551
PERMIAN SHORELINE EOLIAN COMPLEX I N CENTRAL ARIZONA:
TO CYCLIC SEALEVEL RONALD C.
DUNE CHANGES I N RESPONSE
CHANGES
BLAKEY and
LARRY T.
MIDDLETON,
Arizona U n i v e r s i t y , F l a g s t a f f , Arizona
Department
of
Geology,
Northern
86011
INTRODUCTION I n the
last
f i v e years
the
identification
of
ancient
e o l i a n sandstone
sequences has gone from s p e c u l a t i o n and g e n e r a l i z a t i o n t o d e f i n i t i v e i n t e r p r e tation.
Due t o t h e work o f Hunter (1977, 1980), McKee (1979a,b),
Kocurek and
D o t t (1981), Kocurek (1981a, 1981b), and o t h e r s , t h e i d e n t i f i c a t i o n o f a n c i e n t sequences as e o l i a n seems assured i n imany cases. available t o aid i n identification, the large-scale
With d e f i n i t i v e c r i t e r i a
i t i s possible t o i d e n t i f y the nature o f
c o n t r o l s t h a t produced t h e e o l i a n sandstone body.
Controls
such as c l i m a t e , base l e v e l , sand supply, and t e c t o n i c s , which a c t e d t o produce t h e geometry and i n t e r n a l s t r a t i f i c a t i o n o f e o l i a n sand bodies, can be i d e n t i f i e d and i n some cases q u a n t i f i e d .
The purpose o f t h i s s t u d y i s t o r e l a t e t h e
c h a r a c t e r i s t i c s o f an a n c i e n t e o l i a n compl ex and a s s o c i a t e d marine shore1 ine deposits t o these controls.
A l o c a l l y v e r y w e l l exposed Permian sequence was
chosen f o r s t u d y because o f excel l e n t t h r e e - d i m e n s i o n a l exposures and presence of
t h i n wide-spread
m a r i n e carbonates
useful
for
correlation
i n otherwise
unfossiliferous strata. The s e c t i o n s t u d i e d i n c l u d e s t h e upper t h i r d o f t h e Schnebly H i l l Formation and base o f t h e o v e r l y i n g Coconino Sandstone ( f i g . 1 ) .
The base o f t h e s e c t i o n
i s a r e g i o n a l l i m e s t o n e marker bed, t h e F o r t Apache Member o f t h e Schnebly H i l l Formation o f e a r l y Leonardian age (Blakey, 1980). Rim,
an
Colorado P l a t e a u ( f i g .
2).
central
Mogollon
escarpment
that
The area o f study i s i n t h e
forms t h e s o u t h e r n edge o f t h e
D e t a i l e d work was performed near Sedona, Arizona
and less d e t a i l e d work was done t o t h e southeast a l o n g t h e Mogollon Rim. sequence comprises a p p r o x i m a t e l y 100 m o f c r o s s - s t r a t i f i e d ,
The
ripple-laminated,
and wavy bedded v e r y f i n e - t o medium-grained q u a r t z a r e n i t e t o s u b f e l d s p a t h i c arenite.
The sequence d i s p l a y s a s t r o n g l y c y c l i c c h a r a c t e r w i t h r e p e t i t i o n
d i s t i n c t i v e s t r a t i f i c a t i o n and bedding types.
The v e r t i c a l
c y c l i c nature
accompanied by a m a j o r l a t e r a l f a c i e s change from n o r t h w e s t t o southeast.
Of i S
The
sequence formed i n d o m i n a n t l y e o l i a n d e p o s i t i o n a l systems i n t h e Sedona area and p r e d o m i n a n t l y s h a l l o w marine and sabkha systems t o t h e southeast where abundant sandy mudstone, 1980).
l i m e s t o n e , d o l o m i t e , and gypsum a r e p r e s e n t (Blakey,
552
KAIBAB L S
PERMIAN ... .. .. .... .. .,., . ... . ,, ,
SUPAl GROUP
lm
'EN NSY L V AN IAN
REDWALL LE MISSISSIPPIAN
F i g u r e 1. Columnar s e c t i o n of u p p e r P a l e o z o i c s t r a t a i n s t u d y a r e a showing i n t e r v a l of s t u d y ( i n b r a c k e t ) .
N
F i g u r e 2. I n d e x maps. ( a ) C e n t r a l A r i z o n a showing o u t c r o p o f i n t e r v a l o f study. ( b ) Sedona a r e a showing o u t c r o p of i n t e r v a l o f s t u d y and l o c a t i o n of B e l l Rock and West F o r k s e c t i o n s . ( c ) A r i z o n a showing l o c a t i o n o f maps a, b.
553 Tectonic S e t t i n g The area o f s t u d y l i e s on t h e e a s t f l a n k o f t h e Sedona Arch between two proininant t e c t o n i c f e a t u r e s , Basin ( f i g .
3).
t h e Grand Canyon-Emery P l a t f o r m and t h e Hol brook
The Holbrook Basin was a c t i v e d u r i n g o n l y Schnebly H i l l and
l o w e r Coconino d e p o s i t i o n as i t c o n t a i n s two t o t h r e e t i m e s t h e t h i c k n e s s o f l o w e r Leonardian rocks as s u r r o u n d i n g areas
(Blakey,
1980).
The Sedona Arch
forms t h e western edge o f t h e Schnebly H i l l - D e C h e l l y Sandstone complex.
The
Schnebly H i l l Formation t h i c k e n s across t h e southeast edge o f t h e Sedona Arch i n t o t h e Holbrook Basin and across t h e Mogollon S h e l f . i n t h e Grand Canyon,
West o f t h e Sedona Arch
t h e Schnebly H i l l Formation i s absent;
temporal c o r r e l a -
t i v e s t r a t a may be r e p r e s e n t e d by t h e l o w e r s e v e r a l meters o f Sandstone.
Across t h e a r c h ,
l e s s t h a n 100 km.
t h e Coconino
l o w e r Leonardian s t r a t a t h i c k e n t o over 100 m i n
D u r i n g t h i s t i m e i n t e r v a l subsidence r a t e was much g r e a t e r
t o t h e southeast o f t h e Sedona Arch t h a n i t was t o t h e n o r t h w e s t as evidenced by t h e t h i c k e r isopachs t o t h e southeast ( f i g . 3 ) .
A
6
\ Facies Migration
F i g u r e 3. Maps showing ( a ) t e c t o n i c f e a t u r e s and ( b ) d i s t r i b u t i o n o f environment across A r i z o n a and v i c i n i t y d u r i n g d e p o s i t i o n o f upper Schnebly H i l l Formation and l o w e r Coconino Sandstone. Deposits are t h i n , less than s e v e r a l t e n s o f meters t h i c k , west o f Sedona Arch, b u t t h i c k e n t o over 250 m i n Holbrook Basin.
554 D u r i n g Leonardian t i m e , f a c i e s p a t t e r n s on t h e Colorado P l a t e a u and v i c i n i t y were c o n t r o l l e d by t e c t o n i c elements ( f i g . f a c i e s changes on t h e e a s t
3).
The e o l i a n aspects o f sharp
s i d e o f t h e Sedona Arch and t h e i r response t o
e x t e r n a l c o n t r o l s a r e t h e s u b j e c t o f t h i s paper. Source o f Sand The Coconino e r g i s p a r t o f t h e " g r e a t sand p i l e " o f l a t e P a l e o z o i c and Mesozoic age on t h e Colorado Plateau. study ( f i g .
Paleowind d i r e c t i o n s gathered f o r t h i s
4) and by Reiche (1938) and McKee (1979b) i n d i c a t e r a t h e r c o n s i s Facies r e l a t i o n s h i p s show t h a t t h e sand was
t e n t paleowinds from t h e n o r t h .
f e d i n t o t h e area o f study from t h e n o r t h and n o r t h w e s t (Blakey,
1980).
The
m a t u r i t y o f t h e sandstone suggests t h a t much o f i t was r e c y c l e d from o l d e r
N
N
I
N
I
N
I
'E F i g u r e 4. P a l e o c u r r e n t r o s e diagrams. ( a ) P o l a r - d i p diagram o f sand-flow s t r a t a f a c i e s TWC. ( b ) P o l a r - d i p diagram o f i n t r a s e t s t r a t a f a c i e s IC. Open d o t s r e p r e s e n t E-2 surfaces. ( c ) Rose diagram o f trough-axes dips, f a c i e s TCT. ( d ) Rose diagram o f f o r e s e t d i p s o f c l i m b i n g t r a n s l a t e n t s t r a t a , f a c i e s TCT. ( e ) Foreset d i p o f p o s s i b l e marine s t r a t a , f a c i e s CC. ( f ) Summary rose diagram f o r a l l e o l i a n sand-flow f o r e s e t s and t r o u g h axes ; r i p p l e f o r e s e t s n o t in c l uded.
555 Pennsylvanian and Permian r o c k s t o t h e n o r t h i n Utah,
Wyoming,
and Montana.
Regional f a c i e s p a t t e r n s ( f i g . 3 ) suggest t h a t sand was t r a n s p o r t e d a l o n g t h e e a s t e r n margin o f t h e C o r d i l l e r a n seaway t o t h e southwest and t h e n blown i n l a n d across t h e Grand Canyon-Emery P l a t f o r m by winds from t h e n o r t h (Blakey, 1980). The e r g m i g r a t e d southward and southeastward across t h e Sedona Arch.
Here i t
encountered t h e c o a s t a l complex a s s o c i a t e d w i t h t h e Mogol l o n S h e l f and Hol brook Basin.
FACIES A N A L Y S I S Trough-Cross-Stratified ( i ) Description.
T r a n s l a t e n t F a c i e s (TCT)
The t r o u g h - c r o s s - s t r a t i f i e d
t r a n s l a t e n t f a c i e s (TCT)
comprises trough-shaped s e t s f i l l e d w i t h c l i m b i n g t r a n s l a t e n t s t r a t a ( f i g .
5).
The g r a i n s a r e m o s t l y v e r y f i n e t o f i n e g r a i n e d and m o d e r a t e l y w e l l sorted. The sandstone i s r e d d i s h orange t o moderate r e d d i s h brown. s e t s a r e 3-10
m wide and up t o 1.5
determined by a x i a l (fig.
4c).
plunge d i r e c t i o n
m thick (fig.
6).
i s bimodal-bipolar
The trough-shaped The t r o u g h axes as southwest-northeast
The l a r g e s t t r o u g h s a r e c o s e t s t h a t c o n t a i n s m a l l e r b u t s i m i l a r l y
shaped t r o u g h s t h u s c r e a t i n g a h e i r a r c h y o f s e v e r a l s i z e s o f t r o u g h s ( f i g . Surfaces t h a t bound t h e s e t s , r e g a r d l e s s o f s i z e , a r e c l e a r l y e r o s i o n a l . t r u n c a t e o t h e r trough-shaped
5). They
s u r f a c e s as w e l l as enclosed laminae and do n o t
r e p r e s e n t f o r e s e t s o f m i g r a t i n g bedforms.
The laminae t h a t f i l l and g e n e r a l l y
conform t o t h e t r o u g h shape a r e c l i m b i n g t r a n s l a t e n t s t r a t a o f Hunter (1977).
