Applied Mathematics and Computation 186 (2007) 279–285 www.elsevier.com/locate/amc
Permanence for a discrete time Lotka–Volterra type food-chain model with delays Xinyuan Liao
a,b,*,1
, Shengfan Zhou
a,1
, Yuming Chen
c,2
a
b
Department of Mathematics, Shanghai University, Shanghai 200444, PR China School of Mathematics and Physics, Nanhua University, Hengyang, Hunan 421001, PR China c Department of Mathematics, Wilfrid Laurier University, Waterloo, Ont., Canada N2L 3C5
Abstract Considered is a delayed discrete time Lotka–Volterra type food-chain model. Sufficient conditions are established for the permanence and the feasibility of the obtained results are illustrated with an example. Ó 2006 Elsevier Inc. All rights reserved. Keywords: Permanence; Delay; Discrete Lotka–Volterra system; Food-chain; Coexistence
1. Introduction One of the most important questions in population ecology is to find the coexistence conditions for the species. In order to consider this question, several mathematical concepts of coexistence of species are developed. Permanence is one of such concepts. Permanence of Lotka–Volterra systems described by differential equations has been extensively investigated. For some recent results, see [1–7] and the references therein. However, many authors have argued that the discrete time models governed by difference equations are more appropriate than the continuous ones when the populations have nonoverlapping generations. Discrete time models can also provide efficient computational models of continuous models for numerical simulations. Therefore, lots have been done on discrete Lotka–Volterra systems (see, [8–19]). Most of the above-mentioned references focus on the existence of periodic solutions and their stability [8,10–12,16–18]. Though some authors considered permanence for discrete Lotka–Volterra systems [9,13–15,18,19], the systems are either competitive or of predator–prey type.
*
Corresponding author. Address: School of Mathematics and Physics, Nanhua University, Hengyang, Hunan 421001, PR China. E-mail address:
[email protected] (X. Liao). 1 Research was supported by the National Natural Science Foundation of China (No. 10471086) and Educational Committee Foundation of Hunan Province (No. 05C494). 2 Research was partially supported by the Natural Science and Engineering Research Council of Canada (NSERC) and the Early Research Award Program (ERA) of Ontario. 0096-3003/$ - see front matter Ó 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2006.07.096
280
X. Liao et al. / Applied Mathematics and Computation 186 (2007) 279–285
Recently, Xu et al. [17] considered the following discrete time Lotka–Volterra type food-chain model with delays: ( ) m m X X x1 ðn þ 1Þ ¼ x1 ðnÞ exp r1 ðnÞ a11l ðnÞx1 ðn lÞ a12l ðnÞx2 ðn lÞ ; (
l¼0
x2 ðn þ 1Þ ¼ x2 ðnÞ exp r2 ðnÞ þ ( x3 ðn þ 1Þ ¼ x3 ðnÞ exp r3 ðnÞ þ
m X
l¼0
a21l ðnÞx1 ðn lÞ
m X
l¼0
l¼0
m X
m X
a32l ðnÞx2 ðn lÞ
l¼0
a22l ðnÞx2 ðn lÞ )
m X
) a23l ðnÞx3 ðn lÞ ;
l¼0
a33l ðnÞx3 ðn lÞ ;
