Applied Mathematics and Computation 216 (2010) 3002–3015
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Permanence and extinction analysis for a delayed periodic predator–prey system with Holling type II response function and diffusion Zijian Liu a,*, Shouming Zhong a,b a b
School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, PR China Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, PR China
a r t i c l e
i n f o
Keywords: Lotka–Volterra system Dispersal Delay Permanence Periodic solution
a b s t r a c t In this paper, it is studied that two species predator–prey Lotka–Volterra type dispersal system with delay and Holling type II response function, in which the prey species can disperse among n patches, while the density-independent predator species is confined to one of the patches and cannot disperse. Sufficient conditions of integrable form for the boundedness, permanence, extinction and the existence of positive periodic solution are established, respectively. Ó 2010 Elsevier Inc. All rights reserved.
1. Introduction The effect of environment change in the growth and diffusion of species in a heterogeneous habitat is a subject of considerable interest in the ecological literature. Since the pioneering theoretical work by Skellam [20], many works have focused on the effect of spatial factors which play a crucial rule in the persistence and stability of a population [4,5,9,16,27,29,32]. And two-species predator–prey discrete dispersal systems have been extensively studied in many articles (see [8,11,14,23]). Most of the existing models deal with autonomous population systems and indicate that a dispersal process in an ecological system is often considered to have a stabilizing influence on the system [6], but it is also probably destabilizing the system [18]. In [16], Kuang and Takeuchi showed that discrete diffusions are capable of both stabilizing and destabilizing a given ecosystem. For time-dependent predator–prey systems in patchy environments, existing results have largely been restricted to permanence and extinction analysis due to the increased complexity of global analysis. Owing to many natural and man-made factors such as low birth rate, high death rate, hunting, decreasing habitats, aggravating living environment, etc., some predator animals become very rare and even liable to extinction. Hence, in [8], Cui and Chen studied a time-dependent predator–prey system where the predator and prey disperse among patches, and showed that dispersal can make the prey and predator permanent even if the prey live in some poor patches. And in many other articles ([7,21,24]), authors usually assumed that the predator’s density is regulated only by predation and is density-independent, which is much identical with the real biological background. So, in this paper, we will consider the instance that the predator’s density is regulated only by predation and is density-independent. On the other hand, based on experiments, in [12], Holling suggested three different kinds of functional responses for different kinds of species to model the phenomena of predation, which made the standard Lotka–Volterra system more realistic. For example, he proposed the form
UðxÞ ¼
mx ; aþx
* Corresponding author. E-mail addresses:
[email protected] (Z. Liu),
[email protected] (S. Zhong). 0096-3003/$ - see front matter Ó 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2010.04.012
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
3003
as a Holling type II response function, the study of this can be seen in many articles [1,19,28,30]. He also proposed the Holling type III response function in the following form:
UðxÞ ¼
mx2 ; a þ x2
which also have been discussed in many articles no matter autonomous and nonautonomous, such as [13,17]. However, the effects of a periodically varying environment and time delay play an important role in the permanence and extinction of population dynamic systems (e.g., [2,3,7,10,15]). Thus, the assumptions of periodicity of the parameters and time delay of species during the course of dispersion and conversion of nutrients into the reproduction are effective way to characterize and investigate dispersal population systems. Moreover, in [31], the authors discussed two species time-delayed periodic predator–prey Lotka–Volterra type systems with dispersal but without response function, the authors get some sufficient conditions on the boundedness, permanence and existence of positive periodic solution for the systems, which enlighten us to study this type nonautonomous periodic predator–prey systems with dispersal and Holling type II response function, and to see wether can we get some good conditions or not. Motivated by the arguments above, in this paper, we consider the following two species periodic predator–prey Lotka– Volterra type system with Holling type II response function:
X Z t n dx1 ðtÞ yðsÞ k1 ðt sÞ d1j ðtÞ½xj ðtÞ x1 ðtÞ; ¼ x1 ðtÞ a1 ðtÞ b1 ðtÞx1 ðtÞ cðtÞ ds þ dt 1 þ mx1 ðsÞ tr j¼1 n X dxi ðtÞ dij ðtÞ½xj ðtÞ xi ðtÞ; ¼ xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ þ dt j¼1 Z t dyðtÞ x1 ðsÞ k2 ðt sÞ ¼ yðtÞ eðtÞ þ f ðtÞ ds ; dt 1 þ mx1 ðsÞ tp