Climbing Translatent S t =Grain
Flow-Grain Fall
F i g u r e 5. Transverse and 1o n g i t u d i n a l s e c t i o n drawings o f f a c i e s TCT. Arrows show wind d i r e c t i o n as shown by f o r e s e t laminae o f c l i m b i n g t r a n s l a t e n t s t r a t a (towards southwest).
556
F i g u r e 6. C h a r a c t e r i s t i c s o f f a c i e s TCT. ( a ) Eroded t r o u g h s u r f a c e s ; w i d t h of v i e w a p p r o x i m a t e l y 2 rn. ( b ) Troughs i n t r a n s v e r s e v i e w on c l i f f w a l l ; f i g u r e f o r scale. ( c ) Oblique view o f c l i m b i n g t r a n s l a t e n t s t r a t a w i t h u n u s u a l l y w e l l preserved w i n d - r i p p l e f o r e s e t s ; wind blew from r i g h t t o l e f t ( t o w a r d s s o u t h w e s t ) ; l e n s cap 54 mm. ( d ) Longitudinal view o f climbing t r a n s l a t e n t s t r a t a showing t r u e t h i c k n e s s o f l a m i n a e . A l l p h o t o s a t West Fork.
These s t r a t a a r e exceed n g l y even and u n i f o r m t h r o u g h o u t t h e f a c i e s and d i s p l a y o c c a s i o n a l t o abundant r i p p l e f o r e s e t 1arni nae ( f i g . upwards and r a n g e f r o m 2-5 mm t h i c k . were examined i n t h e f a c i e s ,
6).
Most 1ami nae c o a r s e n
Several hundred r i p p l e f o r e s e t
laminae
and a l t h o u g h d i f f i c u l t t o measure e x a c t d i r e c t i o n
o f d i p , a l l c l e a r l y show a g e n e r a l s o u t h t o west d i p d i r e c t i o n . Not
all
of
the
strata
i n the
strata.
A
TCT
facies
are trough
climbing
translatent
laminae,
t h e forrner s u g g e s t i n g t h a t a n g l e - o f - r e p o s e
few beds d i s p l a y
shaped o r
sand-flow
and
contain
grain-fall
sedimentation took place.
Small cone-shaped sand f l o w d e p o s i t s a r e i n t e r b e d d e d w i t h c l i m b i n g t r a n s l a t e n t s t r a t a i n some s e t s ( f i g .
6).
M i n o r amounts o f s l u m p i n g and s m a l l - s c a l e s o f t -
557 sediment f a u l t i n g a l s o occur w i t h i n t h e f a c i e s . o b s e r v e d by McKee, e t a l .
S i m i l a r f e a t u r e s have been
(1971) i n modern dunes.
The t r o u g h - c r o s s - s t r a t i f i e d
sandstone comprises cosets which form t a b u l a r -
shaped beds up t o 6 m t h i c k .
The f a c i e s i s most abundant i n t h e l o w e r p a r t o f
t h e i n t e r v a l o f s t u d y , e s p e c i a l l y w i t h i n a few t e n s o f i n e t e r s o f t h e u n d e r l y i n g F o r t Apache Member ( f i g . 7 ) . (ii)
Interpretation.
TCT i s d o m i n a t e d by c l i m b i n g t r a n s l a t e n t
Facies
Sharp ( 1 9 6 6 ) , H u n t e r (1977,
strata.
1981),
and Kocurek and l l o t t ( 1 9 8 1 ) have
documented t h e w i n d r i p p l e o r i g i n f o r t h e s t r a t a .
The m a j o r c h a r a c t e r i s t i c s ,
t l i i n e v e n l y spaced l a m i n a e o f equal t h i c k n e s s , c o a r s e n i n g - u p w a r d s l a m i n a e , and rare
ripple
yeometry
foreset
and
laminae
distribution
are
of
e x t e n s i v e l y developed
cli-nbing
translatent
i n the facies.
strata
d i f f e r e n t t h a n t h a t r e p o r t e d i n modern o r a n c i e n t dunes.
in
facies
The TCT
is
There a r e t h r e e ways
i n w h i c h t r o u g h s o f t h e s i z e i n q u e s t i o n can f o r m i n e o l i a n d e p o s i t s .
1) I n
s t r o n g l y l u n a t e dunes c a l l e d a k l e - ( B r o o k f i e l d , 1977) o r o t h e r s i n u o u s - c r e s t e d t r a n s v e r s e dunes; 2 ) as m i g r a t i n g s c o u r p i t s g e n e r a l l y i n t h e l e e of l a r g e r dunes ( D a v i d R u b i n , p e r s . comm.); and 3 ) as d e p r e s s i o n s a s s o c i a t e d w i t h b l o w o u t dunes;
(Mckee,
1979a;
Ah1 b r a n d t and F r y b e r g e r ,
1980).
Migrating s l i p -
f a c e s on a k l e - dunes as d e s c r i b e d by B r o o k f i e l d w o u l d a p p a r e n t l y p r o d u c e t r o u g h cross s t r a t i f i c a t i o n .
C l e a r l y t h i s i s n o t t h e case w i t h f a c i e s TCT as s l i p -
f a c e d e p o s i t s a r e uncommon.
M i g r a t i n g scour p i t s ,
f e a t u r e s c a r v e d by v o r t e x
e d d i e s a s s o c i a t e d w i t h s i n u o u s - c r e s t e d b e d f o r m s , l e a v e a r a t h e r complex t h r e e d i i i i e n s i o n a l s w a l e and s w e l l t o p o g r a p h y r a t h e r t h a n t h e r e g u l a r e l o n g a t e p a t t e r n we o b s e r v e ( D a v i d R u b i n , p e r s . comm.). From t h e dunes,
relatively
few d e s c r i p t i o n s
smooth s c o u r e d d e p r e s s i o n s
sedimentary
structures
(McKee,
and
discussions
o f inodern b l o w - o u t
f i l l e d w i t h t r o u g h s t r a t a a r e t h e expected
1979a;
Ah1 b r a n d t
and
Fryberger,
1980).
The
s t r a t a d i p a t r e l a t i v e l y l o w a n g l e s due t o t h e i n i n o r o c c u r r e n c e o f s l i p - f a c e deposits complex
and
may
wind
Browns
varying
orientation
(Ahlbrandt
of
dunes
d i p s (Ahlbrandt, than
processes. iaLisS
TC:
direction, 1980).
representing
I n t h e Miocene
t r o u g h axes formed by p r o b a b l e
a r e n o t i n phase w i t h i m m e d i a t e l y u n d e r l y i n g a v a l a n c h e - f o r m e d p e r s . comm.,
those
of
1983).
the
Schnebly
Mean t r o u g h - a x e s
D i p a n g l e s o f f a c i e s TCT a r e c o n s i d e r a b l y Hill
and
i s e'Bx,;:tl-
wituh
Coconino
formed
by
avalanche
d i p d i r e c t i o n o f f a c i e s TCT v a r i e s by a b o u t 60"
from s l i p faces o f t h e avalanche d e p o s i t s ( f i g . E . _ .
dip
and F r y b e r g e r ,
Park F o r m a t i o n o f n o r t h w e s t C o l o r a d o ,
blow-out lower
show
distribution
rjlther
4).
The p a t t e r n o f t r o u g h s i n
s t r a i g h t t r o u g h axes.
The u p p e r ( u p w i n d )
p a r t o f t h e a x i s d i p s more s t e e p l y ( r a r e l y up t o 22") whereas t h e r e m a i n d e r o f -L _I I ~ ak-,\ L,'; 3=-,L.',., '$y--?-lJ1,: 1 0 - c . ~ +.h?n and t v o i c a l l y i s n e a r l y f l a t f a r t h e r down t h e t r o u g h .
T h i s i s t r u e o f b o t h t h e s o u t h w e s t - and n o r t h e a s t -
BELL ROCK
WEST FORK KEY
strata type
INTRASET H GF/SF
LAMIlATED DOLOl’ITE
facies
IC
F T . APACHE llBR
Apache Member
F i g u r e 7. D e t a i l e d columnar s e c t i o n s a t West Fork and B e l l Rock. Facies WBR shown on column where t o o t h i n t o show on drawing. F a c i e s TCT and CC a r e differentiated for clarity.
559 t r e n d i n g troughs.
T h i s suggests t h a t t h e scours were carved by bimodal winds,
p o s s i b l y onshore dnd o f f s h o r e winds,
and t h a t t h e c l i m b i n g t r a n s l a t e n t s t r a t a
t h a t f i l l t h e t r o u g h s were produced by n o r t h e a s t e r l y ( o f f s h o r e ) breezes. Intraset-Cross-Stratified ( i ) Description. by
thick
(up
to
Facies (IC)
The i n t r a s e t - c r o s s - s t r a t i f i e d
12
sedimentary s t r u c t u r e .
m)
tabular
bodies
with
f a c i e s ( I C ) i s dominated
extremely
ranges from p a l e r e d d i s h orange t o p a l e g r a y i s h orange. bound t h e i n t r a s e t s
are subparallel
t a b u l a r s e t s up t o 0.3 (figs.
4b,
8).
complex
internal
The sand i s c h i e f l y f i n e g r a i n e d and w e l l s o r t e d and
m thick;
erosional
The s u r f a c e s which
planes which d e f i n e i n c l i n e d
t h e s u r f a c e s d i p south-southwest a t 18-22'
The i n c l i n e d e r o s i o n s u r f a c e s , p r o b a b l y second-order bounding
s u r f a c e s o f B r o o k f i e l d (1977), become i n d i s c e r n i b l e near t h e base o f t h e coset and d i s a p p e a r between c l i m b i n g t r a n s l a t e n t s t r a t a ( f i g . 9b).
They a l s o become
i n d i s t i n c t between a n g l e - o f - r e p o s e laminae h i g h e r up t h e f a c e o f t h e f o r e s e t s (fig.
8).
Set
thicknesses,
as
defined
s u r f a c e s , a r e remarkably c o n s t a n t ( f i g .
by
distance
between
second-order
9).
-
0 1 2 3 M Climbing Translatent S t r a t a Ripple Laminae =Grain Flow-Grain Fall (dashed in intraset) F i g u r e 8. Transverse and l o n g i t u d i n a l s e c t i o n drawings o f f a c i e s IC. Arrows show wind d i r e c t i o n as i n d i c a t e d by f o r e s e t d i p d i r e c t i o n s (towards south). R i p p l e laminae formed by eol ian and subaqueous ri p p l es.
560
C h a r a c t e r i s t i c s o f f a c i e s IC. ( a ) Complex i n t r a s e t s a t B e l l Rock; F i g u r e 9. a p p r o x i m a t e l y 4 m o f s e c t i o n shown. ( b ) L o n g i t u d i n a l v i e w a t West F o r k ; a p p r o x i m a t e l y 2 in o f s e c t i o n shown. ( c ) O b l i q u e v i e w a t same l o c a t i o n as b ; 4 - 5 m o f s e c t i o n shown. ( d ) T r a n s v e r s e v i e w a t West Fork. Major second-order e r o s i o n s u r f a c e s d i p t o w a r d camera ( s o u t h ) a t 18-22". I n t r a s e t s d i p south-southwest. Notebook i s 17 cm t a l l .
