Vol. 27, No. 6, 1967
PERIODIC
BIOCHEMICAL AND BIOPHYSICALRESEARCHCOMMUNICATIONS
T H Y M I D I N E K I N A S E P R O D U C T I O N IN S Y N C H R O N O U S P L A S M O D I A OF P H Y S A R U M P O L Y C E P H A L U M : I N H I B I T I O N BY A C T I N O M Y C I N A N D A C T I D I O N +)
W.
Sachsenmaier,
D.v.
Fournier,
a n d K.F.
GHrtler
I n s t i t u t e for e x p e r i m e n t a l C a n c e r R e s e a r c h , U n i v e r s i t y of H e i d e l b e r g , G e r m a n y
Received M a y l2, 1967 Mitosis Physarum 26°C.
in m u l t i n u c l e a r
p olycephalum
Nuclear
telophase of the
transferase, interphase senmaier been Hotta
thymidine EC
1965).
1963;
the m e c h a n i s m
of e n z y m e activity suggest
activity
sis of n e w formation
were
increase.
that
enzyme
1966).
The
stages effects
increase protein
1964).
Activity
5'-phosphoat the
of t h y m i d i n e (Bollum
prior
1965;
concerns
studied.
on e n z y m e The
results
reflects
synthe-
in turn d e p e n d s
on the p r i o r
Forscl!ungsgemeinschaft".
655
of R N A
the p e r i o d
(m-RNA).
b y the " D e u t s c h e
of
Actinomy-
synthesis
to a n d d u r i n g
activity
has
Brent
fluctuation
of the a n t i b i o t i c s
of k i n a s e
(Sach-
and P o t t e r , 1 9 5 9 ;
polycephalum.
were
end of
kinase
communication
to i n h i b i t
mitosis
which
following
after mitosis
the p e r i o d i c
in P h y s a r u m
at
3 hrs
and Mueller,
This
employed
of m e s s e n g e r - R N A
+) S u p p o r t e d
first
9 hrs
periodically
of s y s t e m s
on s y n c h r o n o u s the
every
: thymidine
shortly
Stubblefield
at d i f f e r e n t
and
the
Periodicity
controlling
cin C and a c t i d i e n and protein
(ATP
a maximum
Littlefield,
kinase
during
increases
in a v a r i e t y
a n d Stern,
thymidine
synchronously
kinase
2.7.1.21)
a n d Ives,
observed
of the m y x o m y c e t e
e_~tal___u.,1960; S a c h s e n m a i e r ,
and r e a c h e s
et a l . , 1 9 6 5 ; with
occurs
DNA replicates
(Nygaard
enzyme
plasmodia
Vol. 27, No. 6, 1967
METHODS.
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNiCATiONS
Disk
polycephalum (Daniel tures
shaped were
cut
between
the
diately
frozen
into
and
National
(control) control
and
mitosis.
maier
et al., and Ives,
of R N A
plasmodial
processed
RESULTS.
segments
average
controls
slowly
half
life
C (Bayer,
with
a Branson
at 2 0 . 0 0 0
(2 ~ c / m l , 0 . 2 5
20 m i n
Synthe-
and were
and Becket,
of a c t i n o m y c i n
decreases
Incorporation
of 3 H - l e u c i n e
over
a period
of s e v e r a l
time
of about
3 hours
the
on the
hours
1964).
C on
of a s y n c h r o -
following
for
of
c/mM)
samples
interphase
of
(Sachsen-
labelling
of 3 H - u r i d i n e
within
soni-
g. P r o t e i n
supernatant.
Labelled
of
the a d d i t i o n
in the
late
piece end
activity
effects
during
third
at the
by p u l s e
Lever-
Chemo-
frozen
(Sachsenmaier
the
imme-
transferred
kinase
5 c/mM).