i ¼ 2; 3; . . . ; n; ð1:1Þ
where t 2 R+0 = [0, 1), xi(i 2 I = {1, 2, . . . , n}) denote the population density of the prey species in the ith patch, y presents the population density of the predator species, ai(t), bi(t), the intrinsic growth rate and density-dependent coefficient of the prey in the ith patch, respectively, c(t) the capturing rate of the predator, e(t) the death rate of the predator, f(t) the rate of conversion of nutrients into the reproduction of the predator and dij(t)(i, j 2 I, i – j) the dispersal rate of the prey species from the ith patch to the jth patch, m is a nonnegative constant, the term x1/(1 + mx1) denotes the functional response of the predator. And the function ki(s)(i = 1, 2), defined on [0, r] and [0, p] respectively, are both nonnegative and integrable. That is, Rp Rt Rr k1 ðsÞds ¼ 1 and 0 k2 ðsÞds ¼ 1. Then we know that the term tr k1 ðt sÞyðsÞ=ð1 þ mx1 ðsÞÞds represents the negative effect 0 to the growing rate of the prey population at time t due to the intervention of predator during the time t r to t, and the Rt term tp k2 ðt sÞx1 ðsÞ=ð1 þ mx1 ðsÞÞds represents the positive effect to the growing rate of the predator population at time t due to the predation during the time t p to t. In this paper, we always assume that the functions ai(t), bi(t), dij(t)(i, j 2 I, i – j),c(t),e(t) and f(t) are continuous and periodic defined on R+0 with common period x > 0 and dii = 0(i 2 I) for all t 2 R+0. Our main purpose is to establish a series of criteria on the ultimate boundedness, permanence, extinction and the existence of the periodic solution of the prey and predator species for system (1.1). The method used in this paper is motivated by the works given by Teng and Chen in [26], and Zhang and Teng in [31]. The organization of this paper is as follows. Section 2 presents some basic assumptions and useful lemmas. In Section 3, we state and prove the main results for two species periodic predator–prey Lotka–Volterra type system with Holling type II response function and diffusion. Finally, a conclusion is given in Section 4. 2. Preliminaries In this section, we will give some preliminary knowledge that will be used in the following sections. Let set C+ = {/ = (/1, /2, . . . , /n+1) 2 C: /i(i = 1, 2, . . . , n + 1) is nonnegative on [s, 0] and /i(0) > 0}, where s = max{p, r}. For ecological reasons, we always assume that solutions of system (1.1) satisfy the following initial conditions:
xi ðsÞ ¼ /i ðsÞ;
yðsÞ ¼ /nþ1 ðsÞ for all s 2 ½s; 0; i 2 I;
ð2:1Þ
where / = (/1, /2, . . . , /n+1) 2 C+. It is easy to prove that the functional of the right side system (1.1) is continuous and satisfy a local Lipschitz condition with respect to / in the space R C. Therefore, by the fundamental theory of functional differential equations, for any / 2 C+ system (1.1) has a unique solution (x(t,/), y(t,/)) = (x1(t,/), x2(t,/), . . . , ,xn(t,/), y(t,/)) satisfying the initial condition (2.1). It is also easy to prove that the solution (x(t,/), y(t,/)) is positive, that is xi(t,/) > 0(i 2 I) and y(t,/) > 0 in its maximal interval of the existence. In this paper, such a solution of system (1.1) is called a positive solution. We define that system (1.1) to be permanent, if there are constants M P m > 0 such that
m 6 lim inf xi ðtÞ 6 lim sup xi ðtÞ 6 M; t!1
and
t!1
i2I
3004
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
m 6 lim inf yðtÞ 6 lim sup yðtÞ; 6 M t!1
t!1
for any positive solution (x(t), y(t)) = (x1(t), x2(t), . . . , xn(t), y(t)) of system (1.1). Let h(t) be a x-periodic continuous function defined on R. We define
½h ¼
1
x
Z
x
m
hðtÞdt;
h ¼ max hðtÞ; t2R
0
l
h ¼ min hðtÞ: t2R
Firstly, we consider the following single species logistic equation with dispersal in n-patches n X dxi ðtÞ dij ðtÞ½xj ðtÞ xi ðtÞ; ¼ xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ þ dt j¼1
i 2 I;
ð2:2Þ
where x ¼ ðx1 ; x2 ; . . . ; xn Þ 2 Rnþ0 ¼ fðx1 ; x2 ; . . . ; xn Þ 2 Rn ; xi P 0; i 2 Ig. xi is the population density of species x in the ith patch, ai(t), bi(t) and dij(t)(i,j 2 I, i – j) are continuous and x-periodic functions defined on R and dii 0 for all t 2 R. Further, we asl l sume that bi > 0 and dij > 0 for all i,j 2 I and i – j. We introduce the following assumptions. (H1) There is a nonempty subset I1 I such that [A] > 0, where
( AðtÞ ¼ min ai ðtÞ i2I1
n X
dij ðtÞ þ
j¼1
X
) dki ðtÞ :
k2I1
(H2) There is a nonempty subset I1 I such that ½A > 0, where
( AðtÞ ¼ min ai ðtÞ i2I1
X
) dij ðtÞ
and I2 ¼ I I1 :
j2I2
We have the following result. Lemma 2.1 [26]. If assumption (H1) or (H2) holds, then Eq. (2.2) has a unique globally asymptotically stable positive x-periodic solution. Further, for convenience, we need the following vector comparison theorem. Firstly, we say the system of differential equations
_ xðtÞ ¼ Fðt; xðtÞÞ;
x 2 Rn
is cooperative if the off-diagonal elements of DxF(t,x(t)) are nonnegative and competitive if the off-diagonal elements are nonpositive, where DxF(t,x(t)) is the n n matrix derivative of F with respect to x. Lemma 2.2 [22]. Let x(t) and y(t) be solutions of
_ xðtÞ ¼ Fðt; xðtÞÞ;
x 2 Rn
_ yðtÞ ¼ Gðt; yðtÞÞ;
y 2 Rn ;
and
