Periodic solutions of Lagrangian systems on manifolds with boundary

Periodic solutions of Lagrangian systems on manifolds with boundary

Nonlinear AnslysiF. Theory, Methods Printed in Great Britain. & Applications, PERIODIC Vol. 16, No. 6, pp. 567-586, 1991. 0 SOLUTIONS OF LAGRANGI...

1MB Sizes 2 Downloads 72 Views

Nonlinear AnslysiF. Theory, Methods Printed in Great Britain.

& Applications,

PERIODIC

Vol. 16, No. 6, pp. 567-586,

1991. 0

SOLUTIONS OF LAGRANGIAN SYSTEMS MANIFOLDS WITH BOUNDARY

ANNAMARIA CANINO Dipartimento di Matematica, Universita della Calabria, 87036-Arcavacata (Received

15 January

1990; received

Key words and phrases:

0362-546X/91 $3.00+ .OO 1991 Pergamon Press plc

in revised form

ON

di Rende CS, Italy

10 August 1990; received for publication

28 August

1990)

Lagrangian systems, manifolds with boundary, periodic solutions, Lusternik-

Schnirelmann category.

INTRODUCTION

a compact submanifold of R” without boundary and let N,M denote the normal subspace to M at x. The study of periodic solutions of the Lagrangian system

LET M BE

(0.1) has been carried out in [ 11, where the existence of infinitely many periodic solutions to (0.1) is proved under quite general assumptions. The proof is based on well-known results on the cohomology of the free loop space A(M) combined with techniques of critical point theory for smooth functionals. As usual for unilateral constraints [2-5, 12-161, the corresponding problem on manifolds with boundary involves a typical difficulty: variational techniques have to be applied to a nonsmooth functional. In the recent years a critical point theory for nonsmooth functionals has been developed [6-9, 121, which allows one to deal with such a problem. The aim of this paper is to extend the result of [l] to manifolds with boundary. The main difficulty is to verify that the referred techniques of nonsmooth analysis can be applied to this situation; this is the aim of Section 2. As regards the topological aspects, instead of using cohomology as in [l], we take advantage of the recent paper [lo], which allows us to evaluate the Lusternik-Schnirelmann category of A(M). In this way simpler techniques of critical point theory can be applied. Let us point out that the existence of a periodic solution to (0.1) on manifolds with boundary was proved in [16] for a wide class of Lagrangians L. However, a particular condition is imposed in [16]. For instance, if M is the closure of a smooth open set and u(x) is the exterior unit vector to M at x E dM, then, in [ 161, it is supposed that VUE n?“. (u, v(x))(D,W, 4, v(x)) 2 0 The above condition is not required in the present paper. 1. THE GENERAL

FRAMEWORK

Let M c IR” be a compact C2-submanifold

AND THE MAIN

RESULT

(possibly with boundary dM). 567

A. CANINO

568

Definition

1.1. If x E A4, let us denote by N,M the set of cys such that CYE IR”and limsup(~‘Y-X)
We will call N,M the outward normal cone to M at x. Let us point out that if x $ aM, N,M is the usual normal subspace to M at x; otherwise it is the outward normal halfspace to M at x. Now, let us consider a Cz-function L:lRxlR”xlR”~m and let us make the following assumptions: t/(t,q,u)~ R x IR” x R” and VWE R" (I&W,

there exist two constants c, v > 0 such that:

q, u)w, w) 2 vbd2

(1.1)

b?J4t,q,

@I 5 41 + id)

(1.2)

iD;,W,q,

dl 5 41 + bi2)

(1.3)

&JAG

4, u)l 5 ~(1 + 1~1)

(1.4)

lQ?J(t,

4, u)l 5 c.

(1.5)

Moreover, let us suppose that L is l-periodic in the first variable, that is -Ut + 1, 4, u) = L(t, q, u).

(1.6)

Let us remark that modifying the constants c and v, the following estimations are true: V t E R, qEM,

UE R” b,Ut,

q, u)l 5 41 + bi2)

(1.7)

ID&t,

4, u)l 5 ~(1 + InI)

(1.8)

vlu(2 I L(t, q, u) + c.

(1.9)

Now, we can state the main result of this paper. 1.2. Let A4 c IR"be a compact, connected, noncontractible in itself, C2-submanifold (possibly with boundary). Let us suppose that either (a) zi(M) has infinitely many conjugacy classes or (b) n,(M) has a finite number of elements. Then there exists a sequence (yhJh C W2,“(lR, IR”) such that for every h E ~PJ: (i) y,, is l-periodic and y(t) E M; (ii) d/dt(D,L(t, y,,(t), yp))) - D,L(t, yhWr v#N E N,,&4 ax. in IO, 11; and (iii) lim, _ mS;L(t, Y,Af), v;(t)) dt = +a.

THEOREM

Let us fix some notations which we will use throughout Definition

the paper.

1.3. If x E A4, let us define T,M=(uEIR”:(u,~)~OVWEN,M]

T,M is said the tangent cone to A4 at x. Moreover, let us set c;,M=

(u - W:U,WE TIM).

569

Periodic solutions of Lagrangian systems

1.4. If x $ aM, T,M = FxM is the usual tangent subspace to M at x. Now, let V:M + IF? be a Cl-map such that

Remark

v x E M : v(x) E FxM vxEaM:IV(X)I

= 1

and

Let us denote with px the orthogonal l-c,

w =

N,M

and

Iv(x)1 5 1

= (w + Av(x): w E (CM)‘,

A L 01.

projection on EM and let us set

P*(w - (w, v(x))v(x)) = PI w - (Fxw, v(x))v(x)

t/WEIR”

Let us list some properties of these two maps. 1.5. Let us take x, y E M: u, w E If?“; u E N,M. Then (v,y - x) 1 -constIu) Iy - x12. IFxu - GUI 5 constlul (x - yl. (%U, w) = (K r&w). 17r,uI I const(ul. 171,~- 7rYuJI constlu) Ix - yJ. If y, 6 E W1*2(0, 1; R”) and y(t) E M, then rr,,S E W1P2(0, 1; R”) and l(Q)‘(f) - q(t)s’(t)1s constld(t)) Iy’(t)l a.e.