Incorporation
inhibitor.
drops
3H-uridine
1 demonstrates
20% of the
of the
measured
was
was
The
Cul-
stages
the C a n c e r
20 min.
assayed
earlier
synthesis
by
sonicated
thymidine
was
with
second
3) at 0 ° C f o l l o w i n g
were
as d e s c r i b e d
Fig
were
(2 to 4 ~c/ml,
plasmodium.
below
hand
1965)
and p r o t e i n
nous
and
the
were
1964).
segment
Bethesda).
centrifuged
and p r o t e i n
3H-DL-leucine
RNA
1951)
One
(supplied
earlier
at v a r i o u s
actinomycin
segment
stage
and
mitosis.
Center,
treated
(3 x 1 second,
(Lowry
sis
actidion
as d e s c r i b e d
segments
~g/ml
of P h y s a r u m
and Rusch,
at -30 ° C;
250
Samples
1.0 ml 0.15 M K C 1
equal
stored
Service
the
axenically
third
containing
macroplasmodia
Sachsenmaier
three and
or 50 ~g/ml
therapy
fier
1961;
second
onto m e d i u m kusen)
cultivated
and Rusch,
were
synchronous
rapidly addition
other
suggesting
the b u l k
an
of m - R N A
molecules. Treatment 5 ~g/ml
reduces
20 m i n u t e s
and
with
actidion
protein stops
(Table
synthesis
further
I) at c o n c e n t r a t i o n s
below
synthesis
656
25% d u r i n g completely
the
above first
in c u l t u r e s
Vol. 27, No. 6, 1967
BIOCHEMICAL AND BIOPHYSICAL RESEARCHCOMMUNICATIONS
I00~ 0/. Ib~ I m
~
&'..
......................
"-.--%
........
e °'o~ .
, |--t
0
!
.
2
.
3
.
fir 4
Fig. I: E f f e c t s of a c t i n o m y c i n C on R N A and p r o t e i n synthesis. 250 gg/ml a c t i n o m y c i n C w e r e a d d e d to the m e d i u m of two p l a s m o d i a 1.6 hrs p r i o r to telophase. At the same 2 time and a f t e r v a r i o u s i n t e r v a l s small s e g m e n t s (2 to 4 cm ) w e r e p u l s e l a b e l l e d on m e d i u m c o n t a i n i n g 2 gc/ml 3 H - u r i d i n e (15 min) or 2 to 4 gc/ml 3 H - l e u c i n e (20 to 30 min) p l u s inh i b i t o r . C o n t r o l p l a s m o d i a w e r e l a b e l l e d s i m u l t a n e o u s l y in the a b s e n c e of inhibitor. E x p e r i m e n t I (o,e); e x p e r i m e n t II (O,I). A b s c i s s a : time f o l l o w i n g the a d d i t i o n of a c t i n o m y c i n C; ordinata: % i n c o r p o r a t i o n of r a d i o a c t i v i t y r e l a t i v e to controls.
TABLE
I: E f f e c t s
Actidion
of a c t i d i o n
Specific after
~g/ml
0 2
5 l0 2O
50
on p r o t e i n
radioactivity 20 and
40 m i n
and R N A
of p r o t e i n
and R N A
incorporation
of
3H-leucine
3H-uridine
dpm (% incorp.) m g prot.
dpm ~g RNA
20 m i n
20 m i n
3820 1540 920 685 920 900
(100) (40) (24) (18) (24) (23)
synthesis.
40 m i n
8 3 2 0 (100) 1990 ( 2 4 ) 1950 ( 2 3 ) 1500 ( 1 8 ) 920 ( l l ) 680 ( 8)
2750 2230 1690 1735 1765 1610
(% incorp.)
(100) (81) (61) (63) (64) (58)
40 m i n
7 1 5 0 (100) 3940 (55) 3760 ( 5 3 ) 3570 ( 5 0 ) 2580 ( 3 6 ) Z530 (35)
P l a s m o d i a l s e g m e n t s w e r e p u l s e l a b e l l e d (20 and 40 min) w i t h 3 H - l e u c i n e or 3 H - u r i d i n e in G 2 - p h a s e (2.5 hrs p r i o r to telophase) i m m e d i a t e l y f o l l o w i n g the a d d i t i o n of the inhibitor.
657
Vol. 27, No. 6, 1967
BIOCHEMICAL AND BIOPHYSICALRESEARCHCOMMUNICATIONS
treated with
20 a n d 50
also
RNA
affects
Thymidine approximately m u m at
prior
(fig.