respectively, where both systems are assumed to have a uniqueness property for initial value problems. Assume both x(t) and y(t) belong to a domain D # Rn for [t0, t1], in which one of the two systems is cooperative and
Fðt; zÞ 6 Gðt; zÞ;
ðt; zÞ 2 ½t 0 ; t 1 D:
If x (t0) 6 y (t0), then x (t1) 6 y (t1). 3. Main results On system (1.1), in addition to the assumptions (H1) and (H2), we further need the following assumption: (H3) Functions bi(t) > 0,dij(t) > 0(i, j 2 I,i – j), c(t) > 0, f(t) > 0 and [e] > 0 for all t 2 R. Let x ðtÞ ¼ x1 ðtÞ; x2 ðtÞ; . . . ; xn ðtÞ be the unique positive x-periodic solution of Eq. (2.2). With respect to the permanence of system (1.1) we have the following result. Theorem 3.1. Suppose that assumptions (H1) or (H2) and ( H3) hold. If
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
x
Z
eðtÞ þ f ðtÞ
Z
t
k2 ðt sÞ
tp
0
x1 ðsÞ ds dt > 0; 1 þ mx1 ðsÞ
3005
ð3:1Þ
then system (1.1) is permanent. Proof. Here we prove Theorem 3.1 only under the assumptions (H1) and (H3). The proof under the assumptions (H2) and (H3) is similar. We will use the following several propositions to complete the proof of Theorem 3.1. h Proposition 1. There is a constant M > 0 such that limsupt?1xi(t) < M (i 2 I) and limsupt?1y (t) < M for any positive solution (x (t), y (t)) = (x1(t), . . . , ,xn(t), y(t)) of system (1.1). Proof. Choose a constant M1 > maxt2Rjx*(t)j, where jx ðtÞj ¼
dxi ðtÞ 6 xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ þ dt
n X
Pn
dij ðtÞ½xj ðtÞ xi ðtÞ;
i¼1 xi ðtÞ.
Since
i 2 I;
j¼1
by Lemma 2.2 (the vector comparison theorem) we obtain
xi ðtÞ 6 xi ðtÞ for all t P 0; i 2 I;
ð3:2Þ
where xðtÞ ¼ ð x1 ðtÞ; x2 ðtÞ; . . . ; xn ðtÞÞ is the solution of comparison Eq. (2.2) with the initial condition xð0Þ ¼ xð0Þ. By the global asymptotic stability of x*(t), there is a T1 > 0 such that
xi ðtÞ 6 M1
for all t P T 1 ; i 2 I:
Hence, by (3.2) we have
xi ðtÞ 6 M1
for all t P T 1 ; i 2 I:
Consequently,
lim sup xi ðtÞ 6 M1 ;
i 2 I:
ð3:3Þ
t!1
Next, we will proof that there is a constant M2 > 0 such that
lim sup yðtÞ 6 M2 :
ð3:4Þ
t!1
Choose 0 < e < M1, then from (H3) we can choose the constant M0 > M1 such that
eða1 ðtÞ c0 ðtÞM0 Þ þ
n X
d1j ðtÞM1 < e;
ð3:5Þ
j¼1
for all t P 0 and
½eðtÞ þ f ðtÞe < e;
ð3:6Þ
where c0(t) = c(t)/(1 + mM1). We first prove
lim inf yðtÞ 6 M 0 :
ð3:7Þ
t!1
Otherwise, there is a constant T2 P T1 such that y(t) > M0 for all t P T2. If x1(t) P e for all t P T3 P T2 + s, then directly from system (1.1) we have
Z t" Z x1 ðtÞ 6 x1 ðT 3 Þ exp a1 ðuÞ cðuÞ T3
6 x1 ðT 3 Þ exp
Z
t
T3
# n X k1 ðu sÞyðsÞ xj ðuÞ ds þ du d1j ðuÞ x1 ðuÞ ur 1 þ mx1 ðsÞ j¼1 " # n X 1 eða1 ðuÞ c0 ðuÞM0 Þ þ d1j ðuÞM1 du < x1 ðT 3 Þ exp½ðt T 3 Þ:
e
u
j¼1
Hence, we obtain x1(t) ? 0 as t ? 1. This leads to a contradiction with x1(t) P e for all t P T3. Therefore, there is a t1 > T3 such that x1(t1) < e. Now, we prove x1(t) < e for all t P t1. Otherwise, there is a t2 > t1 such that x1 (t2) = e and x1(t) < e for all t 2 (t1, t2). Hence, we have dx1dtðt2 Þ P 0. On the other hand, directly from system (1.1) we obtain
X Z t2 n dx1 ðt 2 Þ yðsÞ k1 ðu sÞ d1j ðt 2 Þxj ðt 2 Þ 6 eða1 ðt 2 Þ c0 ðt 2 ÞM0 Þ 6 x1 ðt 2 Þ a1 ðt 2 Þ cðt 2 Þ ds þ dt 1 þ mx1 ðsÞ t 2 r j¼1 þ
n X j¼1
d1j ðt 2 ÞM 1 < e:
3006
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
This leads to a contradiction. Therefore, x1(t) < e for all t P t1. For any t P t1, we can choose an integer pt P 0 such that t 2 [t1 + ptx, t1 + (pt + 1)x). Obviously, we have pt ? 1 as t ? 1. For all t P t1 + s, directly from system(1.1) we obtain
yðtÞ ¼ yðt 1 þ sÞ exp
Z
Z eðsÞ þ f ðsÞ
t t 1 þs
6 yðt1 þ sÞ exp
(Z
s
k2 ðs hÞ
sp
t 1 þsþpt x
þ
Z
t 1 þs
)
t
t 1 þsþpt x
x1 ðhÞ dh ds 1 þ mx1 ðhÞ
½eðsÞ þ f ðsÞeds 6 yðt 1 þ sÞ expðr xÞ expðpt xeÞ;
where r* = max06t6x{je(t)j + f(t)e}. Hence, we obtain y(t) ? 0 as t ? 1. This leads a contradiction with y(t) > M0 for all t P T2. Therefore, (3.7) holds. nþ1 such that Now, we prove that (3.4) is true. Otherwise, there is a sequence of initial functions f/k g Rþ
lim sup yðt; /k Þ > ð2M 0 þ 1Þk for all k ¼ 1; 2; . . . t!1
n o n o ðkÞ In view of (3.7), we can obtain that, for each k, there are two time sequences sq and t ðkÞ , satisfying q ðkÞ
ðkÞ
ðkÞ
ðkÞ
ðkÞ 0 < s1 < t1 < s2 < t2 < < sðkÞ q < tq < ðkÞ
and sq ! 1 as q ? 1, such that
yðsðkÞ q ; /k Þ ¼ 2M 0 ;
yðtðkÞ q ; /k Þ ¼ ð2M 0 þ 1Þk
ð3:8Þ
and
ðkÞ 2M 0 < yðt; /k Þ < ð2M 0 þ 1Þk for all t 2 sðkÞ : q ; tq
ð3:9Þ
By the ultimate boundedness of (x1(t,/k), x2(t,/k), . . . , ,xn(t,/k)), for each k there is a constant T(k) > 0 such that xi(t,/k) < M1 for ðkÞ all t P T(k). Further, for each k there is a K(k) > 0 such that sq > T ðkÞ þ s for all q P K(k). Hence, for any q P K(k) directly from system (1.1) we obtain
Z ðkÞ ¼ y s exp y t ðkÞ ; / ; / k k q q
ðkÞ
tq
ðkÞ
eðtÞ þ f ðtÞ
Z
t
k2 ðt sÞ
tp
sq
h i ðkÞ ðkÞ ; 6 y sðkÞ q ; /k exp r 1 t q sq
Z tðkÞ q x1 ðsÞ exp ; / ½eðtÞ þ f ðtÞM 1 dt ds dt 6 y sðkÞ k q ðkÞ 1 þ mx1 ðsÞ sq
where r1 = maxt2[0, x]{je(t)j + f(t)M1}. Consequently, by (3.8) we have ðkÞ tðkÞ q sq P
ln k r1
for all q P K ðkÞ :
ð3:10Þ