PROPOSITION

(1) (2) (3) (4) (5) (6)

Proof. Since M is compact and of class C2, (l), (2), (4) and (5) are trivial. Let us prove the other ones (r&u, w) = (Q - (u, v(x))v(x)), w) = (u - (u, y(x))y(x), P+)

= (u, E’,w) - (u, v(x))(E w, v(x)) = (U, Fx w - (Fx w, v(x))v(x) = (U, 7t, w). Now, let us take t E [0, l] and h > 0 such that t + h E [0, 11. We have

Inr~t+~~~(~ + h) - q&(0 5 l~t+hj4t + h) - ~y~t+~~40 l + l~y~t+~~W) - ~,~,~W)l I const I&t + h) - b(t)1 + const Is(t)1 Iy(t + h) - y(t)J. Since, 6 E L”, then x,6 E W’*2(0, 1; Ii?“). Moreover

q(t+&f

+ h) - qcr)&f) - ~t)&t

+ h) -

h =

q(r+,+W

5 constl&t

and the estimate follows.

n,(t)

WI

h + h) - q(t) W + h) h

+ h)l

Y(t + “i-

Y(t)

n 2. THE VARIATIONAL

STRUCTURE

In this section, our aim is to prove that periodic orbits of the considered Lagrangian system can be characterized as lower critical points of a certain functional on a suitable functional space.

570

A. CANINO

First of all, let us recall some notions of nonsmooth analysis ([4-7, 91). Let us denote by H a real Hilbert space, and by I- 1 and (- , -) its norm and scalar product, respectively. Definition 2.1. (See also [4, 5, 71.) Let f: H -+ IR U (+mj be a map. We set D(f) = [u E H : f(u) < +a~]. Let u belong to D(f). The functionf is said to be subdifferentiable at u if there exists (YE H such that lim inf f(u) - f(u) - (a, 0 - u) > O U-U IV-U/ -. We denote by a-f(u) the (possibly empty) set of such (YSand we set D(a-f)

= {u E D(f):a-f(u)

# 0).

It is easy to check that a-f(u) is convex and closed v u E D(f); if u E D(d-f), denote the element of minimal norm of a-f(u). Moreover, let E be a subset of H. We denote by ZE the function O,

Z,(u) =

grad-f(u)

will

UEE

u E H/E. c +a, It is easy to check that a-Z,(U) is a cone v u E E. We will call (outward) normal cone to E at u the set a-Z,(U). Remark 2.2. It is readily seen that N&Z = a-Z,(x). Definition 2.3. A point u E D(f) is said to be a lower critical point for f if 0 E a-f(u); c E F? is said to be a lower critical value for f if there exists u E D(f) such that 0 E a-f(u) and f(u) = c. Definition 2.4. (See also [6, 91.) A function f: H + IR U [ +a) is said to have a p-monotone subdifferential of order 2 if there exists a continuous function x: D(f)2 x IR2 -+ FR+such that (a! - P, 24- u) 2 -X(U, v,f(u),f(u))(l whenever U, u E D(a-f),

Q!E a-f(u),

+ bl2 + IP12)lu - u12

and p E a-f(u).

Now, in order to formulate the desired characterization, admissible paths, that is

let us denote by X the space of the

X = (y E W’*2(0, 1; IR”): y(t) E M, v t, y(0) = y(1)) and let us define the functional f:L2(0, in the following way f(Y) =

1; R”) + mu (+a)

1

0

Uf,

i’ +*,

~(0,

Y’(O)

dt,

YEX y E L2(0, 1; fR”)\X.

Moreover, let us set C, = (t E [0, l] : y(t) E 634]. Let us state the following theorem.

Periodic

solutions

THEOREM 2.5. Let us take y E X. If a-f(y)

of Lagrangian

571

systems

# 0 then

y E W2,2(0, 1; R”),

Y:(O) = Y’(1)

and lY”WI 5 WM)(l4)I

a.e. in IO, l[,

+ 1 + IYV)12)

where 8: R + R is a continuous function. To prove this theorem, we need some lemmas. LEMMA 2.6.Let Q c R be a bounded open set and g E L ‘(Cl; II?“). Let us suppose that there exists a, E L’(Q) such that

IS a

(g(t), a’(t)) dt

5 I

li n

vU)]W]

v 6 E C,“(sz; R”).

dt,

Then g E WIS1(Q R”) and ]g’(t)] 5 v(t) a.e. in a.

Proof. Let t,, f2 (tl < t2) be two Lebesgue points of g with [ti, t2]C Q. Let [oh, be a sequence of mollifiers and let Bh E C,“(sZ, R”) be such that

4%) = (%# - f2) - Vh(f -

fd)(g(f2)

-

g(t1))

for every h E IN. If we pass to the limit as h -+ 00 in the inequality Ii’ (g(t), &At)) dt I 5 c ~(0]&(0] IJn I Jn

we get

M2>

hence the thesis.

-

dt,

g(4)12 5

n

LEMMA 2.7. Let s1 c R be a bounded open set and g E L’(Q). Let us suppose that there exists p E L’ (Cl) such that

s n

Then, we have

MO, 6 ‘(0) dt 5

n

v6

dWW dt,

E

C,“(sz), 6 L 0.

t+h g(t

+

h)

-

g(t)

1

-

ds)

st for almost every t, t + h E n with [t, t + h] c iI. Proof.

It is a simple variant of the previous proof.

W

d.s

A. CANINO

512

LEMMA2.8. Let Q C fRbe a bounded open set and g E L’(Q; IR”). Let us suppose that there exist g, E W’3’(Q), g, E w1S2(a), q~ E L’(Q) and a72E L2(Q) such that b ItAt

+

h)

-

g(Oi

dt

5

s LI

bhdt s a

+

A)

-

g,Wl

+

(IV)2(f

+

41

+

lfP2Wl)k2(~

+

(lvdt

+

Wl

+

bd0lPl

+

h)

-

g2wl

dt

whenever h 2 0, [a, b + h] c 0. Then g E W1S1(s2;R”) and

IdWl 5 Proof.