2)
starts
to i n c r e a s e
of m i t o s i s ,
as o b s e r v e d
earlier
1965).
Addition
of 50
the p e r i o d
interrupts
activity does Actinomycin
increase
extent.
and reaches
or i m m e d i a t e l y
tein.
activity
concentrations,
to p r o p h a s e
to or d u r i n g
enzyme
to some
at all
50 m i n p r i o r
the end
a n d Ives,
synthesis
kinase
Actidion,
~g/ml.
increase. due
activity when
to the
expected
onset
of this
longer
inhibited by actinomycin
at a n y
increase This
prevents
increase.
least
Enzyme
C during
the
/2
that
of e n z y m e
only prevents
a d d e d at
time
suggests
to s y n t h e s i s
C on the o t h e r h a n d
of k i n a s e
(Sachsenmaier
actidion
of a c t i v i t y
this
increase
~g/ml
its m a x i -
pro-
the
one h o u r p r i o r induction
last h o u r
is no
of the
i
B I00 -%
Io!
~
8
I
I
,,
o
~
~°'---°--~o ° i 4
~ I/ D / I ^~eI
~ ~ "~LU ~,...
50
~ 0 ~.-/
/._
I o o
,' ,
~.
"J
i I
',
o
,-,
u
~.\v 0
I I
I
-
-2
hr
0
I
-2 hr 0 START OF TREATMENT RELATIVE ro CONTROL TELOPHASE
l
-,
TIME OF ANALYSIS RELATIVE TO TELOPHASE
Fig. 2: E f f e c t s of a c t i n o m y c i n C a n d a c t i d i o n on t h y m i dine kinase induction. A: P o i n t s i n d i c a t e e n z y m e a c t i v i t i e s of c o n t r o l p l a s m o d i a at the time s h o w n on the a b s c i s s a . C y t o l o g i c a l s t a g e of n u c l e i : I ( I n t e r p h a s e ) ; P ( P r o p h a s e ) ; M ( M e t a p h a s e ) ; A ( A n a p h a s e ) ; R ( R e c o n s t r u c t i o n of the n u c l e o lus). B: T h e a b s c i s s a i n d i c a t e s the time w h e n 250 ~ g / m l a c t i n o m y c i n C or 50 ~ g / m l a c t i d i o n w e r e added. A l l c u l t u r e s w e r e a n a l y z e d w i t h i n a p e r i o d of 30 m i n a f t e r c o n t r o l telephase. A c t i v i t y is e x p r e s s e d as % of the m e a n of c o n t r o l values.
658
Vol. 27, No. 6, 1967
BIOCHEMICAL AND BIOPHYSICAL RESEARCHCOMMUNICATIONS
"actidion
sensitive"
thymidine
kinase
period.
is f o r m e d
This
about
suggests one h o u r
that m - R N A prior
for
to e n z y m e
synthesis. The closely
effects parallel
t i o n of the onset
or d e l a y s
indicates
onset
and
TABLE
of this
effects prior
further have
that
kinase
enzyme
II.
the
progress
been
(hrs
are
relative
prevents (Table
the
II).
et al.
required
formed
Addi-
Simi-
(1965).
for
during
the
the p e r i o d
C which
added
t h a n 90 m i n p r i o r
later
C and actidion
stage
no
longer
on m i t o s i s .
of n u c l e i
of t r e a t m e n t
End (0.5 h r s
to t e l o p h a s e )
on m i t o s i s .
by Cummins
proteins
induction
Actinomycin
of a c t i n o m y c i n
Cytological Start
some
when
agent
prophase
reported
induction.
kinase
of m i t o s i s
of m i t o s i s
induction
Effects
to late
at l e a s t
for p r o g r e s s
of t h y m i d i n e inhibits
on t h y m i d i n e
inhibitor
lar o b s e r v a t i o n s This
of a e t i d i o n
of t r e a t m e n t
after
control
Control
Actinomycin
telophase) Actidion
-2.4
I
R
I
I
7
I
R
IP+
I°
-1.4
I
R
IP+
I°
-0.6
IP
R
M
IP °
-0.4
IP
R
R
M
-i.