5
The i n t r a s e t l a m i n a e between s e c o n d - o r d e r e r o s i o n s u r f a c e s d i p t o t h e s o u t h o r t o t h e west a t 16-28'
( c a l c u l a t e d inean d i p = 22.40)
a s s o r t m e n t s o f sand f l o w ,
grain f a l l ,
l a t t e r d o m i n a t e t h e base o f t h e f o r e s e t s Abundant within
reactivation the
intraset
surfaces laminae.
and
and c o m p r i s e complex
and c l i m b i n g t r a n s l a t e n t
The
where d i p s become n e a r l y h o r i z o n t a l .
ininor
These
strata.
trough-shaped
form t h i r d - o r d e r
scours bounding
are
present
surfaces
of
ripples
on
B r o o k f i e l d (1977). Minor bedding tracks
sedimentary planes
and
with
trails,
structures crests
include
oriented
pull-apart
parallel
laminae
l a m i n a e due t o c o m p r e s s i o n a l f o r c e s .
raindrop to
prints, foreset
due t o t e n s i o n a l
wind dip, forces,
unidentified and
folded
The f a c i e s f o r m s a t a b u l a r l i t h o s o m e up
561 t o 12 m t h i c k b u t t y p i c a l l y
i s much t h i n n e r due t o t r u n c a t i o n by o v e r l y i n g
strata.
be i n t e r b e d d e d o r
The
facies
I C may
gradational
with
f a c i e s TCT
p r o d u c i n g a complex s u b f a c i e s o f t r o u g h and i n t r a s e t c r o s s s t r a t i f i c a t i o n . ( i f ) Interpretation.
F a c i e s I C was d e p o s i t e d by l a r g e s o u t h w a r d - m i g r a t i n g
compound t o complex ( t e r m s o f McKee, 1979a) e o l i a n dunes. was
likely
formed
by
B r o o k f i e l d (1977). angle-of-repose
dunes
migrating
over
The u p p e r f o r e s e t s of
a
large
The i n t r a s e t p a t t e r n draa
as
described
by
t h e d r a a were l a r g e l y t h e s i t e o f
g r a i n f a l l and sand f l o w d e p o s i t i o n b u t t h e l o w e r reaches were
o c c u p i e d by dunes t h a t m i g r a t e d o b l i q u e t o t h e m a j o r s l i p f a c e o f t h e draa.
A t t h e base
Numerous examples o f dunes on d r a a s a r e p r o v i d e d by W i l s o n (1973). of
t h e dune,
w i n d r i p p l e s m i g r a t i n g a c r o s s t h e base o f t a n g e n t i a l s l i p f a c e s
p r o d u c e d c l i m b i n g t r a n s l a t e n t s t r a t a w h i c h g r a d e i n t o and wedge o u t between t h e more s t e e p l y d i p p i n g sand f l o w d e p o s i t s ( f i g .
9b,c),
a f e a t u r e common on many
modern dunes ( H u n t e r , 1977). P r o c e s s e s o p e r a t i n g on t h e s l i p f a c e of t h e l a r g e d r a a must have been v e r y complex.
As v e r y l i t t l e i s known a b o u t t h e i n t e r n a l
d i r e c t comparison i s p o s s i b l e . internal Fryberger, the
top
structure
is
1980; W i l s o n , of
the
very
intricate
1971, 1973).
thicker
(McKee,
1979a,
sequences
1977; McKee,
climbing translatent
1982;
Ahlbrandt
document 1979a).
sedimentation
ripples.
W i t h renewed a v a l a n c h i n g , Large-scale
by
s t r a t a commonly o v e r 1 i e s s e c o n d - o r d e r
s u g g e s t s t h a t between p e r i o d s o f a v a l a n c h i n g , wind
and
Where p r e s e n t h i g h e r
e r o s i o n s u r f a c e s and i s o v e r l a i n by g r a i n f a l l and sand f l o w d e p o s i t s . dune s l i p face.
no
The sand f l o w and g r a i n f a l l l a m i n a e a t
preserved
avalanching o r suspension (Hunter, on t h e i n t r a s e t s ,
s t r u c t u r e o f draas,
What l i t t l e work has been done i n d i c a t e s t h a t
reactivation
angle-of-repose or
This
r i p p l e s c l i m b e d w e l l up o n t o t h e climbing o f
strata buried the superimposed
dunes
p r o b a b l y formed t h e s e c o n d - o r d e r s u r f a c e and t h e c y c l i c sequence was repeated. The dunes w h i c h d e p o s i t e d t h e i n t r a s e t l a m i n a e moved a c r o s s ,
down,
and l o c a l l y
u p t h e f a c e o f t h e draa.
Tabu1 a r - and W e d g e - C r o s s - S t r a t i f i e d ( i ) Description.
The t a b u l a r -
F a c i e s (TWC)
and wedge-cross
s t r a t i f i e d facies
c o n t a i n s t h e l a r g e s t s e t s i n t h e S c h n e b l y H i l l and Coconino sequence.
(TWC)
The sand
i s f i n e t o medium g r a i n e d and i s v e r y w e l l s o r t e d .
Color ranges from y e l l o w i s h
o r a n g e t o p a l e g r a y i s h orange t o y e l l o w i s h g r a y .
The f a c i e s i s d o m i n a t e d by
angle-of-repose laminae ( f i g .
f o r e s e t s (mean d i p = 22.2") 10).
c o m p r i s i n g g r a i n f a l l and sand f l o w
The f o r m e r appear as e x t r e m e l y t h i n l a m i n a e between sand
f l o w l a m i n a e w h i c h r a n g e up t o s e v e r a l c e n t i m e t e r s t h i c k . and r e p t i l e t r a c k s a r e found on f o r e s e t s u r f a c e s .
Rare w i n d r i p p l e s
Slump s t r u c t u r e s o f v a r y i n g
s c a l e s , many c o m p a r a b l e t o t h o s e d e s c r i b e d by Mckee e t a l . ,
(1971) and f o u n d i n
562
-
Climbing Translatent S t r a t a Grain Flow Grain Fall
0
10 2 0 M
F i g u r e 10. T r a n s v e r s e and 1 o n g i t u d i n a l s e c t i o n d r a w i n g s o f f a c i e s TWC. Arrows show w i n d d i r e c t i o n as i n d i c a t e d b y d i p s o f s a n d - f l o w s t r a t a ( c h i e f l y towards south).
the
Coconino
of
Grand
throughout t h e facies.
Canyon
(McKee,
1979a)
are
sporadically
distributed
C l i m b i n g t r a n s l a t e n t s t r a t a f o r m a s m a l l component o f
f a c i e s TWC and a r e c h i e f l y c o n f i n e d t o t h e base o f t h e f o r e s e t s
(fig.
11).
Toes o f sand f l o w c r o s s s t r a t a commonly i n t e r f i n g e r w i t h c l i m h i n g t r a n s l a t e n t strata. The c r o s s s t r a t a a r e g r o u p e d i n t o wedge- and t a b u l a r - s h a p e d s e t s t h a t range up t o 10 m i n t h i c k n e s s ( f i g . spond t o f i r s t - o r d e r shaped s e t s .
11).
Subparallel continuous planes t h a t corre-
b o u n d i n g s u r f a c e s o f B r o o k f i e l d (1977) e n c l o s e t h e wedge-
The e r o s i o n p l a n e s t h a t
f o r m wedge-shaped
cosets d i p a t low
a n g l e s and up t o 20" down w i n d and c o r r e s p o n d t o s e c o n d - o r d e r b o u n d i n g s u r f a c e s o f B r o o k f i e l d (1977). wedge-s haped c o s e t s.
Third-order
b o u n d a r y s u r f a c e s a r e p r e s e n t w i t h i n some
Some compl ex wedge-s haped c o s e t s d i s p l a y in t r a s e t c r o s s
s t r a t i f i c a t i o n similar t o that i n facies
IC.
Trough-shaped s e t s a r e p r e s e n t
t h o u g h n o t common i n f a c i e s TWC and may be 30 m i n w i d t h . Most
foreset
l a m i n a e and many s e c o n d - o r d e r
s o u t h i n f a c i e s TWC ( f i g .
4).
The l a r g e ,
bounding surfaces
southward-dipping
n e n t among t h e t h i n n e r s e t s o f t h e o t h e r f a c i e s ( f i g .
(ii)I n t e r p r e t a t i o n . e o l i a n dunes and draas.
dip t o the
s t r a t a a r e promi-
12).
F a c i e s TWC was d e p o s i t e d by l a r g e s o u t h w a r d - m i g r a t i n g A l t h o u g h modern, a c t i v e l a r g e dunes and d r a a s c o n t a i n -
563
F i g u r e 11. C h a r a c t e r i s t i c s o f f a c i e s TWC. ( a ) Stacked s e t s i n Coconino Sandstone n e a r West F o r k ; f i g u r e n e a r b o t t o m g i v e s s c a l e . (b) Grain-fall and s a n d - f l o w s t r a t a i n l a r g e s e t a t West Fork. (c) Detail of toe of large dune. L i g h t - c o l o r e d g r a i n - f a l l and c l i m b i n g t r a n s l a t e n t s t r a t a i n t e r t o n g u e w i t h sand-flow toes (dark). Lens cap i s 54 mm. ( d ) Wind r i p p l e s on a n g l e o f - r e p o s e f o r e s t a t West F o r k .
i n g s i l i c i c l a s t i c g r a i n s have n e v e r been t r e n c h e d t o g r e a t d e p t h s ,
studies ot
s u r f i c i a l p r o c e s s e s and s t r u c t u r e s and m i g r a t i o n o f s u p e r i m p o s e d dunes p r o v i d e some c l u e s as t o t h e t y p e o f i n t e r n a l s t r a t i f i c a t i o n t h a t , n i g h t be p r o d u c e d (Wilson,
1972; H u n t e r ,
1977; McKee,
1979a; R u b i n and H u n t e r ,
1982). Ahlbrandt
and F r y b e r g e r ( 1 9 8 0 ) i l l u s t r a t e d t h e i n t e r n a l f e a t u r e s o f d i s s e c t e d b a r c h a n o i d dunes f r o m t h e Sand H i l l s o f Nebraska.
Comparison o f f e a t u r e s o f modern dunes
564
F i g u r e 12. Sequences o f f a c i e s i n u p p e r S c h n e b l y H i l l F o r m a t i o n and l o w e r Fort C o c o n i n o Sandstone. ( a ) E n t i r e i n t e r v a l o f s t u d y a t B e l l Rock. Apache L i m e s t o n e i s a t base o f p h o t o . N e a r l y 200 rn shown. ( b ) M i d d l e and u p p e r i n t e r v a l o f s t u d y n e a r Sedona a t S c h n e b l y H i l l . A p p r o x i m a t e l y 100 m shown. I n both photos l i g h t e r colored proininantly c r o s s - s t r a t i f i e d u n i t s a r e composed o f f a c i e s TWC and I C . Darker u n i t s are combinations o f facies WBK, TCT, and CC.
565 w i t h t h o s e o f f a c i e s TWC c o n f i r m t h e e o l i a n o r i g i n .