Ig;W

+

h72(0

I&WI

+

a.e. in Q.

sP,(0

It is readily seen that g E SV(G; R”) and that

whenever [a, b] c Q, where iu = g’ as measure. Therefore, if K is a compact subset of Sz with zero Lebesgue measure, we have /P](K) = 0. Since 1,uI is absolutely continuous with respect to Lebesgue measure, the thesis follows. H LEMMA2.9. Let us take y E X and a E a-f(y).

Then

1 W&(f,

Y,

04

+

P,W,

Y,

~‘1,

S’N

df

.r0

2

’ 6~

4

dt,

s 0

V 6 E Wlv2(0, 1; R”) with 6(O) = 6(l) and s(t) E T,&4,

v t.

Proof. Let m be the dimension of M. For every x E M, let i.J, be an open neighbourhood x in R”, g: U, + lR”+’ and V: U, + R two maps of class C2 such that

of

v y E U, : dg(y) is onto; vy E U,:grad

V(y) # 0;

M f7 U, = (y E U, : g(y) = 0, l’(y) s 0);

either

V(x) = 0

or

KY) < 0

Moreover, let us set N = (y E U, : g(y) = 0). By substituting of x, we can assume that there exist an open set A containing class C2. Now, let x E M and let 6 E W’.2(0, 1; R”) be such that compact support in y-‘(U,) and, if x E IBM, there exists E > (a(t), grad V(Y@)))5 4 If s is sufficiently P(u,).

&t)l Igrad

VMNI,

small, we have (y + sS) E A on y-‘(U,).

vy E u,. U, with a smaller neighbourhood N and a retraction r: A + N of

6(O) = 6(l), s(t) E l?$,M, 0 such that v c E [O,

6 has

11.

We claim that r(y + .sd) E M on

Periodic

solutions

of Lagrangian

573

systems

Actually, if x $ &VZthe fact is obvious. If x E aM, we have V(r(v + ~6)) I IV(v)) + (grad I+-(y)), dr(y)(s8)) + const s21612 = V(/(y)+ (grad V(y), dr(y)(s@) + const s21612. Since sS E F_M, we have dr(y)(sa) = ~8, hence ~(r(y + sS)) 5 s(grad V(Y),6) + const s21612 I -sslgrad

Al

161 + const s2j6j2

= -sj6l(elgrad

v(y)1 - const s161).

Therefore, r(y + ~8) E M foras sufficiently small. If we set, r(y + ~6) = y outside of y-‘(U,), we have, by definition of subdifferential 1

1 L(t,

r(y

+

d),

(r(y

+

dt -

~3))‘)

s0

L(t, Y, Y’)dt 1 0

2

:(a,

4~

+

~8)

-

Y)

dt

-

NY

+

~4

-

y)b(r

+

~4

-

YIILZ

I

where limIlWllL2 -o E(W) = 0. Thus, dividing by s, if 0 < z < 1 we have

s I

0

D,W,

+

L

Y +

zw + s4

s

lD”L(t, 0 r(Y

Y +

+

m

- Y), Y’ + z((eJ + ml’ - Y’))

zw + m -

Y

s

r(Y +

m-

Y), Y’ + z(W + @I - v’)) 4Y

dt - E(T(Y+ sS) - y) >

+

m

-

dt

(mJ + s&Y - Y’

dl

s

Y

s

II

Y

s

(2.9.1) /I 2’

Passing to the limit in (2.9.1) as s -+ 0 and recalling that dr(y)(b) = 6, hence d2r(y)(r’, 6) + dr(y)(b’) = 8, we have 1 MD&(&

Y,

Y’),

6)

+

(RW,

Y,

Y’),

WI

df

2

.r0

’ (a, s 0

4

(2.9.2)

dt.

Using partition of unity, it is readily seen that 1 ND&(&

Y,

Y’),

4

+

(DJ(f,

Y,

Y’),

W,

s0

01

dt

1

‘((~3 1 0

4

dt

whenever 6 E W132(0, 1; IR”), 6(O) = 6(l), s(t) E FY&4 and there exists E > 0 such that (s(t), v(W)) 5 --Elwl Iwml in a neighbourhood of C,. Finally, if 6 E W’*2(0, 1; R”), 6(O) = 6(l), s(t) E T&M, let us consider the sequence W)

= s(t) - ; W(0).

A.CANINO

514

Obviously,

lim,&

= 6 in W’S2(0, 1; R”) and

(W),

W0))

= (d(f), W(0))

- ;

IWO) I2 5 - ;

iftEC,.

By continuity (M), if t belongs

W0))

to a neighbourhood

5 _/.(l

I40 Iww)l

+l,lall,-,

of C,. So, we can apply (2.9.2) to Bh v h and we get

1 IP,Ut,

i Passing

Y, v'h4A

+

(D,Ut,

Y, y'), WI

lb, 0

dt 2

0

(2.9.3)

dddt.

n

to the limit in (2.9.3) as h + COwe have the thesis.

LEMMA 2.10.Let y E X, let t E IO, l[ and let h > 0 be such that t + h E IO, l[. Let us assume that y is differentiable at t and t + h. Then

Ir’U f h) - y’(t) - &,,ow + h) - v’W)l < Proof. First s E]O, l[. so

of all, let us observe

Iv’0 + h) - Y’(f)- &t,w

that pYo,(y’(s))

const]y’(t

+ h)l Iy(t + h) - y(t)l.

= y’(s), whenever

y is differentiable

at

+ h) - W)l = Iw + h) - &)(YV + h))l = I&t+/&4 + h)) - ~~,,,W + h))l.

Now,

we can apply (2) of proposition

1.5. to obtain

the thesis.