l¼0
ð1:1Þ where x1(n), x2(n) and x3(n) denote the densities of prey, predator and top predator population at the nth generation, respectively; r1(n) is the intrinsic growth rate of the prey population at the nth generation, a11l(n) measures the influence of the (n l)th generation of the prey on the density of the prey population, and a12l(n) represents the influence at the (n l)th generation of the predator on the prey population; r2(n) is the death rate of the predator population at the nth generation, a21l(n) stands for the influence at the (n l)th generation of the prey on the conversion rate of the predator population, a22l(n) measures the influence of the (n l)th generation of the predator on the density of the predator population, and a23l(n) represents the influence at the (n l)th generation of the top predator on the predator population; r3(n) is the death rate of the top predator population at the nth generation, a32l(n) stands for the influence at the (n l)th generation of the predator on the conversion rate of the top predator population, a33l(n) measures the influence of the (n l)th generation of the top predator on the density of the top predator population. Under the assumption that ri, aij : Z ! Rþ are positive x-periodic, the authors derived sufficient conditions on the existence of positive periodic solutions by using the continuation theorem of coincidence degree theory, where Z is the set of all integers and Rþ ¼ ½0; 1Þ. To the best of our knowledge, no work on permanence of discrete Lotka–Volterra type food-chain has been done yet. Thus, the purpose of this paper is to fill this gap. Precisely, we study the permanence for system (1.1). For permanence of food-chain systems described by differential equations, we refer to Chen and Cohen [20] and Li and Teng [21] and the references therein. Throughout this paper, we always assume {ri(n)} and {aijl(n)} are bounded nonnegative sequences such that 0 < ri 6 ri , 0 < aijl 6 aijl , i, j = 1, 2, 3, l = 0, 1, . . . , m. Here, for any bounded sequence {a(n)}, a ¼ supn2N aðnÞ and a ¼ inf n2N aðnÞ, where N is the set of all nonnegative integers. Also, for biological reasons, we only consider solutions of (1.1) with initial conditions xi ðkÞ P 0; xi ð0Þ > 0;
k ¼ 1; 2; . . . ; m;
ð1:2Þ
i ¼ 1; 2; 3:
This paper is organized as follows. In Section 2, we establish sufficient conditions on permanence for system (1.1). Then, in Section 3, the main result is applied to a discrete time analogue of a differential system studied by Xu and Chen [5]. 2. Main result In order to present our main result, Theorem 2.5, we need some preparations. Definition 2.1. System (1.1) is said to be permanent if there exist positive constants mi and Mi, i = 1, 2, 3, such that mi 6 lim inf xi ðnÞ 6 lim sup xi ðnÞ 6 M i ; n!1
i ¼ 1; 2; 3;
n!1
for any solution x(n) = (x1(n), x2(n), x3(n)) of system (1.1) with initial condition (1.2).
X. Liao et al. / Applied Mathematics and Computation 186 (2007) 279–285
281