Toes o f sand f l o w s t r a t a
that interfinger with climbing translatent strata are a distinctive feature o f inodern ( H u n t e r ,
1977) and a n c i e n t ( H u n t e r ,
1981) dunes.
The h i g h c o n s i s t e n c y
of d i p d i r e c t i o n i n l a r g e - s c a l e s e t s composed o f g r a i n - f l o w s t r a t a s u g g e s t t h a t
s l i p f a c e s were s t r a i g h t t r a n s v e r s e bedforms
and p a r a l l e l
4;
(fig.
b a r c h a n and t r a n s v e r s e - r i d g e (Ah1 b r a n d t
and
compares w i t h v a l u e s o f 22'
and 24'
for
dunes r e s p e c t i v e l y i n t h e Sand H i l l s o f Nebraska
1980).
Fryberger;
a characteristic o f
6 o f A h l b r a n d t and F r y b e r g e r ,
compare w i t h f i g .
The mean d i p a n g l e o f 22.2'
1980).
f r o m dune t o dune,
The
abundance
of
second-order
s u r f a c e s c o m p a r a b l e t o t h o s e d e s c r i b e d b y B r o o k f i e l d (1977) dunes m i g r a t i n g a c r o s s draas.
bounding
i s attributed t o
The bedforins m i g r a t e d i n r e s p o n s e t o r e g i o n a l
winds from t h e north. C o m p l e x l y C r o s s - S t r a t i f i e d F a c i e s (CCY
( i )D e s c r i p t i o n .
The c o m p l e x l y c r o s s - s t r a t i f i e d
facies
(CC) i n c l u d e s a
v a r i e t y o f c r o s s - s t r a t i f i c a t i o n t y p e s o f f i n e - t o medium-grained r e d d i s h - o r a n g e sandstone.
s e t s and c o s e t s a r e up t o 1 m t h i c k and 3 o r more
Cross-stratified
meters wide ( f i g .
13).
I n d i v i d u a l s e t s r a n g e f r o m t r o u g h , t o wedge,
t o tabular
and c o m p r i s e m o s t l y m e g a r i p p l e f o r e s e t l a m i n a e t h a t d i p a t 15-20'. angle dipping lamination i s a l s o present.
Compound c r o s s s t r a t i f i c a t i o n i s
Set b o u n d a r i e s d i p i n v a r y i n g d i r e c t i o n s and t h e l a m i n a e o f a d j a c e n t
abundant.
s e t s coinmonly d i s p l a y a h e r r i n g b o n e p a t t e r n ( f i g . a r e abundant and complex. trough
A complex
axes.
current-ri pple
stratification
wedge,
o r trough-shaped sets.
to
shape
or
13d).
Reactivation surfaces
Most t r o u g h s e t s show n o r t h - s o u t h o r i e n t a t i o n o f heirarchy o f
tabular, the
Some low.
on
orientation
of
stratification
megari p p l e the
scales
stratification
within
small
compound
Many i n d i v i d u a l l a m i n a e do n o t c o n f o r m confining
set,
c o n t r a s t s w i t h f a c i e s TCT.
Some s e t s a r e s i g m o i d a l
p a r t i a l l y preserved topsets,
f o r e s e t s , and b o t t o m s e t s .
a
slump s t r u c t u r e s a r e p r e s e n t .
characteristic
that
i n c r o s s s e c t i o n showing These i n d i c a t e t h a t t h e
m e g a r i p p l e s w h i c h d e p o s i t e d t h e s e t s were 12-15 cm h i g h . and small-scale
includes
Uncommon wavy b e d d i n g
One sequence o f f a c i e s CC shows
i n t e r b e d d e d p l a n a r - t a b u l a r s e t s 0.3 m t h i c k and r i p p l e l a m i n a t e d u n i t s 6-10 cm thick (fig.
13a).
F a c i e s CC forms t a b u l a r packages up t o 4
(ii)I n t e r p r e t a t i o n . s t r a t i f i e d translatent
m thick.
F a c i e s CC s u p e r f i c i a l l y r e s e m b l e s t h e t r o u g h - c r o s s -
facies
(TCT) b u t l a c k s c l i m b i n g t r a n s l a t e n t s t r a t a and
c o n t a i n s a broader range o f s t r a t i f i c a t i o n types.
Most larninae appear t o be o f
s a n d f l o w o r i g i n d e p o s i t e d as f o r e s e t s o f m i g r a t i n g b e d f o r m s o f d i f f e r e n t s i z e s and shapes. directions. facies
D i v e r g e n t d i p d i r e c t i o n s on t h e l a m i n a e i n d i c a t e v a r y i n g c u r r e n t Because t h i s
another
depositional
facies
lacks characteristics
environment
i s suggested.
o f the other eolian Many o f t h e f o r e s e t
l a m i n a e f o r m complex b u n d l e s o f s m a l l r i p p l e c r o s s s t r a t i f i c a t i o n superimposed
566
F i g u r e 13. C h a r a c t e r i s t i c s o f f a c i e s CC. (a) P l a n a r - t a b u l a r cross s t r a t i f i c a t i o n w i t h i n t e r c a l a t e d wavy-bedded s a n d s t o n e a t B e l l Rock. F o r e s e t s d i p t o n o r t h , t h e o p p o s i t e t r e n d o f most e o l i a n s t r a t a . (b,c) D e t a i l s o f b e d d i n g and s t r a t i f i c a t i o n a t B e l l Rock. Note c o m p l e x i t y o f s e t s and abundant r e a c t i v a t i o n s u r f a c e s . ( d ) Complex polymodal foresets and p o s s i b l e swash l a m i n a t i o n a t S c h n e b l y H i l l . Scale i n centimeters, n o t e b o o k i s 17 cm h i g h .
on l a r g e r bedforms.
These f e a t u r e s p r o b a b l y formed i n subaqueous c o n d i t i o n s
and a few d e f i n i t e w a v e - r i p p l e
laminae support t h i s .
t i n u o u s s t r a t a may have been formed by wave swash. bound and l a c k s f l u v i a l associated
with
marine
Low-angle d i p p i n g conThe f a c i e s i s n o t channel
f a c i e s a s s o c i a t i o n s and t h e r e f o r e i s c o n s i d e r e d t o be conditions.
The
complex
c l o s e l y r e s e m b l e modern s h o r e 1 i n e sand b o d i e s .
stratification
P a r t i c u l a r l y c l o s e resemblance
i s n o t e d w i t h b a r r e d c o a s t l i n e s i l l u s t r a t e d by D a v i d s o n - A r n o t t (1976) and Greenwood and D a v i d s o n - A r n o t t
sequences
and Greenwood
( 1 9 7 9 ) and i n t e r t i d a l shoal deposits
567 d e s c r i b e d by Boersina and T e r w i n d t (1981).
The a p p a r e n t absence o f m a r i n e t r a c e
f o s s i l s f r o m t h i s f a c i e s m i g h t be e x p l a i n e d by r e l a t i v e l y r a p i d d e p o s i t i o n and b u r i a l o f t h e sand. Wavy Bedded t o R i p p l e - L a m i n a t e d F a c i e s (WBR)
( i) D e s c r i p t i on.
The wavy bedded t o r i p p l e-1 ami n a t e d f a c i e s
p r i s e s t h e most h e t e r o g e n e o u s f a c i e s varieties
i n the interval
o f study.
(WBR) comThe s e v e r a l
a r e d e s c r i b e d as d i s c r e t e s u b f a c i e s b u t many g r a d a t i o n a l
forms a r e
present. Ripple-laminated
s a n d s t o n e and sandy mudstone i s t h e most w i d e l y d i s t r i b u t e d
The s u b f a c i e s c o n t a i n s s e v e r a l t y p e s o f r i p p l e-1 ami n a t e d s a n d s t o n e
s u b f a c i es.
and mudstone.
D i s t i n c t i v e wave-ripple
medium-grained
sandstone
(fig.
14).
bedding
i s most common i n f i n e -
Wave r i p p l e s may c o m p r i s e t h i n l a y e r s
l a m i n a e t h i c k o r sequences n e a r l y 1 m t h i c k .
several
to
The w a v e - r i p p l e
t u r e s d i s p l a y b u n d l e - w i s e a r r a n g e m e n t as d e s c r i b e d by de Raaf. e t a1
struc-
., ( 1 9 7 7 ) .
O t h e r r i p p l e l a m i n a e a r e l e s s d i s t i n c t as t o wave- o r c u r r e n t - r i p p l e o r i g i n and consist o f indistinct
r i p p l e laminae,
most commonly i n sandy mudstone.
The
r i p p l e s o c c u r as l e n s e s o f s l i g h t l y c o a r s e r s e d i m e n t 3-12 nnn t h i c k and 12-100 m long.
Flaser-like
l a m i n a e o f mudstone s e p a r a t e t h e r i p p l e forms.
In rare
p l a n - v i e w e x p o s u r e s , t h e r i p p l e s d i s p l a y an u n d u l a t o r y t o l i n g u o i d form. Wavy-bedded swell
s a n d s t o n e i s coinmonly
f i n e t o medium g r a i n e d and c o n s i s t s o f
and s w a l e t o p o g r a p h y w i t h a m p l i t u d e s o f up t o s e v e r a l c e n t i m e t e r s and
lengths
of
irregular
m.
0.5
Many
packages
of
variations
are present
cross-stratified
and some packages c o n t a i n
sandstone.
Laminations
a r e somewhat
i n d i s t i n c t and t y p i c a l l y y i e l d a m a s s i v e appearance. Crinkly-bedded
sandstone
i s f i n e t o medium g r a i n e d and c o n t a i n s c r i n k l e d
laminae w i t h several centimeters o f r e l i e f .
Individual
layers are extremely
c o n t i n u o u s and t h e h o m o g e n e i t y o f t h e u n i t i s c o n t i n u o u s f o r hundreds o f m e t e r s o r more. Lenticular abundant
in
bedding facies
and
flaser-bedded
WBR.
Individual
e n c l o s e d i n f i n e r sandy mudstone ( f i g .
sandstone
ripple
lenses
observed
dips
sets t h a t truncate adjacent
a r e 10".
Set
l a m i n a e a r e v e r y t h i n , 0.5-1.0
thicknesses
m.
mudstone
are
25-50
is
locally
mm l o n g and
14c).
Plane-bedded s a n d s t o n e i s an uncommon s u b f a c i e s . b r o a d wedge-shaped
and
The p l a n e beds f o r m v e r y
s e t s a t low angles.
r a n g e f r o m 7-25
Maximum
cm and i n d i v i d u a l
The s a n d s t o n e i s f i n e t o medium g r a i n e d and
very well sorted. F a c i e s WBR f o r m s an i m p o r t a n t b u t v a r i a b l e p e r c e n t a g e o f t h e u p p e r S c h n e b l y
H i l l Formation.