W

LEMMA 2.11. Let us take y E X and (II E a-f(y). Then (i) D,L(t, y, y’) E W’,‘(]O, l[\C,; I?); (ii) y’ E W’,‘(]O, l[\C,; I?“); and, (iii) Jr”(t)1 5 la(t)1 + const(1 + ly’(t)12) a.e. in IO, l[\C,. Proof. Let us consider q E C,“(O, 1; R”) with supt(q) By applying lemma 2.9 to 6 and -6, we get

C IO, l[\C,

and let us set 6 = p?‘;lr.

1 I(D,W,

i

and by (2) of proposition

so

+

~~~:,D,Ut,

Y, ~'1, ~11 dt =

1.5, it is readily

bp, i0

v)dt

seen that

l(~yv)’- @7’)l 5 codYI Id. 1

Ii 0 By lemma

Y, ~'1, (@T)

0

(p;,D,L(t,

y, y’), q’) dt

i

2.6 and (1.7) and (1.8), pTD,L $(~y(D,L(t,

y, y’)

‘(la - D,LI

I 1

I

+ constly’l

]D,L()]~l

dt.

(2.11.1)

0

E W’*‘(]O, l[\C,;

R”) and

Ia(t)( + const(1

+ Iy’(t)12)

a.e.

(2.11.2)

Periodic

solutions

of Lagrangian

if [t, t + h] c IO, l[\C,,

On the other hand,

systems

using the following

notations

e,(t) = t + sh r,(t) = y(t) + s(y(t + h) - y(t)) c,(t) = y’(t) + s(lJ’(t + h) - y’(t)) we have by (1.1) and (1.5) vly’(t + h) - ?m12 5

l(~F,Ue,(t), r0

+

r,(t),

S,(0)(y’(t

+ h) - v’(t)), y’(t + h) - Y’(0) d..s

+ h) - y’(t)1 Iy’(t + h) - y’(t) - &,(y’(t

constly’(t

By (1.2), (1.4) and (2) of proposition

+ h) - y’(t))l.

(2.11.3)

1.5, we have

1 (~,2"W,W,

i

<,(0, i,(ow(t

+

h) -

Y'(0), &)ow

+

h) -

Y'(0)) d.s

0 =

Py(t+h) D"W

+

A, Y(f +

h), y'(t +

h)) -

+

+

h, ?J(t+

h), y'(t +

h))

-s

-

5

(&f)D"Uf r(t+h)D"ut

+

lvCww~, s0

h, Y(t +

A), y'(t +

r,(t), wwh

IPy(l+hp,ut

+

k

y(t +

hh

Y(t), Y'(0), Y'@

h)), y'(t +

&tjw(t

y'(t +

&p,u4

+

h)) -

w

-

h) -

00))

&tp"ut,

+

h) -

Y'(0)

Y'(0)

b

y(t),

Y’(t))llY’u+ h) - Y’WI

+ conO,Ut + h, y(t+ 4, v’(t+ WI IvU+ h) - WI Iv’@+ h) - r’(O + const(1

+ ly’(t)l

+ const(l

+

5

+ Iy’(t + h)l)h(y’(t

+ h) - y’(t)1

Iv’Wl + Ir’tt + Nl)lv(t + W - WI Ir’tt + W - y’(Ol.

tl~-y(t+,,~“w+ fh YG+ h),y’(t + h)) - &)D”W, y(t),rwl + const(l+ Iv’W + Ir’(t + fOl)lv(t+ h) - rWl + const(1

+ If(t)1

+ Iy’(t + h)l)h)ly’(t

+ h) - y’(t)l.

(2.11.4)

A.

516

Combining

(2.11.4)

with lemma

CANINO

(2. lo), we deduce

that

vly’(t + h) - W)l 5 l&,,h$“W

By lemma

+ A, V(t + h), y’(t + h)) - &,D”WV

+ const(1

+ Iv’(0

+ Iv’@ + h)l)lv(t

+ const(1

+ Ir’(t)l

+ ]v’(t + h)l)h.

2.8 and (2.11.2),

y’ E W’,‘(]O,

l[\C,)

By composition,

we deduce and

+ h) -

y(t), Y’(0)l

~(0

that

Iv”(t)1 I

la(t)/

+ const(1

+ ]~‘(t)]~)

a.e. in IO, l[\C,.

we also have D”L(I,

y, y’)

E

W19’(]0,l[\C,;

H

R”).

LEMMA 2.12. Let us take y E X and Q! E a-f(y). Then: (i) rc,D,L(t, y, y’) E W’S1(O, 1; F?“); and, (ii) ](n,D,L(t, y, y’))‘l 5 const(lcx] + 1 + lv’12) a.e. in IO, l[. Proof. Let us take r;l E W’S2(0, 1; I?“) with q(O) = q(l) and let us set s(t) = q,,(q(t)). Obviously, s(t) E T,,,,M tl (-r,,,,M) tl t. So, we can apply lemma 2.9 to 6 and -6 to obtain 1

I(D,W,

Y,

~‘1,

nn,l;l)

+

(D&t,

Y,

~‘),0q,Wl

dt

‘b,

=

.i 0

7q)

dt

.I 0

and thus by (3) of proposition

1.5

1 ((Q&Q,

Y,

~‘1,

v)

+

(QW,

Y,

Y’),

(qd’N

dt

s0

rl) dt.

(2.12.1)

i 0

By using (4) and (6) of proposition

1.5 in (2.12.1)

we obtain

1

IS (D&t,

1 Y,

~‘1,

~,WN

(n&y

dt

0

-

and then by (3) and (4) of proposition Y,

Y’),

rl’)

i

1.5

1 (n,&W,

D&Q,

Y,

~‘1,

u?) dt

0

+ const

: 1~1Ir’] I&L]

dt

‘tb - D&I + IY’I I~,~OIvIdt.

dt

0

By lemma

’ b,w

=

0

2.6 and hypotheses

(1.7) and (1.8), we have from (2.12.2) qD,L(t,

y, y’) E W’vl(O, 1; R”)

and I(rQ&W,

Y, v’))‘l 5 const(]a]

+ 1 + ]r’12)

a.e. in IO, l[.

n

(2.12.2)

511

Periodic solutions of Lagrangian systems LEMMA 2.13.

Let us take y E X and (YE a-f(y).

Then for almost every t, t + h E IO, l[ (h > 0)

we have (D”Ut + A, Y(t + h), y’(t + h)), VW + h))) - (D”L(t, v(t), y’(t)), v@(t)))

s t+h

2

(ICYI+ 1 + l#)dr.

-const

t

Proof.

1) with q 2 0 and let d(t) = -q(t)v(y(t)).

Let q E C,“(O,

-

l(DJK i0

Y, ~'1, (~?W)')dt

1

-

'(01 - Q&V, 1 ,O

By lemma (2.9), we have Y, ~'1, mW)dt.

Therefore -

b,L(t, s0 2

Y, Y'), W)rl'dt

-

jb

- D&Q,

Y, ~'1, V(Y)) -

(D,Ut,

Y, ~'1, (WY)lv

dt.

1

By (1.7) and (1.8), we have