R tþL From inequality (3.6), we can choose L > s satisfies exp tþs ½eðtÞ þ f ðtÞedt < 1 and M1exp[ (L s)] < e. For the above L, by ðkÞ (k) (k) ðkÞ inequality (3.10) there h is NL > 0 such i that t q > sq þ 2L for all k P NL and q P K . Fixed k P hNL and q P K i, we prove that ðkÞ ðkÞ ðkÞ ðkÞ there must be a t 1 2 sq þ s; sq þ L such that x1 ðt1 ; /k Þ < e. Otherwise, x1(t,/k) P e for all t 2 sq þ s; sq þ L . Directly from system (1.1) and (3.9) we have
Z ðkÞ 6 x exp x1 sðkÞ þ L; / s þ s ; / 1 k k q q
ðkÞ
sq þL ðkÞ
" a1 ðtÞ cðtÞ
sq þs
6 M 1 exp
Z
ðkÞ sq þL ðkÞ
sq þs
1
"
e
eða1 ðtÞ c0 ðtÞM0 Þ þ
Z
t
k1 ðt sÞ
tr n X
#
# n X yðs; /k Þ xj ðt; /k Þ dt d1j ðtÞ ds þ 1 þ mx1 ðs; /k Þ x1 ðt; /k Þ j¼1
d1j ðtÞM1 dt 6 M 1 exp½ðL sÞ < e;
ð3:11Þ
j¼1
which is a contradiction. Next, we prove x1(t) < e for all t 2 ðt1 ; tðkÞ q . Otherwise, there is t 2 > t 1 such that x1 ðt 2 ; /k Þ ¼ e and t 2 ;/k Þ P 0. On the other hand, directly from system (1.1) we have x1(t,/k) < e for all t 2 ðt1 ; t2 Þ. Hence, we obtain dx1 ðdt
" # Z t2 n X dx1 ðt2 ; /k Þ yðs; / Þ k k1 ðt 2 sÞ d1j ðt2 Þxj ðt2 ; /k Þ 6 x1 ðt 2 ; /k Þ a1 ðt 2 Þ cðt 2 Þ ds þ dt 1 þ mx ðs; / Þ t2 r 1 k j¼1 6 eða1 ðt 2 Þ c0 ðt2 ÞM 0 Þ þ
n X
d1j ðt2 ÞM 1 < e:
j¼1 ðkÞ
This leads to a contradiction. Therefore, x1(t,/k) < e for all t 2 ½sq þ L; tðkÞ q . Further, from (3.8) and (3.9) we have
3007
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
Z ðkÞ ð2M 0 þ 1Þk ¼ yðt ðkÞ q ; /k Þ 6 y sq þ L þ s; /k exp < ð2M 0 þ 1Þk exp
Z
ðkÞ
tq
½eðtÞ þ f ðtÞedt
ðkÞ
sq þLþs
ðkÞ
tq
½eðtÞ þ f ðtÞedt < ð2M 0 þ 1Þk exp
ðkÞ
sq þLþs
Z
ðkÞ
sq þL ðkÞ
½eðtÞ þ f ðtÞedt < ð2M 0 þ 1Þk;
ð3:12Þ
sq þs
which leads a contradiction. Therefore, (3.4) holds. Choose the constant M > max{M1, M2}. Then we see the conclusion of Proposition 1 is true. h Remark 3.1. Considering the biological meaning of Proposition 1 one can know that it is reasoning. In fact, if the predator species is not ultimately bounded, then the population density of predator species will expand unlimitedly. Since the predation rate of predator species for prey species is strictly positive (i.e., c(t) > 0 in assumption (H3)) in patch 1, the prey species will be extinct in the 1th patch because of the massive preying by the predator species. Since the survival of predator species is absolutely dependent on the prey species in the patch 1, as an opposite result the predator species will be extinct too. Proposition 2. There is a constant g > 0 such that limsupt?1q(t) > g for any positive solution (x (t), y (t)) = (x1(t), x2(t), . . . , ,xn(t), y P (t)) of system (1.1), where qðtÞ ¼ i2I1 xi ðtÞ. Proof. By assumptions (H1) and (H3) we can choose positive constants e0 > 0 and g0 > 0 such that
Z
x
½eðtÞ þ f ðtÞe0 dt < e0
ð3:13Þ
/0 ðtÞdt > g0 ;
ð3:14Þ
0
and
Z
x
0
where
( 0
/ ðtÞ ¼ min ai ðtÞ i2I1
n X j¼1
dij ðtÞ þ
X
) dki ðtÞ cðtÞg0 bi ðtÞe0 :
k2I1
Suppose that Proposition 2 is not true. Then there is a positive solution (x(t), y(t)) = (x1(t), x2(t), . . . , ,xn(t), y(t)) of system (1.1) such that
lim sup qðtÞ < e0 :
ð3:15Þ
t!1
Hence, there is a T0 > 0 such that q(t) < e0 for all t P T0. So, xi(t) < e0(i 2 I1) for all t P T0. When 1 2 I1, From system (1.1) we have for all t P T1 P T0 + s,
Z t dyðtÞ x1 ðsÞ k2 ðt sÞ ¼ yðtÞ eðtÞ þ f ðtÞ ds 6 yðtÞ½eðtÞ þ f ðtÞe0 : dt 1 þ mx1 ðsÞ tp
ð3:16Þ
Choose an integer pt P 0 such that for any t 2 [T1 + ptx, T1 + (pt + 1)x), clearly pt ? 1 as t ? 1. From (3.16) we have,
yðtÞ 6 yðT 1 Þ exp
Z
t
½eðsÞ þ f ðsÞe0 ds 6 yðT 1 Þ exp
(Z
T 1 þpt x
T1
T1
þ
Z
t
)
½eðsÞ þ f ðsÞe0 ds
T 1 þpt x
6 yðT 1 Þ expðr 1 xÞ expðpt xe0 Þ; where r1 = max06t6x{je(t)j + f(t)e0}. Consequently, we have y(t) ? 0 as t ? 1, then there is T2 P T1 such that y(t) < g0 for all t P T2. From system (1.1) we obtain for all t P T2 + s,
X Z t n dx1 ðtÞ yðsÞ k1 ðt sÞ d1j ðtÞ½xj ðtÞ x1 ðtÞ ¼ x1 ðtÞ a1 ðtÞ b1 ðtÞx1 ðtÞ cðtÞ ds þ dt 1 þ mx1 ðsÞ tr j¼1 P x1 ðtÞ½a1 ðtÞ b1 ðtÞx1 ðtÞ cðtÞg0 þ
n X
d1j ðtÞ½xj ðtÞ x1 ðtÞ;
ð3:17Þ
j¼1
for any i – 1, n n X X dxi ðtÞ dij ðtÞ½xj ðtÞ xi ðtÞ P xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ cðtÞg0 þ dij ðtÞ½xj ðtÞ xi ðtÞ: ¼ xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ þ dt j¼1 j¼1
ð3:18Þ
3008
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
Hence, we have
" # n X X X dqðtÞ X dxi ðtÞ xi ðtÞðai ðtÞ bi ðtÞxi ðtÞ cðtÞg0 Þ þ dik ðtÞxk ðtÞ dij ðtÞxi ðtÞ ¼ P dt dt i2I1 i2I1 j¼1 k2I1 " # n X X X ¼ ai ðtÞ dij ðtÞ þ dki ðtÞ cðtÞg0 bi ðtÞxi ðtÞ xi ðtÞ P /0 ðtÞqðtÞ; i2I1
j¼1
ð3:19Þ
k2I1
when 1 R I1, by (3.18) we can immediately obtain that
" # n X X X dqðtÞ X dxi ðtÞ ai ðtÞ dij ðtÞ þ dki ðtÞ cðtÞg0 bi ðtÞxi ðtÞ xi ðtÞ P /0 ðtÞqðtÞ: ¼ P dt dt i2I i2I j¼1 k2I 1
1
ð3:20Þ
1
By this and (3.19) and (3.14) we finally have q(t) ? 1 as t ? 1, which leads to a contradiction with (3.15). This completes the proof of Proposition 2. h Proposition 3. There is a constant r0 > 0 such that liminft?1q(t) > r0 for any positive solution (x(t), y(t)) = (x1(t), x2(t), . . . , xn(t), y (t)) of system (1.1). Proof. By (3.13) and (3.14) we can choose a sufficiently large constant P such that for any a P P
M exp
Z 0
a
½eðtÞ þ f ðtÞe0 dt < g0
ð3:21Þ
and
Z
a
/0 ðtÞdt > 0:
ð3:22Þ
0
Assume that Proposition 3 is not true. Then there is a sequence {/k} C+ such that for the solution (x(t,/k), y(t,/k)) = (x1(t,/k), x2(t,/k), . . . , ,xn(t,/k), y(t,/k)) of system (1.1),
lim inf qðt; /k Þ < t!1
g 2k
2
for all k ¼ 1; 2; . . .