I n d i v i d u a l u n i t s o f t h e f a c i e s may c o n t a i n one o r more o f t h e
subfacies but a l l
were n e v e r o b s e r v e d i n t h e same u n i t .
sequence v a r i e s g r e a t l y ,
Although v e r t i c a l
a somewhat t y p i c a l v e r t i c a l s u c c e s s i o n i n c l u d e s b a s a l
568
F i g u r e 14. C h a r a c t e r i s t i c s o f f a c i e s WBR. ( a ) Wavy bedded sequence t h a t s h a r p l y t r u n c a t e s l a r g e e o l i a n dune s e t at H e l l R o c k ; pen on h e d d i q g plane i s 16 cin l o n g . ( b ) D e t a i l o f w a v e - r i p p l e l a m i n a e a t same l o c a t i o n . (c) P r o b a b l e l e n t i c u l a r b e d d i n g a t Be1 1 Rock. ( d ) T y p i c a l heterogeneous sequence w i t h v a r i o u s t y p e s o f i r r e g u l a r t o r i p p l e b e d d i n g a?d s m a l l - s c a l e c r o s s s t r a t i f i c a t i o n a t B e l l Rock.
ripple-mdrked t o flaser-bedded sandstone w i t h o r w i t h o u t stone. local
Sequences commonly ball-and-pillow
sandy inudstone,
m e d i a l wavy and r i p p l e bedded
l e n t i c u l a r b e d d i n g , and u p p e r c r i n k l y - b e d d e d c o a r s e n upwards.
structure,
and
poorly
p r e s e n t i n many sequences o f f a c i e s WBR. a l w a y s s h a r p and ,isconforrnab’e
sand-
Small - s c a l e c o n t o r t e d bedding, cross-stratified
sandstone
is
The b a s a l c o n t a c t o f a sequence i s
w i t h o r w i t h o u t basal l o a d s t r u c t u r e s .
The t o p
may be g r a d a t i o n a l o r s h a r p . Climbing t r a n s l a t e n t s t r a t a sections t o t h e northwest.
f o r m an i m p o r t a n t component o f f a c i e s WBR i n
F a r t h e r s o u t h e a s t t h e s t r u c t u r e i s r a r e o r absent.
569 ( i i ) Interpretation.
F a c i e s WBR i n c l u d e s a v a r i e t y o f i n t e r d u n e and e x t r a -
dune d e p o s i t s ( t e r m i n o l o g y o f Lupe and A h l b r a n d t , strata,
c o n t o r t e d laminae,
common i n t h e f a c i e s , 1981b).
wavy
laminae,
wave
1975).
Climbing t r a n s l a t e n t
r i p p l e s and c u r r e n t
a r e common i n modern wet i n t e r d u n e d e p o s i t s
ripples, (Kocurek,
Climbing t r a n s l a t e n t s t r a t a o f t h i s facies sharply truncate underlying
dune d e p o s i t s and g r a d e upwards and l a t e r a l l y i n t o t h e s a n d - f l o w t o e d e p o s i t s o f a d v a n c i n g dunes
(fig.
llc).
f i rst-order
bounding surfaces
Brookfield,
1977; Kocurek,
They f o r m i n t e r d u n e d e p o s i t s w h i c h o v e r l i e
o v e r w h i c h d r a a s advanced (Wi 1 son,
1971,
1972;
Some u n i t s o f f a c i e s WBR s h a r p l y t r u n c a t e
1981b).
u n d e r l y i n g f a c i e s , t y p i c a l l y t h i c k e n t o t h e s o u t h e a s t , and g r a d e l a t e r a l l y i n t o a s s o c i a t e d sabkha and s h a l l o w i n a r i n e d e p o s i t s . sequences common.
similar
Wave-generated
t o t h o s e d e s c r i b e d by de Raaf,
et al.
s t r u c t u r e s and
(1977) a r e l o c a l l y
Here f a c i e s WBR i s an e x t r a d u n e r a t h e r t h a n i n t r a d u n e d e p o s i t .
F i n e - G r a i n e d C1 a s t i c and C a r b o n a t e F a c i e s Southeastward
along
the
Mogollon
the
Rim,
eolian
and
associated
rocks
d e s c r i b e d above g r a d e l a t e r a l l y i n t o complex sequences o f f i n e - g r a i n e d c l a s t i c , carbonate, supratidal, Blakey,
and e v a p o r i t e u n i t s o f s h a l l o w m a r i n e , and
1980).
lagoonal
origin
and
r e s t r i c t e d marine,
Gerrard,
These r o c k s i n c l u d e r i p p l e - l a m i n a t e d
c r a c k s and s a l t c r y s t a l c a s t s , mite,
(Peirce
1966;
Gerrard,
sabkha, 1966;
sandy mudstone w i t h mud
f o s s i l i f e r o u s t o o o l i t i c c a l c a r e n i t e and d o l o -
l a m i n a t e d t o f e n e s t r a l d o l o m i c r i t e , and gypsum and g y p s i f e r o u s mudstone.
The f a c i e s change between m o s t l y e o l i a n s t r a t a i n n o r t h e r n Oak Creek Canyon t o nearly
totally
(Blakey,
non-eolian
strata
near
Ft.
Apache t a k e s
place over
200
km
1980).
SEQUENCES AND CYCLES V e r t i c a l Sequence F i g u r e 7 shows t h e v e r t i c a l sequence of f a c i e s and t h e i r i n t e r p r e t a t i o n i n t h e u p p e r S c h n e b l y H i l l F o r m a t i o n and l o w e r m o s t Coconino Sandstone a t West F o r k o f Oak Creek cyclic;
1.
Canyon and B e l l
Rock.
The p a t t e r n of
vertical
succession
is
t h e f o l l o w i n g s a l i e n t p o i n t s a r e noted: All
cycles
s t a r t w i t h some a s p e c t
of
f a c i e s WBR,
generally
ripple-
l a m i n a t e d sandy mudstone, w h i c h d i s c o n f o r m a b l y o v e r l i e s t h e t o p o f t h e p r e v i o u s c y c l e.
2.
C y c l e s c o a r s e n upwards.
3.
S c a l e o f c r o s s s t r a t i f i c a t i o n t e n d s t o become l a r g e r t o w a r d s t o p o f many
cycles.
4.
A t y p i c a l c y c l e a t West F o r k c o n s i s t s of a s h a r p d i s c o n f o r m i t y a t t h e
base, WBR,
TCT,
I C and TWC.
570 5.
A t y p i c a l c y c l e a t B e l l Rock c o n s i s t s o f a sharp d i s c o n f o r m i t y a t t h e
base, WBR, CC, TCT, I C and TWC. 6.
F a c i e s WBR, CC and TCT dominate t h e l o w e r i n t e r v a l and f a c i e s I C and TWC
dominate t h e upper i n t e r v a l ( f i g . 7 ) .
7.
Rocks o f t h e Schnebly H i l l Formation below t h e i n t e r v a l o f study a t B e l l
Rock a r e 150 m t h i c k and comprise d o m i n a n t l y f a c i e s WBR and m i n o r f i n e - g r a i n e d c l a s t i c and carbonate f a c i e s .
Rocks o f t h e Coconino Sandstone above t h e i n t e r -
v a l o f s t u d y a t b o t h B e l l Rock and West Fork a r e 250 m t h i c k and a r e composed o f f a c i e s TWC w i t h some I C .
The i n t e r v a l o f s t u d y r e p r e s e n t s t h e c y c l i c change
from f a c i e s WBR a t t h e bottom t o f a c i e s TWC a t t h e top. L a t e r a l Sequence F i g u r e 1 5 shows t h e somewhat g e n e r a l i z e d l a t e r a l d i s t r i b u t i o n o f f a c i e s of t h e i n t e r v a l o f s t u d y from n o r t h w e s t t o southeast o v e r a d i s t a n c e o f a p p r o x i m a t e l y 100 km. 1.
The f o l l o w i n g s a l i e n t p o i n t s a r e noted:
From southeast t o northwest,
f a c i e s WBR grades l a t e r a l l y i n t o f a c i e s CC
and TCT which i n t u r n grade i n t o f a c i e s I C and TWC. 2.
The sequence coarsens t o t h e northwest.
-
0
5 10 1
Fort Apache Member
5
E ~ S 3~Inland Dune
0Sabkha-
ESJ Coastal Dune
Extradune
E93 Marine Carbonate
F i g u r e 15. G e n e r a l i z e d c r o s s s e c t i o n o f upper Schnebly H i l l Formation and l o w e r Coconino Sandstone. I n t e r p r e t a t i o n s based on d i s t r i b u t i o n o f following facies: I n l a n d dune--TWC, I C ; Coastal dune--TCT, I C ; Sabkhainterdune-extradune--WBR, CC. Heavy h o r i z o n t a l 1 i n e s r e p r e s e n t e r o s i o n s u r f a c e carved by r a p i d marine t r a n s g r e s s i o n .
571 3.
Scale o f cross s t r a t i f i c a t i o n increases towards t h e northwest.
4.
F a c i e s WBR t h i n s and p i n c h e s o u t t o t h e n o r t h w e s t and f a c i e s TWC and I C
t h i n and p i n c h o u t t o t h e s o u t h e a s t . 5.
S u c c e s s i v e l y h i g h e r t o n g u e s o f f a c i e s I C and TWC e x t e n d f a r t h e r t o w a r d s
t h e s o u t h e a s t and s u c c e s s i v e l o w e r tongues o f f a c i e s WBR e x t e n d f a r t h e r n o r t h west. 6.
From s o u t h e a s t t o n o r t h w e s t , t h e i n t e r v a l o f s t u d y changes f a c i e s f r o m
WBR t o TWC.
T h i s i s e x a c t l y t h e same f a c i e s change t h a t t a k e s p l a c e v e r t i c a l l y
a t the Bell
Rock s e c t i o n .
The v e r t i c a l change o f f a c i e s r e f l e c t s t h e h o r i -
zontal d i s t r i b u t i o n o f facies a t a given i n t e r v a l . INTERPRETATION OF SEQUENCES Sequence o f E v e n t s Based upon t h e i n t e r p r e t a t i o n and d i s t r i b u t i o n o f f a c i e s ,
the depositional
h i s t o r y o f t h e u p p e r S c h n e b l y H i l l F o r m a t i o n and l o w e r C o c o n i n o Sandstone can be d e v e l o p e d . shows
a
F i g u r e 15 shows t h e g e n e r a l d i s t r i b u t i o n o f f a c i e s and f i g u r e 16
northwest-southeast
i n t e r v a l o f study.
cross
section
of
two
typical
cycles
base o f each c y c l e i s c l e a r l y e r o s i o n a l and t h e b a s a l f a c i e s , t h e southeast.
from
They p r o v i d e t h e b a s i s f o r t h e f o l l o w i n g d i s c u s s i o n . WBR,
the The
thickens t o
F a c i e s WBR where c l e a r l y e x t r a d u n a l as shown i n f i g u r e 16 was
d e p o s i t e d i n a m o d e r a t e l y l o w e n e r g y c o a s t a l complex w i t h i n t e r t i d a l and l e n t i c u l a r b e d d i n g ) p o s s i b l y s u b t i d a l
( c u r r e n t - and w a v e - r i p p l e
(flaser
bedding),
and s u p r a t i d a l -sabkha ( s a l t c r y s t a l c a s t s , wavy and c o n t o r t e d b e d d i n g ) e n v i r o n ments r e p r e s e n t e d . F a c i e s CC,
where p r e s e n t ,
pretation of
facies
i s a l w a y s a s s o c i a t e d w i t h f a c i e s WBR.