Lemma 2.1 (Lemma 1 [22]). Assume that {x(n)} satisfies x(n) > 0 and xðn þ 1Þ 6 xðnÞ expfrðnÞð1 axðnÞÞg for n 2 [n1, 1), where a is a positive constant and n1 2 N. Then lim sup xðnÞ 6 n!1
1 expðr 1Þ: ar
Lemma 2.2 (Lemma 2 [22]). Assume that {x(n)} satisfies xðn þ 1Þ P xðnÞ expfrðnÞð1 axðnÞÞg;
n P N 0;
limsupn!1x(n) 6 K and x(N0) > 0, where a is a constant such that aK > 1 and N 0 2 N. Then 1 lim inf xðnÞ P expfrð1 aKÞg: n!1 a Qn Before proceeding, we make a convention that i¼m F ðiÞ ¼ 1 if m > n. The main result, Theorem 2.5, will follow directly from the following two propositions. Proposition 2.3. Let x(n) = (x1(n), x2(n), x3(n)) be any solution of system (1.1) with the initial condition (1.2). Then lim sup xi ðnÞ 6 K i ;
i ¼ 1; 2; 3;
n!1
where expðr1 1Þ ; r1 lÞ l¼0 a11l expð Pm expðK 1 l¼0 a21l r2 1Þ Pm K 2 ¼ Pm ; a expðr l a21k Þ 2 K 1l l¼0 22l k¼0 Pm expðK 2 l¼0 a32l r3 1Þ Pm K 3 ¼ Pm : a32k Þ l¼0 a33l expðr3 l K 2 l k¼0 K 1 ¼ Pm
Proof. First, we prove limsupn!1x1(n) 6 K1. From the first equation of system (1.1), we have x1 ðn þ 1Þ 6 x1 ðnÞ expfr1 ðnÞg: It follows that, for l = 0, 1, . . . , m and n P l, n1 Y
x1 ði þ 1Þ 6
i¼nl
n1 Y
x1 ðiÞ expfr1 ðiÞg;
i¼nl
or
(
n1 X
x1 ðnÞ 6 x1 ðn lÞ exp
) r1 ðiÞ :
i¼nl
In other words,
(
x1 ðn lÞ P x1 ðnÞ exp
n1 X
) r1 ðiÞ
i¼nl
and hence
(
x1 ðn þ 1Þ 6 x1 ðnÞ exp r1 ðnÞ ( 6 x1 ðnÞ exp r1
m X l¼0
m X l¼0
( a11l ðnÞx1 ðnÞ exp )
a11l expfr1 lgx1 ðnÞ :
n1 X i¼nl
)) r1 ðiÞ
282
X. Liao et al. / Applied Mathematics and Computation 186 (2007) 279–285
It follows from Lemma 2.1 that lim sup x1 ðnÞ 6 K 1 : n!1
Second, we prove that limsupn!1x2(n) 6 K2. From the second equation of system (1.1), for sufficient large n, we have ( ) m X x2 ðn þ 1Þ 6 x2 ðnÞ exp r2 ðnÞ þ K 1 a21l ðnÞ : l¼0
Similar argument as above produces ( !) n1 m X X x2 ðn lÞ P x2 ðnÞ exp r2 ðiÞ K 1 a21k ðiÞ i¼nl
and
k¼0
( x2 ðn þ 1Þ 6 x2 ðnÞ exp r2 ðnÞ þ K 1
a21l ðnÞ
l¼0
( 6 x2 ðnÞ exp
m X
K1
m X
a21l r2
l¼0
m X
( a22l ðnÞ exp
l¼0
!
m X
(
n1 X
a22l exp l r2 K 1
l¼0
r2 ðiÞ K 1
i¼nl m X
!) a21k
m X
!) a21k ðiÞ
) x2 ðnÞ
k¼0
)
x2 ðnÞ :
k¼0
Again, it follows from Lemma 2.1 that lim sup x2 ðnÞ 6 K 2 : n!1
Finally, from the third equation of system (1.1), we have ( ) m X x3 ðn þ 1Þ 6 x3 ðnÞ exp r3 ðnÞ þ K 2 a32l ðnÞ : l¼0
Now, it is not difficult to see that lim sup x3 ðnÞ 6 K 3 n!1
can be proved in the same manner as that for limsupn!1x2(n) 6 K2. This completes the proof. Let K1, K2, and K3 be the positive constants defined in Proposition 2.3. We introduce Pm Pm Pm a11l exp½ðK 1 k¼0 a11k þ K 2 k¼0 a12k r1 Þlg l¼0 f Pm ; D1 ¼ r1 K 2 l¼0 a ( ) ! 12l m X 1 r1 K 2 exp a12l ð1 K 1 D1 Þ ; m1 ¼ D1 l¼0 Pm Pm Pm Pm a22l exp½ðr2 k¼0 a21k m1 þ K 2 k¼0 a22k þ K 3 k¼0 a23k Þlg l¼0 f Pm Pm D2 ¼ ; r2 K 3 l¼0 a23l l¼0 a21l m1 ( ) ! m m X X 1 exp r2 þ a23l K 3 ð1 K 2 D2 Þ ; a21l m1 m2 ¼ D2 l¼0 l¼0 Pm Pm Pm a33l exp½ðr3 k¼0 a32k m2 þ K 3 k¼0 a33k Þlg l¼0 f Pm D3 ¼ ; r l¼0 a32l m2 ( ) ! 3 m X 1 m3 ¼ a32l m2 ð1 K 3 D3 Þ : exp r3 þ D3 l¼0 Now, we make the following assumption: (H) min16i63KiDi > 1.