s 1

(D,L(t,

y, y’), v(y))q’ dt 5 const

‘(lcvi + 1 + Iy’j’)q dt s0

0

n

and by lemma 2.7 the thesis follows.

LEMMA 2.14. Let us take y E X and cx E d-f(y). Let t E IO, l[ and h > 0 be such that t + h E IO, l[ and such that y is differentiable at t and t + h. Then we have (y’(t + h) - y’(t), v(y(t)))

2s const ( 1 + jjWt

dr) i:‘*(lal

+ 1 + lY’?)dT t+h

+

consWWl+ Iv’@+ WI) f ly’lcit. s

Proof.

First of all let tl , t, E IO, l[ be such that there exist yL(tl) and y:(t2). Then we have rl(t,)

E Qt,,M

(rr_(t,), vbJ(t1))) 2 09

Y:m

E Qtz,M

(YX2h

W~z)N

5 0.

Therefore oC(&) - rr_(t,), VWl))) 5 W(fA

VW,)))

= (Y1(f*), WW) 5 const

- VW*))) + (Wz),

IY;(h)I IY&) - r(tl)I.

MM)) (2.14.1)

Now, let t E IO, l[, h > 0 with t + h E 10, l[ and y differentiable at t and t + h. If [t, t + h] fl C, # 0, let t, , t2 E C, be such that t I t, I t2 I t + h, (It, tl[ U ]t2, t + h[) fl C, = 0.

A. CANINO

578

By lemma 2.11, there exist r_(tr) and y:(fJ.

Therefore

(y’(t + h) - v’(t)* MO)) 5 (Y’([ + h) - V;(tz), VW))) + W(&) - y’(tA WO))

+ (rr_(t,) - y’(t), W(O))

I constly’(t + h) - Y:(&)[ + constlyl.(t,) + (Y:(G) - rr_(t,), Wtl)))

+ (YX)

- y’(t)1

- r’(tr), WO)

- VW,))).

Now, by applying lemma 2.11 and (2.14.1), we obtain (y’(t + h) - Y’(f), W(O)) 5 const

:’ IY(r), dr + .I;” /Y”(r), dr]

[I

+ constIr:&)l

IV(&)- r(tJ +consdMd- YWA Iv(O- Wdl

1

t+h 5

const

+

(/a(r)1 + 1 + lv’(r)12)dr

ii’.t

constly’(t + h)l Ir(t + h) - y(t)1 + constly’(t + h) - ~:(fJl

x

(Ir(f + h) - Y&>l+ Ir(f,) - ?+)I)

+ constly’(t+ MtlvU + h) - Y&)I + Ir(tJ - r(r)l) + constlf(t + 4 - Y:&)I IrG + f0 - WI + constlf@+ 4 - v’WlIv(t) - Y(~~)I + cona[Ir’@ + 4 - Y:WI + IvYtd - ~‘(0l1l~W- v(tJ t+h

t+h 5

const

[i

(la(r)1 + 1 + IY’(r)l’)dr t

+ const)y’(t + h)l f

const [.r t

(Ia(r

+ 1 + lr’(r)?)dr t+h

t-

dr

II’ t+h

t+h +

IY’(~

i;

1

constly’(t + h)( f i

f

Iv’(d

dz t+h

IY’(@I dt + consdy’@ + h) - v’(t)1t IY’(~dt i

t+h 5

const

[i

t

(la(r)1 + 1 + Iv’(r)?) dr ] ( 1 + 1: IfCr)l di) t+h

+

const(lVO + 41 + Iv’Wl) t ~Y’(G dr. i

Finally, it is readily seen that the same inequality holds if [t, t + h] fl C, = 0. Now, we come back to the following proof.

n

Periodic solutions of Lagrangian systems

519

Proof of theorem 2.5. Let us take 0 < t < t + h < 1 and let us assume that y is differentiable at t and t + h. If we keep the notations of lemma 2.11, by (1. l), (1.5) and lemma 2.10, we have vly’(t + h) - ~‘(t)~2 5

l(Q%&(O, s0

T,(t), W))(r’(t

+ h) - y’(t)), y’(t + h) - y’(0) ti

=

b,2,W,(t), 5 0

W),

+

W)W(t

h)

-

y’(t)),

E’,,,W

v’(t

5

+

+

h)

-

h)

y’(t)

-

y’(0))

-

ds.~

&W

+

h)

-

y’(t)))

’U’,2,W,W,L(t), S,(tM”(t + h) - y’(t)), ~,~,~(y’(t+ h) - y’(t))) ds ’V’2,,WW),t-,(t), LWW(t + h) - y’(O), WOM&t~W + h) - y’(t)), WO))’(%W,W, t-,(t), tXOW(t + h) - y’(t)), W(t)))

i0

s s

d.~

d.s

0

+

0

x (y’(t + h) - y’(t), &p’oW)+ CLS + constly’(t+ h) - y’(t)1Ir(t + 41ly(t + h) - WI. By (1.2), (1.4), (1.8), (3) and (5) of proposition

s

1.5 we obtain

1

0

U’:J@,W,t-,(t), M)W’(t + h) - y’(t)), q&‘(t =

+ h) - y’(t))) ds

(DJ(t + h, y(t + h), v’(t + h)) - D,W, v(t), y’(O), xr&‘(t

-s 1(@&V4W, 0

5

t-,(t), WNW + h) - y(O), ~rttjW(t + h) - y’(O)) d.~

(n,~t+,,RUt + h, Y(t + h), y’(t + h)) - q&Ut, + (+$‘,Ut

+ h) - y’(t)))

y(t), v’(t)), 7’0 + h) - y’(t))

+ h, Y(t + h), v’(t + h)) - nyct+@uL(t + h, y(t + h), y’(t + h)), v’(t + h) - y’(t))

+ const(1 + (y’(t + h)l + (y’(t)()h(y’(t + h) - y’(t)( + const(l + Iv’(t + h)l + b’(t)l)lv(t 5

+ h) - y(t)1 iv’(t + h) - r’(t)1

(bry~t+&L(f + h, y(t + h), y’(t + h)) - q#,Ut,

+

const(1 + (y’(t + h)l + (y’(t)0

y(t), y’W)l

t+h t IY’(~/ dr

5

+ const(1 + [y’(t + h)( + Iy’(t)l)h)ly’(t

+ h) - y’(t)l.

(2.5.2)

580

A. CANINO

By lemma 2.13, we have

5

-(~&w

+

x

W”W

+

(D”Jw

h)

+ +

h, k

-

Y’(0),

Y(t

+

Y(t

+

W0)-h),

y’(t

A),

y’(t

ii

h)),

+

constly’(t + h) - y’(t)1

5

+

t

h)),

V(Y(f

+

W(0)

h))) -

-

(D”W,

VW

+

YW,

Y’(0),

W(0))

h)))

(I~(~)/ + 1 + lr’(r)1*)d~ t+h

+

(1

+

Iv’@

+

Ml

+