-0.3
P
R
R
M
-0.2
M
R
R
R
P l a s m o d i a l s e g m e n t s w e r e t r a n s f e r r e d onto m e d i u m c o n t a i n i n g 250 ~g/ml a c t i n o m y c i n C or 50 ~g/ml a c t i d i o n at the time indic a t e d in c o l u m n (1). T h e c y t o l o g i c a l s t a g e of n u c l e i w a s o b s e r v e d at the s t a r t of t r e a t m e n t ( c o l u m n 2) a n d 0 . 5 h r s a f t e r c o n t r o l t e l o p h a s e ( c o l u m n s 4 + 5). I: I n t e r p h a s e ; IP: E a r l y p r o p h a s e ; P: P r o p h a s e ; M: M e t a p h a s e ; R: R e c o n s t r u c t i o n of n u c l e o l a r m a t e r i a l (0.2 to 1.5 hrs a f t e r t e l o p h a s e ) . (+,o): a b n o r m a l l y c o n d e n s e d c h r o m a t i n a n d s m a l l (+) or n o r m a l ( O) n u c l e o l i .
659
Vol. 27, No. 6, 1967
BIOCHEMICAL AND BIOPHYSICAL RESEARCHCOMMUNICATIONS
to telophase,
still
35 m i n b e f o r e
telophase.
cules
required
or f u n c t i o n Our
trolled
a pulse (Jacob
prior
and Monod,
1961);
turnover
by
at
end
kinase
b)
This
thymidine
of the
cycle
con-
follow-
synthesis
kinase
level;
as a
m a y be
of the
a)
enzyme
later,
m-RNA.
of
cistron
or a c t i v a t i o n
translation
stabilization
one
mitosis:
mole-
activity
process
triggers
as
formed
specific
kinase
stabilization
the
are
of the d i v i s i o n
which
at the
as late
that m - R N A
of m i t o s i s
synchronous
molecules
added
indicate
induction.
mechanism
m-RNA
when
thymidine
the
of m - R N A
kinase
steps
that
at
to each
may
thymidine
enzyme
by a c l o c k
thymidine enzyme
suggest
of p e r i o d i c
ing e v e n t s
than
periodically
mitosis
This
certain
shorter,
results
increases result
for
affects
of
c) b l o c k
of
molecule.
REFERENCES
Bollum,
F.J.,
and Potter,
V.R.,
Cancer
Res.
1_99, 561
(1959).
Brent, T.P.; Butler, J.A.V.; and C r a t h o r n , A.R.; N a t u r e 207, 176 (1965). Cummins, J.E.; Brewer, E.; and Rusch, HoP.; J. Cell Biol.
2_Z, 337 (1965) Daniel, J.W., and Rusch, H.P., J. Gen. M i c r o b i o l . 25, 47 (1961). Hotta, Y., and Stern, H., Proc. Natl. Acad. Sci. 49~, 648 (1963). Jacob, F., and Monod, J°, J° Molec. Biol. 3, 318 ~ 9 6 1 ) . L i t t l e f i e l d , J.1~., B i o e h e m . B i o p h y s . A c t a T14, 398 (1966). Lowry, 0.H.; R o s e b r o u g h , N.J.; Farr, A.L.; and Randall, R.J.; J. Biol. Chem. 193, 265 (1951). N y g a a r d , 0.F.; Guttes, S.; and Rusch, H.P.; B i o c h e m . Biophys. A c t a 38, 298 (1960). S a c h s e n m a i e r , I¢., B i o c h e m . Z. 34Q, 541 (1964). S a c h s e n m a i e r , Wo , and Rusch, H.P., Exp. Cell Res. 36, 124(1964~ S a c h s e n m a i e r , ~., and Becket, J.E., Mh. Chem. 94, ~ 4 (1965). S a c h s e n m a i e r , W., and Ires, D.H., Biochem. Z. $-~33, 399 (1965). S t u b b l e f i e l d , E., and M u e l l e r , G.C., Biochem. Biophys. Res. Commun. 2__O0, 535 (1965).
660