h
X. Liao et al. / Applied Mathematics and Computation 186 (2007) 279–285
283
Proposition 2.4. Suppose assumption (H) holds. Then, for any solution x(n) = (x1(n), x2(n), x3(n)) to system (1.1) with the initial condition (1.2), lim inf xi ðnÞ P mi ;
i ¼ 1; 2; 3:
n!1
Proof. We first prove liminfn!1x1(n) P m1. It follows from the first equation of system (1.1) that, for sufficient large n, ( ) m m X X a12l ðnÞ a11l ðnÞx1 ðn lÞ : x1 ðn þ 1Þ P x1 ðnÞ exp r1 ðnÞ K 2 l¼0
Then, for l = 0, 1, . . . , m and n P l, n1 Y
x1 ði þ 1Þ P
i¼nl
n1 Y
l¼0
(
x1 ðiÞ exp r1 ðiÞ K 2
m X
i¼nl
or, equivalently,
(
x1 ðn lÞ 6 x1 ðnÞ exp
a12k ðiÞ
k¼0
n1 X
K1
m X
i¼nl
a11k ðiÞ þ K 2
k¼0
m X
)! a11k ðiÞx1 ði lÞ
;
k¼0
m X
!) a12k ðiÞ r1 ðiÞ
:
k¼0
This, combined with the first equation of system (1.1), gives us ( x1 ðn þ 1Þ P x1 ðnÞ exp r1 ðnÞ K 2
a12l ðnÞ
l¼0
( P x1 ðnÞ exp
m X
r1 ðnÞ K 2
m X
( a11l ðnÞx1 ðnÞ exp
l¼0
m X
!
)
n1 X i¼nl
K1
m X
a11k ðiÞ þ K 2
k¼0
m X
!)) a12k ðiÞ r1 ðiÞ
k¼0
a12l ðnÞ ð1 D1 x1 ðnÞÞ :
l¼0
Applying Lemma 2.2, we get lim inf x1 ðnÞ P m1 : n!1
Second, we prove liminfn!1x2(n) P m2. From the second equation of system (1.1), we have ( ) m m m X X X x2 ðn þ 1Þ P x2 ðnÞ exp r2 ðnÞ þ a21l ðnÞm1 a22l ðnÞx2 ðn lÞ a23l ðnÞK 3 : l¼0
l¼0
l¼0
The remaining proof is similar to that for liminfn!1x1(n) P m1 and hence is omitted. Finally, from the third equation of system (1.1), we have ( ) m m X X x3 ðn þ 1Þ P x3 ðnÞ exp r3 ðnÞ þ a32l ðnÞm2 a33l ðnÞx3 ðn lÞ : l¼0
l¼0
Again, similar argument as above will yield lim inf x3 ðnÞ P m3 : n!1
Therefore, the proof is complete.