Iv’@)l) t bwl dr + (1 + IYV + WI + l~~00~ . (2.5.3) 1

.r

Finally, since v@(t)) E ~Y;rct+4,by lemma 2.14 we have

sl 0

+ h) - Y’Wt &tj VW)))+d.s

vz,w,w9 MO, L(mJ’(~ + h) - Y’(O),wo))(Y’(t 5

constly’(t + h) - y’(t)/ {( 1 + j: Iv’(t)1 d7) j:‘“(k)1

+ 1 + lr’(.r)I*) ds

/yh b’td dT]. + (Ir’(t + 41 + IY’WO Combining (2.5.1)-(2.5.4), v(y’(t + h, - f(t)/

S

(2.5.4)

we get D”W

b++h)

+ const(l

+

h,

+ j:ly(r)[

Y(t

+

A),

Y’@

+

h))

-

~,(,)~“W,

Y(0,

Y’W)l

dr) jtt+h(lcx(r)l + 1 + lf(t)[*)dr t+h

+

const(1 + Jy’(t + h)l + If(t)/) j

+ (1 +

IY’U + WI + ly’m~.

t

Iv’(d

dt

(2.5.5)

581

Periodic solutions of Lagrangian systems

By applying lemmas 2.12 and 2.8, we can conclude that y E W2,2(0, 1; R”)

and

where 13:R + IRis a continuous function. Now, it remains to prove that y:(O) = y:(l).

Let us define p E X in such a way Oltl+

YU + *>3 HO =

*std.

i YU - t>v We can easily see that a-f(p) THEOREM 2.15.

a.e. in IO, l[,

]~“(t)l 5 ~V(Y))(]C#)] + 1 + ]~‘(t)]~)

# 0. Then p E W2V2(0,1; R”). Thus, y:(O) = y’(l).

Let us take y E Xn W2,2(0, 1; R”). If CYE a-f(y),

o(t) + it (D”JV, y(t), Y’(0)) - (Q&4,

y(t), Y’(0) E &,,M

n

then a.e. in IO, l[.

Proof. Let t,, E IO, l[ be a Lebesgue point for c(t)

(

o(t) + -$D”LU, Y(f), Y’(0) - Q&t,

y(t), Y’(0) >

Let us consider w E 7&$4 with (w, v(y(t,)) < 0 if to E C,. Let q,,(t) = ph(t - to) v h E N where 1~~)~is a sequence of mollifiers. Then, by continuity we have (p,,:rtow, v(y(t))) < 0 in a neighbourhood of to, hence (l?&(qh(t)w), v(y(t))) I 0 eventually as h + co. Since PJq,, w) E Hd and ff&(qh(t)w) E 7&M, we have, by lemma 2.9 1 6 0 SC

a

+

&“Uf,

(

(2.15.1)

Y, Y’) 3 W q,, dt I 0. > >

Y, Y’) - QJ(C

Passing to the limit in (2.15.1) as h + 00 we get

(

4fo) + $D,L(f,,

YGO),Y’GO))- Q&to,

YGO),Y’GO)),w 50 >

so that o(t0) + $“Ut,,

YQO),y’(t0)) - D,Uo,

YGO),Y’VO))E &,,,,M.

n

As a consequence of theorems 2.5 and 2.15, we have the following corollary. COROLLARY 2.16.

Let us take y E X. If 0 E a-f(y), y E W2.“(0, 1; V),

then Y:(O) = Y’(I)

and -&(f,

y(t), Y’(0) - Q$(t,

Finally, let us prove the cp-convexity off.

y(t), Y’(0) E N,,,M

a.e. in IO, l[.

582

A. CANINO

2.17. The functional f: L’(0, 1; R”) + R U (+a~) is 1.s.c. and there continuous function e+,; R2 -+ R such that

THEOREM

f(Y + 4 2 f(r)

+ (a, 42

whenever y, y + 6 E X and CYE d-f(y). order two.

- %(f(Y)t

f(Y + 4)(1

+

exists a

II&wllt2

In particular, f has a p-monotone

subdifferential

of

Proof. First, we will prove that f is I.s.c. Let us consider a sequence (Y~)~C X such that lim, yh = y in L2(0, 1; R”) and f(yh) I b. By (1.9) we have

and then:

that is, 1~~)~converges weakly to y in WiS2(0, 1; R”). On the other hand, L is continuous in the three variables and convex in the third one, so it is weakly 1.s.c. in WiS2(OI1; R”). Then j: L(t, y, y’) dt I b. Finally, it is enough to observe that 1~~)~converges uniformly to y and recall that A4 is compact to prove that y E X. Thus SAL(t, y, y’) = f(y) and f is 1.s.c. Now, let us take y E X fl W2S2(0, 1; R”), CYE d-f(y) and let 6 E W1*2(0, 1; R”) with 6(O) = 6(l) be such that y + 6 E X. By Taylor’s formula, we have Ut, Y + 6, Y’ + a’) - Ut, Y, Y’) = (D&V, Y, Y’), 6) + (D”L(t, Y, v’), 6’) + *(D&L@,

y + sd, y’ + ssy,

+ #g”L(t,

y + sd, y’ + sS’)S, S’)

+ +(D;“L(t,

y + sd, y’ + sS’)&, 6’)

for some s = s(t) E IO, I[. BY (l.l), (1.3), (1.4), theorem 2.14 and (1) of proposition f(Y + 6) -f(y)

2

-

6)

1.5 we have

iwW I’0

b&Y,

Y'> -

-$“L&

Y, Y’) - a, 6) dt

s

-‘const(l

+ ll~~‘@ + (Iy’ + S’ll~z)llSllfm

- constll

+

Ily’IIL~+ lly’ + ~‘Il~~)ll~ll~-ll.116’ll~~ + 5 ll~‘ll3

5 -constllD,L(t,Y, Y’)- $+D,,Ut, Y, Y’)- ~Il~~ll%= - const(l + ll~‘lltz + lly’ + S’ll~2)11Sll~~ - const(1 +

IIY’II~~ + IIY’+ ~‘ll~~~ll~ll~-ll~‘ll~~ + f IlfJ’llLz.

Periodic solutions of Lagrangian systems

583

By (1.7), (1.2), (1.4) and (1.5) we have f(r + 6) - f(v) -

- const(1 + Ily’l@ + lly’ + fJ’ll~~)llf?ll$ - const(l +

IIy’lLz+ lly’+ ~‘ll~~)llG4l~‘ll~~ + i IlS’II3.

By theorem 2.5 and (1.9) we conclude that f(v + 6) - f(y) -