CC as some t y p e o f
b a r o r shoal
The i n t e r -
i n a wave-
or tidal-
d o m i n a t e d c o a s t l i n e s u g g e s t s t h a t h i g h e r e n e r g y c o a s t a l c o n d i t i o n s sometimes a f f e c t e d t h e dominantly r e s t r i c t e d shore1 ine. Facies
TCT,
interpreted
as
i s closely
blow-out
coastal
translatent
strata
f a c i e s CC.
V e r t i c a l and l a t e r a l s t r a t i g r a p h i c
associated w i t h
dunes facies
filled
with
climbing
WBR and l e s s commonly
p o s i t i o n o f f a c i e s TCT ( f i g s .
15, 16) s t r o n g l y s u p p o r t t h e c o a s t a l p o s i t i o n o f t h i s e o l i a n f a c i e s . F a c i e s I C commonly o v e r l i e s and g r a d e s i n t o f a c i e s WBR a n d / o r TCT.
As t h e
l a r g e d r a a s t h a t f o r m e d f a c i e s I C approached t h e c o a s t a l e n v i r o n m e n t s m a l l e r dunes formed on t h e d r a a s , p e r h a p s i n r e s p o n s e t o complex c o a s t a l w i n d regimes. Some o f t h e s m a l l e r dunes can be c l e a r l y seen t o have c l i m b e d up t h e f a c e o f t h e s o u t h w a r d - a d v a n c i n g draa. F a c i e s TWC,
i n t e r p r e t e d t o have been d e p o s i t e d by s o u t h w a r d - p r o g r a d i n g
l a r g e dunes and d r a a s ,
gradationally overlies facies
IC.
However,
very
higher i n
t h e s e c t i o n and t o t h e n o r t h w e s t t h e f a c i e s may d i r e c t l y o v e r l i e f a c i e s WBR. I n t h i s l a t t e r s i t u a t i o n f a c i e s WBR i s wet i n t e r d u n e r a t h e r t h a n an e x t r a d u n e
572
NW
‘West
/
Head of Oak Creek
Fork
t
Schnebly Hill
/
t
Bell Rock /
SE
0
0
Km
1 0 =Inland
Dune
=Coastal
Dune
I - 1 Sabkha -Extradune -Shallow Marine F i g u r e 16. Cross s e c t i o n and columnar s e c t i o n s showing d i s t r i b u t i o n o f f a c i e s and i n t e r p r e t a t i o n o f environments w i t h i n two i d e a l i z e d c y c l e s . Heavy h o r i z o n t a l l i n e s r e p r e s e n t s u r f a c e s o f e r o s i o n r e l a t e d t o r a p i d marine transgression. See F i g u r e 15 f o r a d d i t i o n a l e x p l a n a t i o n .
deposit.
Facies WBR i s t h e n a s s o c i a t e d w i t h t h e f i r s t - o r d e r
as d e f i n e d by B r o o k f i e l d (1977) and Kocurek (1981b).
bounding surfaces
Where TWC succeeds I C ,
t h e t r a n s i t i o n from more complex c o a s t a l dunes a f f e c t e d by s h i f t i n g land-sea and sea-land breezes t o l a r g e r b u t somewhat s i m p l e r p r o b a b l y t r a n s v e r s e i n l a n d dunes, i s documented. The sequences o f environments t h u s documented i n v e r t i c a l succession suggest t h e f o l l o w i n g events:
1. 2.
Sharp, wide-spread e r o s i o n a l s u r f a c e i s carved on t o p o f p r e v i o u s c y c l e . Low-energy w i t h o c c a s i o n a l h i g h e r energy c o a s t a l and shore1 i n e d e p o s i t s
formed on t h e surface. 3.
seaward.
As sand blew from i n l a n d , a band o f dune sand developed and prograded Complex onshore and o f f s h o r e winds formed blow-out dunes which were
f i l l e d i n with wind-ripple
deposits.
As t h e sand p i l e moved seaward, l a r g e
draas e n t e r e d t h e area and prograded o v e r t h e c o a s t a l
blow outs.
Complex
c o a s t a l winds coupled w i t h r e g i o n a l winds from t h e n o r t h formed compound and complex dunes o r draas.
573 As t h e e r g c o n t i n u e d t o s l o w l y m i g r a t e southward, l a r g e i n l a n d dunes and
4.
d r a a s m a n t l e d t h e a r e a and a complex o f d u n e - i n t e r d u n e d e p o s i t s was formed. The v e r t i c a l
5.
succession
o f dunes and c o a s t a l d e p o s i t s documents t h e
g r a d u a l change f r o m s h a l l o w m a r i n e , s a b k h a - s u p r a t i d a l , dunes.
c o a s t a l dunes, t o i n l a n d
The same p a t t e r n was p r e s e n t l a t e r a l l y o v e r a d i s t a n c e o f a p p r o x i m a t e l y
50 km a t any g i v e n t i m e . 6.
The s u c c e s s i o n
was
a b r u p t l y terminated by a p e r i o d o f
e r o s i o n and
a n o t h e r c y c l e was i n i t i a t e d . 7.
Later
e a r l i e r ones.
pulses
of
prograding
dunes
moved
farther
southeastward
than
T h i s p r o b a b l y r e f l e c t s i n c r e a s e d s u p p l y o f sand as t h e m a i n e r g
i n i g r a t e d s l o w l y southward. CONTROLS OF DEPOSITION AND CYCLES The o r i g i n of t h e e r o s i o n s u r f a c e s t h a t f o r m t h e base o f t h e c y c l i c sequence j u s t d e s c r i b e d i s c r i t i c a l t o u n d e r s t a n d i n g t h e causes and c o n t r o l s o f c y c l i c sedimentation.
Obvious f a c t o r s i n t h e c o n t r o l o f e o l i a n sedimentation i n c l u d e
1) w i n d d i r e c t i o n ,
velocity,
and c o n s i s t e n c y ;
2) sand s u p p l y ;
3) c l i m a t e and
v e g e t a t i o n ; 4 ) s i z e and shape o f t h e b a s i n o f e o l i a n d e p o s i t i o n ; 5 ) base l e v e l ;
6) w a t e r t a b l e h e i g h t ;
and 7)
r e l a t i o n s w i t h a d j a c e n t e n v i r o n m e n t s and t h e i r
g r o w t h and decay w i t h r e s p e c t t o e o l i a n d e p o s i t i o n . Changes i n Wind The m i g r a t i o n o f an e r g i s a v e r y s l o w g e o l o g i c p r o c e s s Brookfield,
1977).
(Wilson,
1972;
It w o u l d seem u n l i k e l y t h a t any seasonal o r l a r g e r c y c l i c
w i n d p a t t e r n s c o u l d p r o d u c e t h e l a r g e e x t e n t o f t h e s u r f a c e s t h a t u n d e r l i e each cycle.
R a t h e r , w i n d p a t t e r n s were p r o b a b l y r e l a t e d t o p r o x i m i t y of t h e c o a s t -
l i n e and t h u s had g r e a t c o n t r o l on dune t y p e f r o m i n l a n d t o t h e c o a s t .
Modern
c o a s t a l dune complexes l i k e t h o s e i n t h e Namib D e s e r t show g r e a t w i n d v a r i a t i o n s and changes i n dune t y p e and f o r m f r o m t h e c o a s t t o i n l a n d (Breed, al.,
et
1979). Sand S u p p l y Sand s u p p l y was d i r e c t l y r e l a t e d t o t h e p o s i t i o n o f t h e m a i n body o f t h e
Coconino e r g a t any g i v e n t i m e d u r i n g d e p o s i t i o n o f t h e i n t e r v a l o f s t u d y . This
i s d i r e c t l y shown by t h e f a r t h e r
southeastward progradation o f
inland
dunes i n y o u n g e r c y c l e s as t h e e r g complex m i g r a t e d s o u t h w a r d i n t o t h e a r e a o f study.
However,
t h e sharp basal e r o s i o n surfaces
s u g g e s t t h a t t h e r e was a
t e m p o r a r y c u t o f f o f sand s u p p l y a t t h e base o f each new c y c l e .
The e r o s i o n
s u r f a c e c u t i n t o t h e e r g f r o m s o u t h e a s t t o n o r t h w e s t and a l l o w e d s h o r e l i n e and
.
574 s h a l l o w marine c o n d i t i o n s t o move f a r i n l a n d t o t h e n o r t h w e s t o v e r p r e v i o u s e r g It t h e n t o o k t h e e r g some l o n g p e r i o d o f t i m e t o m i g r a t e back i n t o
deposits.
t h e area from t h e n o r t h w e s t , t h u s r e p l e n i s h i n g sand i n t o t h e c o a s t a l areas. C l i m a t e and V e g e t a t i o n C l i m a t e and v e g e t a t i o n were obvious f a c t o r s t h a t a l l o w e d t h e growth and m i g r a t i o n o f t h e Coconino erg.
The c l i m a t e was h o t and a r i d as shown by t h i c k
s a l t d e p o s i t s i n t h e a d j a c e n t Holbrook Basin ( P e i r c e and Gerrard, 1966). ever,
How-
t h e r e i s no evidence t h a t changing c l i m a t e o r c l i m a t i c c y c l e s i n f l u e n c e d
t h e deposits o f the i n t e r v a l o f study other than t h e s h i f t i n g c l i m a t i c b e l t s a s s o c i a t e d w i t h t h e a l t e r n a t i n g i n l a n d and c o a s t a l c o n d i t i o n s . S i z e and Shape o f t h e Basin and Base Level The Sedona Arch d i v i d e d c e n t r a l
Arizona i n t o two t e c t o n i c elements.
The
broad, p r o b a b l y t o p o g r a p h i c a l l y and t e c t o n i c a l l y f e a t u r e 1 ess Grand Canyon-Emery P l a t f o r m p r o v i d e d b o t h an avenue o f t r a n s p o r t a t i o n and s i t e f o r accumulation o f sediments o f t h e Coconino erg. across t h e p l a t f o r m .
The Coconino c o n t a i n s no known marine d e p o s i t s
The Holbrook Basin and a d j a c e n t Mogollon S h e l f were areas
o f much more r a p i d subsidence as shown by t h e 100-m-thick
zone o f i n t e r t o n g u i n g A t times
o f t h e i n t e r v a l o f s t u d y which i s n o t p r e s e n t across t h e p l a t f o r m .
t h e Holbrook Basin and Mogollon S h e l f were low enough t o a l l o w m a r i n e d e p o s i t s t o form on t h e s o u t h e a s t margin o f t h e Sedona Arch.
The r e l a t i o n s h i p between
changing subsidence r a t e s and area o f f a c i e s change seems v e r y d i r e c t .
Thus
t h e s u b t l e change i n t e c t o n i c regime from n o r t h w e s t t o s o u t h e a s t seems t o have a strong c o n t r o l
on t h e f a c i e s .
It seems u n l i k e l y ,
subsidence
i n the
study are d i r e c t l y
cycles.
rates
however,
t h a t changing
related t o individual
Some 30 c y c l e s a r e p r e s e n t i n t h e B e l l Rock s e c t i o n ( f i g .
seems l u d i c r o u s t o c a l l cycles.
area o f
upon 30 episodes
7 ) and i t
o f c y c l i c subsidence t o form t h e
I n s t e a d , changing base l e v e l , sea l e v e l i n t h i s case, would appear t o
be a more l i k e l y cause.