h
Combing Propositions 2.3 and 2.4, we have proved the main result of this paper, which is stated below. Theorem 2.5. Assume that (H) holds. Then system (1.1) with the initial condition (1.2) is permanent. 3. An application In this section, we apply Theorem 2.5 to the following delayed discrete three-species predator–prey system without dominating instantaneous negative feedback,
284
X. Liao et al. / Applied Mathematics and Computation 186 (2007) 279–285
x1 ðn þ 1Þ ¼ x1 ðnÞ expfr1 ðnÞ a11 ðnÞx1 ðn bs11 cÞ a12 ðnÞx2 ðn bs12 cÞg; x2 ðn þ 1Þ ¼ x2 ðnÞ expfr2 ðnÞ þ a21 ðnÞx1 ðn bs21 cÞ a22 ðnÞx2 ðn bs22 cÞ a23 ðnÞx3 ðn bs23 cÞg; x3 ðn þ 1Þ ¼ x3 ðnÞ expfr3 ðnÞ þ a32 ðnÞx2 ðn bs32 cÞ a33 ðnÞx3 ðn bs33 cÞg;
ð3:1Þ
where bÆc is the floor function, {ri(n)} and {aij(n)} are bounded nonnegative sequences such that 0 < ri 6 ri and 0 < aij 6 aij , sij P 0. Again, for biological reasons, we also only consider solutions of system (3.1) with initial conditions xi ðkÞ P 0; k ¼ 1; 2; . . . ; maxfsij ; i; j ¼ 1; 2; 3g; xi ð0Þ > 0; i ¼ 1; 2; 3:
ð3:2Þ
System (3.1) can be regarded as a discrete time analog of the delayed nonautonomous three-species predator–prey Lotka–Volterra system without dominating instantaneous negative feedback, x01 ðtÞ ¼ x1 ðtÞ½r1 ðtÞ a11 ðtÞx1 ðt s11 Þ a12 ðtÞx2 ðt s12 Þ; x02 ðtÞ ¼ x2 ðtÞ½r2 ðtÞ þ a21 ðtÞx1 ðt s21 Þ a22 ðtÞx2 ðt s22 Þ a23 ðtÞx3 ðt s23 Þ; x03 ðtÞ ¼ x3 ðtÞ½r3 ðtÞ þ a32 ðtÞx2 ðt s32 Þ a33 ðtÞx3 ðt s33 Þ:
ð3:3Þ
In [5], Xu and Chen studied the permanence and the global stability of system (3.3). Denote 1 K 01 ¼ expfr1 ðbs11 c þ 1Þ 1g; a11 1 K 02 ¼ expfðK 01 a21 r2 Þðbs22 c þ 1Þ 1g; a22 1 expfðK 02 K 03 ¼ a32 r3 Þðbs33 c þ 1Þ 1g; a33 a11 expfðK 01 a11 þ K 02 a12 r1 Þbs11 cg ; D01 ¼ r1 K 02 a12 1 m01 ¼ 0 expfðr1 K 02 a21 Þð1 K 01 D01 Þg; D1 a22 K 02 þ a23 K 03 Þbs22 cg a22 expfðr2 a21 m01 þ 0 ; D2 ¼ 0 0 a21 m1 r2 a23 K 3 1 a21 m01 a23 K 03 Þð1 K 02 D02 Þg; m02 ¼ 0 expfðr2 þ D2 a33 K 03 Þbs33 cg a33 expfðr3 a32 m02 þ ; D03 ¼ a32 m02 r3 1 m03 ¼ 0 expfðr3 þ a32 m02 Þð1 K 03 D03 Þg: D3 We introduce the following assumption: (H 0 ) min16i63 K 0i D0i > 1. Then, as an application of Theorem 2.5, we immediately obtain the following result. Theorem 3.1. Assume assumption (H 0 ) holds. Then system (3.1) with the initial condition (3.2) is permanent. We illustrate Theorem 3.1 with an example to conclude this paper. Example. Consider the delayed system 1 x1 ðn þ 1Þ ¼ x1 ðnÞ exp 1 x1 ðnÞ ð3 þ sin nÞx2 ðn l1 Þ ; 60 2 1 x2 ðn þ 1Þ ¼ x2 ðnÞ exp 1 þ ð8 þ cos nÞx1 ðn l2 Þ x2 ðnÞ ð3 þ sin nÞx3 ðn l3 Þ ; 9 80 2 x3 ðn þ 1Þ ¼ x3 ðnÞ exp ð2 þ cos nÞ þ ð8 þ cos nÞx2 ðn l4 Þ x3 ðnÞ ; 9
ð3:4Þ
X. Liao et al. / Applied Mathematics and Computation 186 (2007) 279–285
285