’ (~6)

dt

I 2

-conNllV’ll~~ + Il&)(ll~ll~~+ 11~11~41~‘11~2) - const(l+ Ilv’llt~ + Ilr’ + ~‘ll3>ClldlL~+ Il&4l~‘ll~~) - const(l + Ily’lL2 + lly’ + ~‘llL~)(ll~ll~41~‘lI~2 + 11~112~211~‘11~4’> + i IlS’ll2

2 -%m%f(Y

+ a)(1 + Il~llm4lz~

for some continuous function cpO:R2 -+ R. Remark

n

2.18. From the previous proof, it turns out that if

y Ex

n w~,~(o,1;~“1,

Y:(o)= Y’(l),

ct!E L2(0,1; rn”)

and a(t) + $ (D”Uf, y(t), y’(0)) - D,JW, y(t), y’(0) E &,,M

a.e. in]O, l[,

then (11E a-f(r). Therefore, the converse of theorem 2.15 also holds. 3. TOPOLOGICAL

RESULTS

Since we proved the p-monotonicity off (see theorem 2.17), we are able to evaluate the number of lower critical points for f by means of a technique such as the LusternikSchnirelmann one (see, Section 4). Thus, in this section, we investigate the category of the space of the admissible paths X (as defined in Section 2). The following result, proved in a recent paper [lo], is crucial for our aim. THEOREM 3.1. Let F A E s B denote a Hurewicz fibration with E path-connected. Let us assume that there exists a section o: B + E. Then cat F I cat E. In [lo], theorem 3.1 is applied in order to estimate cat(A( Y)) wherte Y is a simply connected manifold without boundary. Our aim is to show that an analogous argument works on manifolds with boundary. If Y is a topological space, let us denote by A(Y), the free loop space of Y and if y0 E Y by Q(Y, yO) the based loop space of Y with base point yO.

A. CAMNO

584

LEMMA3.2. Let A be an open subset of R”, connected, noncontractible n,(A) is finite. Let us take x,, E A and let us set

in itself and such that

Q&4, x0) = (y : y E CJ(A, x0) and y is contractible in A]. Then, cat &,(A, x0) = +a. Proof. Let us consider the universal covering 71:A’ -+ A. Let y0 E A be such that n(yO) = x0, then &(A, x0) is homeomorphic to Q(A, uO). By the extension of [17] given in [l 1, corollary 3.21, we have catQ,(A,x,,) = catQ(A,y,) = +a~. n

By theorem 3.1 and lemma 3.2, we can state the following theorem. THEOREM 3.3. Let A be an open subset of IT?“,connected Moreover, let us suppose that either (i) x1(A) has infinitely many conjugacy classes or (ii) nl(A) has a finite number of elements. Then cat A(A) = +a.

and noncontractible

in itself.

Proof. If (i) is true, the thesis is trivial because A(A) has infinitely many path-components. If (ii) is true, let us set A,,(A) = {y : y E A(A) and y is contractible

in A).

Let us point out that, since the map p: A(A) + A defined by p(y) = y(O) gives a fibration and A,,(A) is a path-component of A(A) then also the restriction pO: A,(A) + A gives a fibration, of course with A&A) path-connected. We can define a section 0: A -+ A,(A) in such a way: v x E A, a(x)(s) = x v s E [0, 11. The fiber is p; ‘(x0) = Q,(A) x,,). Then, we can apply theorem 3.1 and we obtain: cat O,(A, x,,) I cat A,(A). Obviously, cat A,,(A) I cat A(A) and by lemma 3.2 we have the thesis. n Now, in order to evaluate the category of X (endowed with W’,2-topology), recall a result contained in [ 151. THEOREM3.4. The inclusion map i: X -+ A(M) is a homotopy

it is enough to

equivalence.

Finally, this gives the following theorem. THEOREM3.5. Let A4 c R”, be a C2 submanifold (possibly with boundary), connected and noncontractible in itself. Moreover, let us suppose that either (i) z,(M) has infinitely many conjugacy classes or (ii) n,(M) has a finite number of elements. Then cat(X) = +oo. Proof. Let A be an open subset of IR”such that M is a deformation retract of it. Then, A(A) is homotopically equivalent to A(M). Now, it is enough to apply theorems 3.3 and 3.4 to have the thesis. n

Periodic solutions of Lagrangian systems 4. PROOF

OF THE MAIN

585

RESULT

To prove the existence of infinitely many periodic orbits to by corollary 2.16 and remark 2.18, the existence of infinitely on the space of the admissible paths X, we will use a theorem with the number of the critical points of a functional defined

our Lagrangian system, that is, many lower critical points for f linking the category of a space on it (cf. [12 and 81).