P where qðt; /k Þ ¼ i2I1 xi ðt; /k Þ. From Proposition 2 we have limsupt?1q(t,/k) > g. Hence, for each k there are time sequences ðkÞ ðkÞ fsq g and ft q g, satisfying ðkÞ
ðkÞ
ðkÞ
ðkÞ
ðkÞ 0 < s1 < t1 < s2 < t2 < < sðkÞ q < tq < ðkÞ
and sq ! 1 as q ? 1, such that
g g q sðkÞ ; q t ðkÞ q ; /k ¼ q ; /k ¼ 2 k
ð3:23Þ
k
and
g 2
k
< qðt; /k Þ <
g k
ðkÞ : for all t 2 sðkÞ q ; tq
ð3:24Þ
By Proposition 1, for each k, there is a T(k) > 0 such that
xi ðt; /k Þ < Mði 2 IÞ;
yðt; /k Þ < M
Further, for each k, there is a K we have
(k)
for all t P T ðkÞ :
> 0 such that
ðkÞ sq
>T
ðkÞ
(k)
þ s for all q P K . Hence, for any t 2
h
ðkÞ sq ; t ðkÞ q
i
ð3:25Þ (k)
and q P K , by (3.25)
n X dx1 ðt; /k Þ d1j ðtÞ½xj ðt; /k Þ x1 ðt; /k Þ; P x1 ðt; /k Þ½a1 ðtÞ b1 ðtÞx1 ðt; /k Þ cðtÞM þ dt j¼1
consequently, we have
( ) n X X dqðt; /k Þ xi ðt; /k Þ½ai ðtÞ bi ðtÞxi ðt; /k Þ cðtÞM þ dij ðtÞ½xj ðt; /k Þ xi ðt; /k Þ P dt i2I1 j¼1 ( ) n X X X xi ðt; /k Þ½ai ðtÞ bi ðtÞM cðtÞM þ dip ðtÞxp ðt; /k Þ dij ðtÞxi ðt; /k Þ P wðtÞqðt; /k Þ; P i2I1
p2I1
j¼1
ð3:26Þ
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
3009
where
( wðtÞ ¼ max jai ðtÞj þ bi ðtÞM þ cðtÞM þ i2I1
dij ðtÞ þ
ðkÞ sq
ln k P m w
to
t ðkÞ q ,
X
) dpi ðtÞ :
p2I1
j¼1
Integrating (3.26) from ðkÞ tðkÞ q sq
n X
we obtain
for all q P K ðkÞ :
So, there is a constant K0 > 0 such that
g k
< e0 ;
ðkÞ t ðkÞ q sq > 2Q ;
ð3:27Þ
(k) for all k P K0 and q P K(k), where the constant h i Q > P + s. Let k P K0 and q P K in the following discussion. ðkÞ ðkÞ When 1 2 I1, for any t 2 sq þ s; sq þ Q , by (3.24) and (3.27) we have
dyðt; /k Þ 6 yðt; /k Þ½eðtÞ þ f ðtÞe0 : dt ðkÞ
Integrating this from sq þ s to t one can obtain
Z yðt; /k Þ 6 y sðkÞ þ s ; / exp k q
t
ðkÞ sq þ
½eðsÞ þ f ðsÞe0 ds 6 M exp
Z
s
h i ðkÞ From (3.21) we have for all t 2 sq þ Q ; tðkÞ q
yðt; /k Þ 6 M exp
Z
t
ðkÞ sq þ
½eðsÞ þ f ðsÞe0 ds: s
t ðkÞ
sq þ s
½eðsÞ þ f ðsÞe0 ds < g0 :
h i ðkÞ Then by system (1.1) we have for all t 2 sq þ Q ; tðkÞ q n X dx1 ðt; /k Þ d1j ðtÞ½xj ðt; /k Þ x1 ðt; /k Þ: P x1 ðt; /k Þ½a1 ðtÞ b1 ðtÞx1 ðt; /k Þ cðtÞg0 þ dt j¼1
For any i – 1, n X dxi ðt; /k Þ dij ðtÞ½xj ðt; /k Þ xi ðt; /k Þ ¼ xi ðt; /k Þ½ai ðtÞ bi ðtÞxi ðt; /k Þ þ dt j¼1
P xi ðt; /k Þ½ai ðtÞ bi ðtÞxi ðt; /k Þ cðtÞg0 þ
n X
dij ðtÞ½xj ðt; /k Þ xi ðt; /k Þ;
ð3:28Þ
j¼1
then the following can be obtained quickly from the above two inequalities
( ) n X X dqðt; /k Þ X dxi ðt; /k Þ xi ðt; /k Þ½ai ðtÞ bi ðtÞxi ðt; /k Þ cðtÞg0 þ dij ðtÞ½xj ðt; /k Þ xi ðt; /k Þ ¼ P dt dt i2I1 i2I1 j¼1 ( ) n X X X xi ðt; /k Þ½ai ðtÞ bi ðtÞe0 cðtÞg0 þ dil ðtÞxl ðt; /k Þ dij ðtÞxi ðt; /k Þ P i2I1
P
X
l2I1
" ai ðtÞ bi ðtÞe0 cðtÞg0 þ
i2I1
X
dli ðtÞ
n X
j¼1
#
dij ðtÞ xi ðt; /k Þ P /0 ðtÞqðt; /k Þ;
ð3:29Þ
j¼1
l2I1
when 1 R I1, by (3.28) we directly have
( ) n X X dqðt; /k Þ X dxi ðt; /k Þ xi ðt; /k Þ½ai ðtÞ bi ðtÞxi ðt; /k Þ cðtÞg0 þ dij ðtÞ½xj ðt; /k Þ xi ðt; /k Þ ¼ P dt dt i2I i2 j¼1 1
1
P /0 ðtÞqðt; /k Þ:
ð3:30Þ ðkÞ
Finally, integrating (3.29) or (3.30) from sq þ Q þ s to t ðkÞ q , by (3.22)–(3.24) one can obtain
g 2
k
ðtðkÞ q ; /k Þ
¼q
Pq
sðkÞ q
þ Q þ s; /k exp
Z
ðkÞ
tq ðkÞ
0
/ ðtÞdt P
sq þQþs
which leads to a contradiction. This completes the proof. h
g k
2
exp
Z
ðkÞ
tq ðkÞ
sq þQ þs
/0 ðtÞdt >
g 2
k
;
3010
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
Proposition 4. There is a constant b > 0 such that liminft?1xi(t) > b(i 2 I) for any positive solution (x (t), y (t)) = (x1(t), x2(t), . . . , xn (t), y (t)) of system (1.1). Proof. By Propositions 1 and 3, there is a T0 > 0 such that
X
xi ðtÞ > r0 ;
yðtÞ < M
for all t P T 0 :
i2I1
Then, for all t P T0 + s and any i 2 I we have n X dxi ðtÞ dij ðtÞ½xj ðtÞ xi ðtÞ P xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ cðtÞM þ dt j¼1 " # n X dij ðtÞ þ d0 r0 ; P xi ðtÞ ai ðtÞ bi ðtÞxi ðtÞ cðtÞM
ð3:31Þ
j¼1
n o l where d0 ¼ min dij : i; j 2 I; i – j . Obviously, we can choose a constant b > 0, and b is independent of any positive solution of system (1.1), such that for any i 2 I, 0 6 xi 6 b and t 2 R
"
xi ai ðtÞ bi ðtÞxi cðtÞM
n X
#
dij ðtÞ þ d0 r0 > b:
j¼1
Hence, by (3.31) one can obtain
dxi ðtÞ > b for all 0 6 xi ðtÞ 6 b; t P T 0 þ s: dt From this, we finally have
lim inf xi ðtÞ P b;
i 2 I:
t!1