where l1, l2, l3, and l4 are nonnegative integers. One can easily verify that assumption (H 0 ) is satisfied and hence system (3.4) is permanent by Theorem 3.1. References [1] S. Lin, Z. Lu, Permanence for two-species Lotka–Volterra systems with delays, Math. Biosci. Eng. 3 (2006) 137–144. [2] Y. Muroya, Permanence and global stability in a Lotka–Volterra predator–prey system with delays, Appl. Math. Lett. 16 (2003) 1245–1250. [3] Y. Saito, Permanence and global stability for general Lotka–Volterra predator–prey systems with distributed delays, Nonlinear Anal. 47 (2001) 6157–6168. [4] Y. Saito, T. Hara, W. Ma, Necessary and sufficient conditions for permanence and global stability of a Lotka–Volterra system with two delays, J. Math. Anal. Appl. 236 (1999) 534–556. [5] R. Xu, L. Chen, Persistence and global stability for a delayed nonautonomous predator–prey system without dominating instantaneous negative feedback, J. Math. Anal. Appl. 262 (2001) 50–61. [6] J. Zhao, J. Jiang, Permanence in nonautonomous Lotka–Volterra system with predator–prey, Appl. Math. Comput. 152 (2004) 99– 109. [7] J. Zhao, J. Jiang, A.C. Lazer, The permanence and global attractivity in a nonautonomous Lotka–Volterra system, Nonlinear Anal. Real World Appl. 5 (2004) 265–276. [8] Y. Chen, Z. Zhou, Stable periodic solution of a discrete periodic Lotka–Volterra competition system, J. Math. Anal. Appl. 277 (2003) 358–366. [9] L. Jiang, Z. Zhou, Permanence of a nonautonomous n-species Lotka–Volterra competitive difference system with delays, Math. Sci. Res. J. 8 (2004) 36–46. [10] Y. Li, L. Lu, Positive periodic solutions of discrete n-species food-chain systems, Appl. Math. Comput. 167 (2005) 324–344. [11] Y. Li, L. Zhu, Existence of periodic solutions of discrete Lotka–Volterra systems with delays, Bull. Inst. Math. Acad. Sinica 33 (2005) 369–380. [12] Q. Liu, R. Xu, Periodic solution of a discrete time periodic three-species food-chain model with functional response and time delays, Nonlinear Phenom. Complex Syst. 6 (2003) 597–606. [13] Z. Lu, W. Wang, Permanence and global attractivity for Lotka–Volterra difference systems, J. Math. Biol. 39 (1999) 269–282. [14] Y. Saito, T. Hara, W. Ma, Harmless delays for permanence of a Lotka–Volterra discrete predator–prey system, Nonlinear Anal. 50 (2002) 703–715. [15] Y. Saito, W. Ma, T. Hara, A necessary and sufficient condition for permanence of a Lotka–Volterra discrete system with delays, J. Math. Anal. Appl. 256 (2001) 162–174. [16] R. Xu, M.A.J. Chaplain, F.A. Davidson, Periodic solutions of a discrete time three-species Lotka–Volterra food-chain system, Nonlinear Funct. Anal. Appl. 9 (2004) 429–440. [17] R. Xu, L. Chen, F. Hao, Periodic solutions of a discrete time Lotka–Volterra type food-chain model with delays, Appl. Math. Comput. 171 (2005) 91–103. [18] X.Y. Zeng, B. Shi, M.J. Gai, A discrete periodic Lotka–Volterra system with delays, Comput. Math. Appl. 47 (2004) 491–500. [19] Q. Zhang, Z. Zhou, Permanence of a nonautonomous Lotka–Volterra difference system with delays, Math. Sci. Res. J. 7 (2003) 99– 106. [20] X. Chen, J.E. Cohen, Global stability, local stability and permanence in model food webs, J. Theor. Biol. 212 (2001) 223–235. [21] Z. Li, Z. Teng, Permanence for non-autonomous food chain systems with delay, J. Math. Anal. Appl. 286 (2003) 724–740. [22] X. Yang, Uniform persistence and periodic solutions for a discrete predator–prey system with delays, J. Math. Anal. Appl. 316 (2006) 161–177.