4.1 (see [S]). Let H be a real Hilbert space, g: H + L?U (+a) a p-monotone subdifferential of order two. We set

THEOREM

d*(u, u) = Iu - VI + I&) - g(n)1

a 1.s.c. function with

v U, V E D(g).

Let us suppose that: (i) inf g > -00; (ii) /(u& c D(d-g) with s;p g(uh) < +m and lip grad- g(uh) = 0, (u&, has a subsequence converging in H. Then, g has at least cat@(g), d*) lower critical points. Moreover, if cat@(g), d*) = +oo, then sup g(D(g)) = SUPk(U) : 2.lE ma-g), 0 E a-&II. Finally, this leads to the following proof. Proof of theorem 1.2. Let us consider the functional f defined in Section 2. By hypothesis (1.9) and theorem 2.17, f is a 1.s.c. function, bounded below and it has a v-monotone subdifferential of order two. Moreover, by corollary 2.16 we want to prove the existence of a sequence (yhJh E X such that 0 E a-f&) and lim, f(yh) = + co. Let us remark that D(f) = X and that d* induces the W’*‘(O, 1, IR”)-topology on X. Therefore, cat@(f), d*) = +W by theorem 3.5. Now, we will consider a sequence 1~~)~C D(d-f)with s;P f(Yh) < + *

lihmgrad- f(y,,) = 0.

and

By hypothesis (1.9), (Y;)~ is bounded in L2(0, 1; IR”)and, on the other hand, since the manifold A4 is compact, (yhJh is bounded in L’(O, 1; IR”). By Rellich’s theorem, we deduce that lyhlh has a subsequence converging in L2(0, 1; R”). To complete the proof, it remains to show that sup f(y) = +oo. 7eX Let y E X and let y be nonconstant. by (1.9)

If we set ~&Y) = I

f(%l) + c 1 v

r1

30

v

h E N, we have (q,,)* E X and

lllltlZ~.

If by contradiction {f (q*),, is bounded, then up to a subsequence (q,, jh converges uniformly to the constant y(O). But y is nonconstant by hypothesis, so y(s) # y(O) for some s E IO, l[ and there exists s,, such that qh(sh) = I. This is an absurdity. n

586

A. CANINO

Acknowledgement-The author wishes to thank E. Fade11 who pointed out that a previous version of the proof of lemma 3.2 was incomplete. REFERENCES 1. BENCI V., Periodic solutions of Lagrangian systems on a compact manifold, J. DgJ Eqns 63, 135-161 (1986). 2. CANINOA., On p-convex sets and geodesics, J. DI~J Eqns 75, 118-157 (1988). 3. CANINOA., Existence of a closed geodesic on p-convex sets. Ann. Inst. H. Poincard, AnaIyse non LinPaire 5,

501-518 (1988). 4. COBANOVG., MARINOA. & SCOLOZZID., Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle, preprint no. 214, Dip. Mat. Pisa (1987). 5. COBANOV,G., MARINO A. & SCOLOZZID., Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle and nontangency conditions, Nonlinear Analysis 15, 199-215 (1990). 6. DE GIORCI E., DEGIOVANNIM., MARINOA & TOSQUESM., Evolution equations for a class of nonlinear operators,

Atti Accad. Naz. Lincei Rend. Cl. Sri. Fix Mat. Natur. 75, l-8 (1983). 7. DE GIORCI E., MARINO A. & TOSQUESM., Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sri. Fis. Mat. Natur. 68, 180-187 (1980). 8. DEGIOVANNIM., Homotopical properties of a class of nonsmooth functions, Ann. Mat. pura appl. (in press). 9. DEGIOVANNIM., MARINO A. & TOSQUESM., Evolution equations with lack of convexity, Nonlinear Analysis 9, 1401-1443 (1985). 10. FADELLE. & HUSSEINIS., A note on the category of the free loop space, Proc. Am. math. Sot. 107,527-536 (1989). 11. FADELL E & HUSSEINI S., Extending Serre’s theorem on the category of loop spaces, preprint (1990). 12. MARINO A. & SCOLOZZID., Geodetiche con ostacolo, BON. Un. Mat. Ital. B(6) 2, 1-31 (1983). 13. SCOLOZZID., Esistenza e molteplicita di geodetiche con ostacolo e con estremi vairabili, RicercheMar. 33, 171-201

(1984). 14. SCOLOZZID., Un teorema di esistenza di una geodetica chiusa su varieta con bordo, Bolt. Un. Mat. ftal. A(6) 4, 451-547 (1985). 15. SCOLOZZID., Molteplicita di curve con ostacolo e stazionarie per una classe di funzionali non regolari, preprint no. 69, Dip. Mat. Pisa (1984). 16. SCOLOZZID., Esistenza di una curva chiusa stazionaria e con ostacolo, preprint no. 70, Dip. Mat. Pisa (1984). 17. SERRE J. P., Homologie singuliere des espaces fib&, Ann. Math. 54, 425-505 (1951).