The w e l l documented Permian e u s t a t i c s e a l e v e l changes
due t o g l a c i a t i o n ( C r o w e l l , 1978) would cause s e a l e v e l change t o f l u c t u a t e and these
fluctuations
would
be b e s t
recorded
i n the
s h e l v e s and b a s i n s w i t h c o n n e c t i o n t o t h e open ocean.
stratigraphic
record o f
Subsidence e a s t o f t h e
Sedona Arch as documented by t h i c k e n i n g o f s e c t i o n and i n c r e a s e d marine deposi t i o n (Blakey, level,
1980),
k e p t t h e area low enough t h a t d u r i n g h i g h stands o f sea
m a r i n e d e p o s i t s were formed.
Rapid marine t r a n s g r e s s i o n s
caused by
l a r g e - s c a l e a b l a t i o n o f c o n t i n e n t a l i c e sheets i n t h e s o u t h e r n hemisphere may have advanced r a p i d l y a c r o s s t h e Mogollon S h e l f and i n t o t h e Sedona area.
Late
Q u a t e r n a r y r a t e s o f s e a l e v e l change o f 100 m p e r 15,000 y e a r s have been documented by Curray (1961).
I f s i m i l a r r a t e s o c c u r r e d i n t h e Permian,
a rapid
t r a n s g r e s s i o n a c r o s s a reasonably s t a b l e area l i k e c e n t r a l A r i z o n a would l i k e l y
575 result
in a
"rapid
erosional
t r a n s g r e s s i o n " (Curray,
transgression"
1964).
would l i k e l y be formed.
to
"discontinuous
depositionaj
An e r o s i o n a l p l a n e mantled w i t h t h i n d e p o s i t s
Advancement of t h e e r g accompanying t h e f a l l o f sea
l e v e l would produce common o f f l a p i n t h e r e g r e s s i o n a l sequence.
Coastal f a c i e s
would o v e r l i e o f f s h o r e f a c i e s and be o v e r l a i n by i n l a n d f a c i e s .
The r a t e o f
subsidence of t h e area would equal t h e t h i c k n e s s o f sediment d e p o s i t e d between e r o s i o n s u r f a c e s d i v i d e d by t h e number o f y e a r s between t r a n s g r e s s i o n s . Leonardian was about 18 my l o n g (VanEysinga, one-quarter
1975;
Waterhouse,
1978);
The about
o f t h a t t i m e o r 5 my approximates t h e l e n g t h o f t i m e d u r i n g which
t h e l o w e r Leonardian r o c k s o f t h e i n t e r v a l o f s t u d y were d e p o s i t e d (Blakey, 1980).
Assuming a g l a c i a l c y c l i c i t y o f about 2 m a j o r c y c l e s p e r m i l l i o n y e a r s
a l l o w s t i m e f o r 10 g l a c i a t i o n s d u r i n g upper Schnebly H i l l and l o w e r Coconino time.
The B e l l Rock s e c t i o n c o n t a i n s 30 c y c l e s and t h e i n c o m p l e t e West Fork
section contains
13 c y c l e s .
c o n t a i n about 15 c y c l e s .
A complete s e c t i o n i n t h e West Fork area would The B e l l Rock s e c t i o n i s more basinward and would
l i k e l y r e f l e c t s l i g h t f l u c t u a t i o n s o f s e a l e v e l more than t h e West Fork s e c t i o n . The 15 c y c l e s a t West Fork i s comparable t o t h e c a l c u l a t e d 10 g l a c i a l c y c l e s . The average t h i c k n e s s o f t h e West Fork c y c l e s i s 6 m. p e r 500,000 years.
y e a r s equals a subsidence
Six meters o f s e c t i o n
r a t e o f a p p r o x i m a t e l y 1 in p e r 100,000
The s e d i m e n t a t i o n r a t e was p r o b a b l y g r e a t e r as an unknown amount o f
sediment was removed by each e r o s i o n a l t r a n s g r e s s i o n .
These c a l c u l a t i o n s a r e
approximate and do n o t t a k e i n t o account f a c t o r s o f p r e s e r v a t i o n p o t e n t i a l and non-deposited c y c l e s , something about which we have no i n f o r m a t i o n . Water Table H e i g h t s The h e i g h t o f t h e water t a b l e r e p r e s e n t s t h e l o w e s t l e v e l t o which a dune f i e l d can be d e f l a t e d (Stokes,
1968).
Although B r o o k f i e l d (1977) and Kocurek
(1981b) have d i s c o u n t e d t h e Stokes model as a m a j o r c o n t r o l f o r f o r m a t i o n o f most e o l i a n bounding s u r f a c e s , 1983).
a c t i v e debate c o n t i n u e s (Loope,
1983; Kocurek,
Loope contends t h a t m i n o r f l a w s i n Stokes' drawings s h o u l d n o t j u s t i f y
d i s c a r d i n g t h e model and t h a t modern examples a r e s u p p o r t i v e o f t h e model. Kocurek agrees b u t c o u n t e r s t h a t e x t e n s i v e w a t e r - t a b l e - c o n t r o l l e d t h e a n c i e n t were formed by an " e x t r a - d u n e - f i e l d spread s u r f a c e s ,
event".
surfaces i n
He f e e l s t h a t wide-
n o t a t t r i b u t a b l e t o c l i m b i n g bedforms, " h e r a l d a m a j o r e v e n t
i n t h e a e o l i a n b a s i n " and t h a t "Stokes-type''
bounding s u r f a c e s mark " c o n t a c t s
between p e r i o d s o f a e o l i a n b a s i n e v o l u t i o n . "
H e r e i n l i e s t h e importance o f t h e
difference
between
i n t e r d u n e and
extradune
deposits.
The
base
of
upper
Schnebly H i l l c y c l e s a r e i n i t i a t e d w i t h extradune d e p o s i t i o n and a r e r e l a t e d t o m a r i n e t r a n s g r e s s i o n by drowning o f t h e source area. m a j o r event i n t h e e o l i a n basin. t i o n o f t h e dune f i e l d ,
The s u r f a c e s h e r a l d a
D u r i n g t h e ensuing r e g r e s s i o n and prograda-
t h e u n d e r l y i n g marine-sabkha d e p o s i t s and a s s o c i a t e d
576 w a t e r - t a b l e l e v e l s formed t h e l o w e s t l e v e l s t o which t h e new dune f i e l d s c o u l d be d e f l a t e d . (fig.
Some o f t h e s u r f a c e s near t h e m i d d l e o f t h e B e l l Rock s e c t i o n
7) may have formed i n t h i s manner r a t h e r t h a n as d i s t i n c t e r o s i o n a l
transgressions.
On t h e o t h e r hand, i n t e r d u n e d e p o s i t s w i t h i n t h e main Coconino
e r g a r e p r o b a b l y r e l a t e d t o bedform m i g r a t i o n and c l i m b i n g as d e s c r i b e d by B r o o k f i e l d (1977), Kocurek (1981b), and Rubin and Hunter (1982). differences that
I t i s these
i n mechanisms o f accumulation and p r e s e r v a t i o n o f dune d e p o s i t s
produced t h e s e d i m e n t o l o g i c d i f f e r e n c e s
Coconino and a l l o w d i f f e r e n t i a t i o n
of
between t h e Schnebly H i l l
t h e two d i s t i n c t
and
though g r a d a t i o n a l
geologic units. Re1a t i ons w i t h Adjacent Environments The e o l i a n d e p o s i t s strongly
influenced
of
by
s u p r a t i d a l environments. lagoons,
wave-
and
t h e upper Schnebly H i l l and l o w e r Coconino were
the
adjacent
shallow
marine,
coastal,
sabkha,
and
As e o l i a n dunes m i g r a t e d i n t o sabkha l a k e s o r c o a s t a l
ripple-laminated,
d e p o s i t s o f f a c i e s WBR were formed.
contorted,
and
wavy-bedded
sandstone
An example o f t h i s i s l o c a t e d s e v e r a l km
east o f Sedona where t h e Schnebly H i l l Road crosses t h e o u t c r o p o f t h e i n t e r v a l o f study.
A 15-20 m - t h i c k e o l i a n d e p o s i t o f f a c i e s TWC grades l a t e r a l l y i n
l e s s t h a n 200 m i n t o c r i n k l y - b e d d e d subaqueously d e p o s i t e d 10 m - t h i c k sandstone o f f a c i e s WBR ( f i g .
17).
Dune d e p o s i t s were reworked and r e d i s t r i b u t e d by
waves and t i d e s i n t o f a c i e s CC.
S i m i l a r l y c o a s t a l shoal and beach d e p o s i t s
were reworked by e o l i a n processes. A l t h o u g h adhesion r i p p l e s o r c l i m b i n g adhesion r i p p l e laminae a r e v e r y r a r e , a few poor examples a r e present.
These a r e common f e a t u r e s a s s o c i a t e d w i t h t h e
i n t e r a c t i o n o f e o l i a n and s u p r a t i d a l - s a b k h a environments.
Perhaps some o f t h e
abundant r i p p l e laminae o f f a c i e s WBR a r e a d h e s i o n - r i p p l e post-depositional
laminae o r perhaps
m o d i f i c a t i o n s have d e s t r o y e d t h e f e a t u r e s .
Upper Schnebly H i 11 , Lower Coconino Model The
interpretation
of
the
Coconino and t h e i r v e r t i c a l the depositional
history
of
facies
of
Schnebly H i l l
t h e upper
and lower
and l a t e r a l d i s t r i b u t i o n y i e l d a c l e a r model f o r these deposits
(fig.
18).
The model
depends
s t r o n g l y on o u r i n t e r p r e t a t i o n o f t h e e r o s i o n s u r f a c e s a t t h e base o f each c y c l e as b e i n g formed by r a p i d marine t r a n s g r e s s i o n .
Evidence gathered and
p r e s e n t e d i n t h i s paper i n d i c a t e s t h a t
none o f t h e o t h e r p o s s i b l e c o n t r o l s
c o u l d have caused most o f t h e widespread,
sharp s u r f a c e s i n t h e upper Schnebly
H i l l Formation.
577
F i g u r e 17. D e t a i l e d c r o s s s e c t i o n and p h o t o s showing t e r m i n a t i o n o f e o l i a n dune o r d r a a due t o m i g r a t i o n i n t o aqueous e n v i r o n m e n t , Schnebly H i l l l o c a l i t y . D r a w i n g t o s c a l e w i t h 2X v e r t i c a l e x a g g e r a t i o n .
578
NW
SE TRANSGRESSION /
-
1 inland dunes
PROGRADATION
2 (0
L
1
3 TRANSGRESSION @I
4
F i g u r e 18. Depositional Sedona area.
I
model f o r t h e upper Schnebly H i l l Formation i n t h e '
CONCLUSIONS D e t a i l e d a n a l y s i s o f t h e upper Schnebly H i l l Formation and l o w e r Coconino Sandstone near Sedona, A r i z o n a y i e l d e d t h e f o l l o w i n g f a c i e s and i n t e r p r e t a t i o n : T r o u g h - c r o s s - s t r a t i f i e d sandstone c o n t a i n i n g c h i e f l y c l i m b i n g t r a n s l a 1. t e n t s t r a t a i s i n t e r p r e t e d t o have formed as a c o a s t a l blow-out dune complex.