Proposition 4 is completed. h Remark 3.2. Propositions 1–4 show that if we guarantee the assumption (H1) or (H2) and (H3) hold then the prey species must be permanent. If not, then it may be extinct, as a result the predator species y will be extinct too because its survival is absolutely dependent on x. However, when y became extinct, x will not turn to extinction for assumption (H1) or (H2) shows that x has a total positive average growth rate in n patches. Proposition 5. There is a constant c > 0 such that limsupt?1y (t) > c for any positive solution (x (t), y (t)) = (x1(t), x2(t), . . . , ,xn(t), y (t)) of system (1.1). Proof. By (3.1), we can choose a constant e0 > 0 such that
Z
x
eðtÞ þ f ðtÞ
0
k2 ðt sÞx1 ðsÞ e ds f ðtÞ 0 dt > e0 : tp 1 þ mx1 ðsÞ
Z
t
ð3:32Þ
For any constant a > 0, we consider the following auxiliary system: n X dx1 ðtÞ ¼ x1 ðtÞ½a1 ðtÞ cðtÞa b1 ðtÞx1 ðtÞ þ d1j ðtÞ½xj ðtÞ x1 ðtÞ; dt j¼1 n X dxi ðtÞ ¼ xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ þ dij ðtÞ½xj ðtÞ xi ðtÞ; dt j¼1
By assumption (H1), we obtain for sufficiently small a > 0
Z 0
x
/a ðtÞdt > 0;
where
( /a ðtÞ ¼ min ai ðtÞ cðtÞa i2I1
n X j¼1
dij ðtÞ þ
X k2I1
) dki ðtÞ :
i ¼ 2; 3; . . . ; n:
ð3:33Þ
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
3011
Hence, by Lemma 2.1 we obtain that Eq. (3.33) has a unique globally asymptotically stable positive x-periodic solution xa ðtÞ ¼ x1a ðtÞ; x2a ðtÞ; . . . ; xna ðtÞ . Let xa(t) = (x1a(t), x2a(t), . . . , xna(t)) be the solution of Eq. (3.33) with initial condition * xa(0) = x (0). Then, for the above given constant e0 > 0 there is a T0 > 0 such that
e0
jxia ðtÞ xia ðtÞj <
4
i 2 I;
;
ð3:34Þ
for all t P T0. On the other hand, by the continuity of solutions with respect to parameters, we can obtain that when a ? 0, xa(t) uniformly for t 2 [T0, T0 + x] converges to x*(t). Hence, there is a 0 < a0 < e0 such that for any 0 6 a 6 a0 we have
jxia ðtÞ xi ðtÞj <
e0 4
i 2 I;
;
ð3:35Þ
for all t 2 [T0, T0 + x]. From (3.34) and (3.35) and the periodicity of xa ðtÞ and x*(t), we finally have
jxia ðtÞ xi ðtÞj <
e0 2
i 2 I;
;
ð3:36Þ
for all t 2 R and 0 6 a 6 a0. Suppose that Proposition 5 is not true. Then for any constant 0 < a < a0 there is a positive solution (x(t), y(t)) = (x1(t), x2(t), . . . , xn(t), y(t)) of system (1.1) such that limsupt?1y(t) < a. Hence, there is a T1 > 0 such that y(t) < a for all t P T1. Then for all t P T1 + s we obtain n X dx1 ðtÞ P x1 ðtÞ½a1 ðtÞ cðtÞa b1 ðtÞx1 ðtÞ þ d1j ðtÞ½xj ðtÞ x1 ðtÞ; dt j¼1
and n X dxi ðtÞ dij ðtÞ½xj ðtÞ xi ðtÞ i ¼ 2; 3; . . . ; n: ¼ xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ þ dt j¼1
Hence, by Lemma 2.2 we have
xi ðtÞ P xia ðtÞ i 2 I;
ð3:37Þ
t P T1 + s, where xa(t) = (x1a(t), x2a(t), . . . , xna(t)) is the solution of Eq. (3.33) with initial condition xa(T1 + s) = x(T1 + s). By the asymptotic stability of the positive x-periodic solution xa ðtÞ, we obtain that there is a T2 > T1 + s such that
jxia ðtÞ xia ðtÞj <
e0 2
i 2 I;
;
ð3:38Þ
for all t P T2. Hence, by (3.36)–(3.38) we finally have
xi ðtÞ P xi ðtÞ e0 ;
i 2 I;
ð3:39Þ
for all t P T2. Since for all t P T2 + s,
Z t Z t dyðtÞ x1 ðsÞ x1 ðsÞ e0 k2 ðt sÞ k2 ðt sÞ ¼ yðtÞ eðtÞ þ f ðtÞ ds P yðtÞ eðtÞ þ f ðtÞ ds dt 1 þ mx1 ðsÞ 1 þ mðx1 ðsÞ e0 Þ tp tp Z t k2 ðt sÞx1 ðsÞ P yðtÞ eðtÞ þ f ðtÞ ds f ðtÞe0 ; tp 1 þ mx1 ðsÞ integrating this from T2 + s to t, one can obtain
yðtÞ P yðT 2 þ sÞ exp
Z
t
T 2 þs
eðtÞ þ f ðtÞ
k2 ðt sÞx1 ðsÞ e ds f ðtÞ 0 ds: tp 1 þ mx1 ðsÞ
Z
t
Hence, by (3.32) we finally obtain y(t) ? 1 as t ? 1, which leads to a contradiction. Then the conclusion of Proposition 5 is true. h Proposition 6. There is a constant l > 0 such that liminft?1y (t) > l for any positive solution (x (t), y (t)) = (x1(t), x2(t), . . . , xn(t), y (t)) of system (1.1). Proof. If Proposition 6 is not true, then there is a sequence {/k} C+ such that
lim inf yðt; /k Þ < t!1
c kþ1
for all k ¼ 1; 2; . . . ;
where c is given in Proposition 5, c < e0 and the constantne0 o satisfies (3.32). By Proposition 5, we have limn inequality o ðkÞ and tðkÞ , satisfying supt?1y(t) > c. Hence, for each k there are time sequences sq q
3012
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015 ðkÞ
ðkÞ
ðkÞ
ðkÞ
ðkÞ 0 < s1 < t1 < s2 < t2 < < sðkÞ q < tq < ðkÞ
and sq ! 1 as q ? 1, such that
y sðkÞ q ; /k ¼ c;
y t ðkÞ q ; /k ¼
c
ð3:40Þ
kþ1
and
c kþ1
ðkÞ < yðt; /k Þ < c for all t 2 ðsðkÞ q ; t q Þ:
ð3:41Þ
By system (1.1) we have
dyðt; /k Þ P eðtÞyðt; /k Þ; dt ðkÞ
for any k, integrating this inequality from sq to t ðkÞ q we have
Z ðkÞ P y s exp y t ðkÞ ; / ; / k k q q
ðkÞ
tq ðkÞ
½eðtÞdt:
sq
Consequently ðkÞ tðkÞ q sq P
lnðk þ 1Þ e0
for any k ¼ 1; 2; . . .
