ ¼ 12 þ

cos t 1 1 >  44 ¼  d 2  a12 ðtÞ; 2 4 d1

a22 ðtÞ ¼ 50  sin t > 4  12 ¼

1  d 1  a21 ðtÞ: d2

Also, we could choose k1 = 1.1, k2 = 1 such that  cos t k 1 a11 ðtÞ  k 2 a21 ðtÞ ¼ 1:1  12 þ  1  12 > 0:5; 2 k 2 a22 ðtÞ  k 1 a12 ðtÞ ¼ 1  ð50  sin tÞ  1:1  44 > 0:5:

8

6

4

2

0

2

4

6

8

10 t

12

14

16

18

20

Fig. 1. Dynamics of system (3.6) with initial values x1(0) = 1.4, x2(0) = 1.6 and t 2 [0,20].

770

F. Chen / Appl. Math. Comput. 171 (2005) 760–770

This shows that all the conditions of Theorems 2.1 and 3.1 are hold, and so, T system (3.6) has a unique periodic solution x ðtÞ ¼ ðx1 ðtÞ; x2 ðtÞÞ ; which is globally attractive (see Fig. 1).

Acknowledgements This work is supported by the National Natural Science Foundation of China (Tian Yuan Foundation) (10426010), the Foundation of Science and Technology of Fujian Province for Young Scholars (2004J0002), the Foundation of Fujian Education Bureau (JA04156) and the Foundation of Developing Science and Technology of Fuzhou University (2003QX-21).

References [1] Z.J. Liu, Positive periodic solutions for delay multispecies Logrithmic population model, Journal of Engineering Mathematics 19 (4) (2002) 11–16 (in Chinese). [2] K. Gopalsamy, Stability and oscillation in delay differential equations of population dynamics, Mathematics and Its Applications, vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1992. [3] Y.K. Li, Attractivity of a positive periodic solution for all other positive solution in a delay population model, Applied Mathematics—JCU 12 (3) (1997) 279–282 (in Chinese). [4] G. Kirlinger, Permanence in Lotka–Volterra equations linked prey-predator systems, Mathematical Bioscience 82 (1986) 165–169. [5] F.D. Chen, et al., Positive periodic solutions of state-dependent delay logarithm population model, Journal of Fuzhou University 31 (3) (2003) 1–4 (in Chinese). [6] R.E. Gaines, J.L. Mawhin, Coincidence Degree and Nonlinear Differential Equations [M], Springer-Verlag, Berlin, 1977. [7] F.D. Chen, et al., On the existence and uniqueness of periodic solutions of a kind of integrodifferential equations, Acta Mathematics Sinica 46 (5) (2004) 1–12 (in Chinese). [8] H.Q. Xie, Q.Y. Wang, Exponential stability and periodic solution for cellular neural networks with time delay 25 (1) (2004) 22–26 (in Chinese). [9] M. Fan, P.J.Y. Wong, Ravi P. Agarwal, Periodicity and stability in Periodic n-species Lotka– Volterra competition system with feedback controls and deviating arguments, Acta Mathematics Sinica 19 (4) (2003) 801–822.