ð3:42Þ
where e0 = max06t6x{je(t)j}. By (3.32), there are constants P > 0 and h > 0 such that for any a P P we have
Z
a
eðtÞ þ f ðtÞ
k2 ðt sÞx1 ðsÞ ds f ðtÞe0 dt > h: tp 1 þ mx1 ðsÞ
Z
0
t
ð3:43Þ
h i ðkÞ , Further, from system (1.1) we have for any t 2 sq þ s; tðkÞ q n X dx1 ðt; /k Þ d1j ðtÞ½xj ðt; /k Þ x1 ðt; /k Þ P x1 ðt; /k Þ½a1 ðtÞ b1 ðtÞx1 ðt; /k Þ cðtÞc þ dt j¼1
ð3:44Þ
n X dxi ðt; /k Þ dij ðtÞ½xj ðt; /k Þ xi ðt; /k Þ i ¼ 2; 3; . . . ; n: P xi ðt; /k Þ½ai ðtÞ bi ðtÞxi ðt; /k Þ þ dt j¼1
ð3:45Þ
xi ðt; /k Þ P xic ðtÞ;
ð3:46Þ
and
ðkÞ ðkÞ Let xc(t) = (x1c(t), x2c(t), . . . , xnc(t)) is the solution of Eq. (3.33) with a = c and initial condition xc sq þ s; /k ¼ x sq þ s; /k . Then by (3.44), (3.45) and Lemma 2.2, it follows that
for all t 2
b6
h
ðkÞ sq
þs
xi ðsðkÞ q
; tðkÞ q
i 2 I;
i ðkÞ . By limq!1 sq ¼ 1 and Proposition 1 and 4 we obtain that for any k, there is a K(k) such that
þ s; /k Þ 6 M;
i 2 I;
ð3:47Þ
for all q P K(k). For the parameter a = c, Eq. (3.33) has a globally asymptotically stable positive x-periodic solution xc ðtÞ ¼ x1c ðtÞ; x2c ðtÞ; . . . ; xnc ðtÞ . From the periodicity of Eq. (3.33) we know that the periodic solution xc ðtÞ also is globally uniformly asymptotically stable. Hence, by (3.46) there is a T0 > P, and T0 is independent of any k and q, such that
xic ðtÞ > xic ðtÞ for all t P T 0 þ
ðkÞ sq
e0 2
; ðkÞ
þ s and q P K(k). So, by (3.36), for all t P T 0 þ sq þ s and q P K(k) we have
xic ðtÞ > xi ðtÞ e0 :
ð3:48Þ
By (3.42), there is a N > 0 such that ðkÞ tðkÞ q sq P 2L;
for all k P N and q P K(k), where L P T0 + s is a constant. Hence, from (3.46) and (3.48) we finally obtain
xi ðt; /k Þ P xi ðt; /k Þ e0 ; for all t 2
h
ðkÞ sq
þ
L; tðkÞ q
i 2 I;
i h i ðkÞ , k P N and q P K(k). Since, for any t 2 sq þ L þ s; t ðkÞ , k P N and q P K(k), by (3.49) we have q
ð3:49Þ
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
3013
Z t Z t dyðt; /k Þ x1 ðs; /k Þ k2 ðt sÞx1 ðsÞ k2 ðt sÞ e ¼ yðt; /k Þ eðtÞ þ f ðtÞ ds P yðt; /k Þ eðtÞ þ f ðtÞ ds f ðtÞ ; 0 dt 1 þ mx1 ðs; /k Þ tp tp 1 þ mx1 ðsÞ ðkÞ
integrating above from sq þ L þ s to t ðkÞ q , one can obtain
Z ðkÞ y tðkÞ q ; /k P y sq þ L þ s; /k exp
ðkÞ
tq ðkÞ
eðtÞ þ f ðtÞ
sq þLþs
Z
k2 ðt sÞx1 ðsÞ ds f ðtÞe0 dt: tp 1 þ mx1 ðsÞ t
Hence, by (3.40) and (3.43) we finally have
k2 ðt sÞx1 ðsÞ ds f ðtÞe0 dt ðkÞ kþ1 sq þLþs tp 1 þ mx1 ðsÞ Z Z tðkÞ t q c k2 ðt sÞx1 ðsÞ c eðtÞ þ f ðtÞ e P exp ds f ðtÞ ; dt P 0 ðkÞ kþ1 kþ1 tp 1 þ mx1 ðsÞ sq þLþs Z P y sðkÞ q þ L þ s; /k exp
c
ðkÞ
tq
Z eðtÞ þ f ðtÞ
t
which leads to a contradiction. This completes the proof. h Remark 3.3. From Lemma 2.1, one can obtain that the prey species will approach a positive periodic stable state x ðtÞ ¼ x1 ðtÞ; x2 ðtÞ; . . . ; xn ðtÞ when there is not the predator species y. Therefore, Propositions 5 and 6 show that if the positive periodic stable state x*(t) of x can guarantee that y obtain a positive total average growth, that is condition
Z
x
eðtÞ þ f ðtÞ
Z
t
k2 ðt sÞ
tp
0
x1 ðsÞ ds dt > 0; 1 þ mx1 ðsÞ
then y will be permanent. Finally, from Propositions 1–6 we see that Theorem 3.1 is proved and this completes the proof. Corollary 3.1. Suppose the assumptions (H1) or (H2) and (H3) hold. If
Z
x
eðtÞ þ f ðtÞ
Z
t
k2 ðt sÞ
tp
0
x1 ðsÞ ds dt > 0; 1 þ mx1 ðsÞ
then system(1.1) has a positive x-periodic solution. From the result of Teng and Chen in [25] on the existence of positive periodic solutions for general delayed periodic nspecies Kolmogorov system, the Corollary 3.1 can be obtained easily. There we omit the proof of it. Theorem 3.2. Suppose that assumptions (H1) or (H2) and (H3) hold. If
Z
x
eðtÞ þ f ðtÞ
Z
t
k2 ðt sÞ
tp
0
x1 ðsÞ ds dt < 0; 1 þ mx1 ðsÞ
then for any positive solution of system (1.1), x(t) ? x*(t) and y(t) ? 0 as t ? 1. Proof. For any positive solution (x(t), y(t)) = (x1(t), x2(t), . . . , xn(t), y(t)) of system (1.1), directly from system (1.1) we have n X dxi ðtÞ dij ðtÞ½xj ðtÞ xi ðtÞ; 6 xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ þ dt j¼1
i 2 I;
for all t P 0. Let ~ xðtÞ ¼ ð~ x1 ðtÞ; ~ x2 ðtÞ; . . . ; ~ xn ðtÞÞ be the solution of Eq. (2.2) with initial condition ~ xð0Þ ¼ xð0Þ. By Lemma 2.2 it can xi ðtÞ ði 2 IÞ for all t P 0. Obviously, for any constant e > 0, by the global asymptotic stability of x*(t), there is a be seen xi ðtÞ 6 ~ xi ðtÞ 6 xi ðtÞ þ eði 2 IÞ for all t P T0. Hence, we have T0 > 0 such that ~
xi ðtÞ 6 xi ðtÞ þ e;
i 2 I;
ð3:50Þ
for all t P T0. By the conditions of Theorem 3.2, we can choose a constant e < e0 < 1 such that
Z 0
x
eðtÞ þ f ðtÞ
Z
t
k2 ðt sÞ
tp
For all t P T0 + s, by (3.50) we have
x1 ðsÞ dt < e0 ; e ds þ f ðtÞ 0 1 þ mx1 ðsÞ
ð3:51Þ
3014
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
" # Z t Z t dyðtÞ x1 ðsÞ x1 ðsÞ þ e ds k2 ðt sÞ k2 ðt sÞ ¼ yðtÞ eðtÞ þ f ðtÞ ds 6 yðtÞ eðtÞ þ f ðtÞ dt 1 þ mx1 ðsÞ 1 þ m x1 ðsÞ þ e tp tp Z t x1 ðsÞ k2 ðt sÞ ds þ f ðtÞe0 ; 6 yðtÞ eðtÞ þ f ðtÞ 1 þ mx1 ðsÞ tp Integrating above from T0 + s to t, we have
yðtÞ 6 yðT 0 þ sÞ exp
Z
t
eðtÞ þ f ðtÞ
T 0 þs
Z
t
k2 ðt sÞ
tp
x1 ðsÞ ds þ f ðtÞe0 dt: 1 þ mx1 ðsÞ
By (3.51) we finally obtain y(t) ? 0 as t ? 1. Further, by a similar argument as in the proof Proposition 5 we can obtain that
xi ðtÞ P xi ðtÞ e;
i 2 I;
for all t P T2. Therefore, from the inequality (3.50) and the arbitrariness of e we obtain ðx1 ðtÞ; x2 ðtÞ; . . . ; xn ðtÞÞ ! x1 ðtÞ; x2 ðtÞ; . . . ; xn ðtÞÞ as t ? 1. This completes the proof of Theorem 3.2. h Considering the following predator density-dependent system
X Z t n dx1 ðtÞ yðsÞ k1 ðt sÞ d1j ðtÞ½xj ðtÞ x1 ðtÞ; ¼ x1 ðtÞ a1 ðtÞ b1 ðtÞx1 ðtÞ cðtÞ ds þ dt 1 þ mx1 ðsÞ tr j¼1 n X dxi ðtÞ dij ðtÞ½xj ðtÞ xi ðtÞ; ¼ xi ðtÞ½ai ðtÞ bi ðtÞxi ðtÞ þ dt j¼1
i ¼ 2; 3; . . . ; n;
Z t dyðtÞ x1 ðsÞ k2 ðt sÞ ¼ yðtÞ eðtÞ þ f ðtÞ ds gðtÞyðtÞ ; dt 1 þ mx1 ðsÞ tp
ð3:52Þ
where g(t) > 0 is also a x-periodic function, we can obtain sufficient and necessary conditions for the permanence, extinction of system (3.52). Corollary 3.2. Suppose the assumptions (H1) or (H2) and (H3) hold, then system (1.1) is permanent, if and only if
Z
x
eðtÞ þ f ðtÞ
Z
t
k2 ðt sÞ
tp
0
x1 ðsÞ ds dt > 0: 1 þ mx1 ðsÞ
Corollary 3.3. Suppose the assumptions (H1) or (H2) and ( H3) hold, then for any positive solution of system(1.1), x (t) ? x*(t) and y(t) ? 0 as t ? 1, if and only if
Z
x
eðtÞ þ f ðtÞ
Z
t
k2 ðt sÞ
tp
0
x1 ðsÞ ds dt 6 0: 1 þ mx1 ðsÞ
4. Conclusion In this paper, two species predator–prey Lotka–Volterra type dispersal system with delay and Holling type II response function is studied. We have established the sufficient conditions of integrable form for the boundedness, permanence, extinction and existence of positive periodic solution for the system. One can notice that the system we investigated in this paper is predator density-independent. However, on the predator density-dependent system (3.52), as a corollary, we have given sufficient and necessary conditions for the permanence, extinction of system. Hence, an important open question is whether the results obtained above are also valid to the predator density-independent system (1.1). The key about this question is to check what results will be obtained with the condition
Z
x
eðtÞ þ f ðtÞ
0
Z
t
tp
k2 ðt sÞ
x1 ðsÞ ds dt ¼ 0; 1 þ mx1 ðsÞ
permanent or extinction? Acknowledgement This research was supported by National Basic Research Program of China (2010CB732501).
Z. Liu, S. Zhong / Applied Mathematics and Computation 216 (2010) 3002–3015
3015
References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32]
H.N. Agiza et al, Chaotic dynamics of a discrete prey–predator model with Holling type II, Nonlinear Anal.: RWA 10 (1) (2009) 116–129. W.G. Aiello, H.I. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci. 101 (2) (1990) 139–153. E. Beretta, Y. Kuang, Convergence results in a well-known delayed predator–prey system, J. Math. Anal. Appl. 204 (1996) 840–853. E. Beretta, F. Solimano, Y. Takeuchi, Global stability and periodic orbits for two patch predator–prey diffusion-delay models, Math. Biosci. 85 (1987) 153–183. E. Beretta, Y. Takeuchi, Global stability of single-species diffusion Volterra models with continuous time delays, Bull. Math. Biol. 49 (1987) 431–448. E. Beretta, Y. Takeuchi, Global asymptotic stability of Lotka–Volterra diffusion models with continuous time delays, SIAM J. Appl. Math. 48 (1988) 627– 651. G.J. Butler, P. Waltman, Bifurcation from a limit cycle in a two predator one prey ecosystem modeled on a chemostat, J. Math. Biol. 12 (1981) 295–310. J. Cui, L. Chen, Permanence and extinction in logistic and Lotka–Volterra systems with diffusion, J. Math. Anal. Appl. 258 (2001) 512–535. H.I. Freedman, Y. Takeuchi, Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Anal.: TMA 13 (1989) 993–1002. K. Gopalsamy, Delayed responses and stability in two-species systems, J. Austral. Math. Soc. Ser. B 25 (1984) 473–500. A. Hastings, Spatial heterogeneity and the stability of predator–prey systems, Theor. Popul. Biol. 12 (1977) 37–48. C.S. Holling, The functional response of predators to prey density and its role in mimicry and population regulations, Mem. Entomol. Soc. Can. 45 (1965) 3–60. Y. Huang, F. Chen, Li Zhong, Stability analysis of a prey–predator model with Holling type III response function incorporating a prey refuge, Appl. Math. Comput. 182 (2006) 672–683. K. Johst, B. Brandl, Evolution of dispersal: the importance of the temporal order of reproduction and dispersal, Proc. Roy. Soc. London Ser. B 264 (1997) 23–30. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993. Y. Kuang, Y. Takeuchi, Predator–prey dynamics in models of prey dispersal in two-patch environments, Math. Biosci. 120 (1994) 77–98. T.K. Kar, H. Matsuda, Global dynamics and controllability of a harvested prey–predator system with Holling type III functional response, Nonlinear Anal.: Hybrid Syst. 1 (2007) 59–67. S. Levin, Dispersion and population interactions, Amer. Nat. 108 (1974) 207–228. A.F. Nindjina, M.A. Aziz-Alaouib, M. Cadivelb, Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with time delay, Nonlinear Anal.: RWA 7 (2006) 1104–1118. J.D. Skellam, Random dispersal in theoretical population, Miometrika 38 (1951) 196–216. H.L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model, SIAM J. Appl. Math. 42 (1982) 27–43. H.L. Smith, Cooperative systems of differential equations with concave nonlinearities, Nonlinear Anal. 10 (1986) 1037–1052. Y. Takeuchi, Global stability in generalized Lotka–Volterra diffusion systems, J. Math. Anal. Appl. 116 (1986) 209–221. Y. Takeuchi, N. Adachi, Existence and bifurcation of stable equilibrium in two-prey, one predator communities, Bull. Math. Biol. 45 (6) (1983) 877–900. Z. Teng, L. Chen, The positive periodic solutions of periodic Kolmogorov type system with delays, Acta Math. Appl. Sin. 22 (1999) 446–456 (in Chinese). Z. Teng, L. Chen, Permanence and extinction of periodic predator–prey systems in patchy environment with delay, Nonlinear Anal. RWA 4 (2003) 335– 364. Z. Teng, Z. Lu, The effect of dispersal on single-species nonautonomous dispersal models with delays, J. Math. Biol. 42 (2001) 439–454. Vlastimil Kr˘ivan, Jan Eisner, Jan Eisner The effect of the Holling type II functional response on apparent competition, Theor. Popul. Bio. 70 (2006) 421– 430. W. Wang, L. Chen, Global stability of a population dispersal in a two-patch environment, Dyn. Syst. Appl. 6 (1997) 207–216. S. Zhang, D. Tan, Lansun Chen, Chaos in periodically forced Holling type II predator–prey system with impulsive perturbations, Chaos, Solitons Fract. 28 (2006) 367–376. L. Zhang, Z. Teng, Permanence for a delayed periodic predator–prey model with prey dispersal in multi-patches and predator density-independent, J. Math. Anal. Appl. 338 (2008) 175–193. Z. Zhang, Z. Wang, Periodic solution for a two-species nonautonomous competition Lotka–Volterra patch system with time delay, J. Math. Anal. Appl. 265 (2002) 38–48.