2.
I n t r a s e t c r o s s - s t r a t i f i e d sandstone formed i n l a r g e dunes and draas t h a t
m i g r a t e d southward i n response t o winds from t h e n o r t h .
3.
T a b u l a r - and wedge-shaped
s e t s o f h i g h - a n g l e g r a i n f a l l and sand f l o w
l a m i n a e formed i n l a r g e p r o b a b l y t r a n s v e r s e dunes and draas t h a t a l s o m i g r a t e d southward.
4.
Complexly c r o s s - s t r a t i f i e d
and wedge-shaped
sandstone w i t h m o s t l y medium-scale t r o u g h -
s e t s was d e p o s i t e d i n b a r s o r s h o a l s i n wave-
or tidal -
dominated shore1 i n e environments. 5.
Wavy bedded t o r i p p l e - l a m i n a t e d sandstone w i t h a v a r i e t y o f sma 1 - and
medium-scale
sedimentary s t r u c t u r e s formed i n a v a r i e t y o f i n t e r d u n e ,
dune, and s h a l l o w m a r i n e environments.
extra-
579 6.
The above f a c i e s grade l a t e r a l l y southeastward i n t o mudstone, carbonate
and gypsum o f marine, Vertical
and
r e s t r i c t e d inarine, and sabkha o r i g i n .
lateral
facies
distribution
indicate
that
southeastward-
p r o g r a d i n g e o l i a n d e p o s i t s were p e r i o d i c a l l y t r u n c a t e d and o v e r l a i n by marine s h o r e l i n e and a s s o c i a t e d d e p o s i t s .
The r e s u l t i n g sequence i s s t r o n g l y c y c l i c .
L a t e r e o l i a n c y c l e s prograded f a r t h e r southeastward than e a r l i e r d e p o s i t s u n t i l e v e n t u a l l y t h e e n t i r e r e g i o n was b u r i e d by t h e Coconino erg. Erosional
surfaces t h a t
marine transgressions.
base each c y c l e were carved by r a p i d e r o s i o n a l
Permian e u s t a t i c c y c l e s caused by g l a c i a l c y c l e s a r e
b e l i e v e d t o be t h e m a j o r cause.
Subsidence along t h e southeast margin o f t h e
Sedona Arch p r e s e r v e d an average o f 6 m o f sediment between c y c l i c e r o s i o n a l events. The d e p o s i t s o f t h e upper Schnebly H i l l and l o w e r Coconino r e f l e c t changing e o l i a n dune d e p o s i t s and a s s o c i a t e d environments t h a t formed i n response t o v a r i a b l e winds,
sand supply,
a d j o i n i n g environments. connections
between
base l e v e l changes,
tectonics,
and r e l a t i o n s t o
We b e l i e v e t h a t t h i s study has shown r a t h e r c l e a r
process,
product,
and cayse and may p r o v i d e c l u e s f o r
i n t e r p r e t i n g o t h e r a n c i e n t e o l i a n - m a r i n e complexes where these connections a r e more obscure. ACKNOWLEDGEMENTS T h i s paper b e n e f i t e d from reviews by Tom A h l b r a n d t , Mike B r o o k f i e l d , Loope,
Dave
and Jim Steidtmann and t h e i r suggestions f o r improvement a r e g r e a t l y
appreciated.
Some d r a f t i n g was done by Debby Meier.
Raymond o f t h e B i l b y Research Center,
L o u e l l a H o l t e r and Rick
N o r t h e r n Arizona U n i v e r s i t y p r o v i d e d
. t y p i n g and p h o t o g r a p h i c a s s i s t a n c e r e s p e c t i v e l y .
F i e l d t r a v e l was f i n a n c e d by
a NRRI f a c u l t y research grant a t Northern Arizona University.
REFERENCES A h l b r a n d t , T.S., and Fryberger, S.G., 1980, E o l i a n d e p o s i t s i n t h e Nebraska Sand H i l l s . U.S. Geol. Survey Prof. Paper 1120-A, 24 pp. Blakey, R. C., 1980, Pennsylvanian and E a r l y Permian paleogeography, southern Colorado P l a t e a u and v i c i n i t y . In: Fouch, T. 0. and Magathan, E. R. ( e d i t o r s ) , P a l e o z o i c Paleogeography of West-central U n i t e d States, Rocky Mtn. Sect. SOC. Econ. Paleont. and M i n e r a l o g i s t s , pp. 239-257. Boersma, J. R., and T e r w i n d t , J. H. H., 1981, Neap-spring t i d e sequences o f i n t e r t i d a l shoal d e p o s i t s i n a rnesotidal e s t u a r y . Sedimentology, 28:151170. Breed, C. S . , e t al., 1979, Regional s t u d i e s of sand seas u s i n g Landsat (ERTS) imagery. In: McKee, E. D. ( E d i t o r ) , A s t u d y o f g l o b a l sand seas. U.S. G e o l o g i c a l Survey Prof. Paper 1052, pp. 305-398. B r o o k f i e l d , M. E., 1977, The o r i g i n o f bounding s u r f a c e s i n a n c i e n t e o l i a n sediments. Sediinentol ogy, 24:303-332.
580 C r o w e l l , J.C., 1978, Gondwanan g l a c i a t i o n , c y c l o t h e m s , c o n t i n e n t a l p o s i t i o n i n g , and c l i m a t e change. Am. J o u r . Sci., 278:1345-1372. C u r r a y , J. R., 1961, L a t e Q u a t e r n a r y sea l e v e l : a discussion. Geol. SOC. Amer. B u l l . , 72:1701-1712. C u r r a y , J. R., 1964, T r a n s g r e s s i o n s and r e g r e s s i o n s . In: M i l l e r , R. I_. ( E d i t o r ) , Papers i n m a r i n e g e o l o g y , M a c m i l l a n , New York, pp. 175-203. D a v i d s o n - A r n o t t , R. G. D., and Greenwood, B., 1976, F a c i e s r e l a t i o n s h i p s on a b a r r e d c o a s t , Kouchibouguac Bay, New B r u n s w i c k , Canada. I n : D a v i s , R. A, and E t h i n g t o n , R. L. ( E d i t o r s ) , Beach and n e a r s h o r e m a r i n e s e d i m e n t a t i o n . SOC. Econ. P a l e o n t . and M i n e r a l o g i s t s Spec. Pub. 24, pp. 149-168. G e r r a r d , T. A., 1966, E n v i r o n m e n t a l s t u d i e s o f t h e F o r t Apache Member, Supai Formation, East-central Arizona. B u l l . Amer. Assoc. P e t r o l . G e o l o g i s t s ,
50:2434-2463.
R. G. D., 1979, S e d i m e n t a t i o n and Greenwood, B., and D a v i d s o n - A r n o t t , e q u i l i b r i u m i n wave-formed b a r s : a r e v i e w and case s t u d y . Can. J o u r . E a r t h Sciences, 16:312-332. H u n t e r , R. E., 1977, B a s i c t y p e s o f s t r a t i f i c a t i o n i n s m a l l e o l i a n dunes. S e d i i n e n t o l ogy, 24:361-387. H u n t e r , R. E., 1981, S t r a t i f i c a t i o n s t y l e s i n e o l i a n s a n d s t o n e s : Some In: P e n n s y l v a n i a n t o J u r a s s i c examples f r o m t h e Western I n t e r i o r 1J.S.A. E t h r i d g e , F. G. and F l o r e s , R. M. ( E d i t o r s ) , Recent and a n c i e n t noninarine SOC. Econ. P a l e o n t . d e p o s i t i o n a l environments: Models f o r e x p l o r a t i o n . and M i n e r a l o g i s t s Spec. Pub. 31, pp. 315-329. Kocurek, G., 1981a, E r g r e c o n s t r u c t i o n : t h e E n t r a d a Sandstone ( J u r a s s i c ) o f n o r t h e r n U t a h and Colorado. Palaeog. P a l a e o c l i m . P a l a e o e c o l o g y , 36:125-
153.
Kocurek, G., 1981b, S i g n i f i c a n c e o f i n t e r d u n e d e p o s i t s and b o u n d i n g s u r f a c e s i n a e o l i a n dune sands. S e d i m e n t o l o g y , 28:753-780. K o c u r e k , G., 1983, R e p l y : O r i g i n o f f i r s t - o r d e r b o u n d i n g s u r f a c e s i n a e o l i a n sandstones. Sedimentology, i n press. K o c u r e k , G., and D o t t , R. H., Jr., 1981, D i s t i n c t i o n and uses o f s t r a t i f i c a t i o n types i n t h e i n t e r p r e t a t i o n o f eolian deposits. Jour. Sediment. P e t r o l .
51~579-595.
Loope, D.B., 1983, O r i g i n o f e x t e n s i v e p l a n e s i n a e o l i a n s a n d s t o n e s : a d e f e n s e o f Stokes' hypothesis. Sedimentology, i n press. Lupe, R., and A h l b r a n d t , T. S., 1975, Sandstone geometry, p o r o s i t y , and permeability distribution, and fluid migration in eolian system r e s e r v o i r s . U.S. Geol. Survey O p e n - f i l e Rept. 75-357, 23pp. In: McKee, E. D. McKee, E. D., 1979a, S e d i m e n t a r y s t r u c t u r e s i n dunes. G e o l o g i c a l Survey P r o f . Paper ( E d i t o r ) , A s t u d y i n g l o b a l sand seas. U.S. 1052, pp. 83-134. McKee, E. D., 1979b, A n c i e n t s a n d s t o n e s c o n s i d e r e d t o be e o l i a n . I n : McKee, G e o l o g i c a l Survey P r o f . E. D. ( E d i t o r ) , A s t u d y i n g l o b a l sand s e a s : U.S. P a p e r 1052, pp. 187-238. McKee, E. D., 1982, s e d i m e n t a r y s t r u c t u r e s i n dunes o f t h e Narnib D e s e r t , South West A f r i c a . Geol. SOC. America Spec. Paper 188, 64pp. McKee, E. D., Douglass, J. R., and R i t t e n h o u s e , S., 1971, D e f o r m a t i o n o f l e e s i d e l a m i n a e i n e o l i a n dunes. B u l l . Geol. SOC. America, 82:359-378. P e i r c e , H. W., and G e r r a r d , T. A., 1966, E v a p o r i t e d e p o s i t s o f t h e Permian H o l b r o o k B a s i n , A r i z o n a . N o r t h e r n O h i o Geol. SOC. Second Symp. on S a l t , v. 1, pp. 1-10. d e Raaf, J. F. M., Boersma, J. R., and van G e l d e r , A., 1977, Wave-generated s t r u c t u r e s and sequences from a shallow marine succession, Lower C a r b o n i f e r o u s , County Cork, I r e l a n d . S e d i m e n t o l o g y , 24:451-483. R e i c h e , P., 1938, An a n a l y s i s o f c r o s s - l a i n i n a t i o n - - T h e C o c o n i n o Sandstone. J o u r . Geology, 46:905-932. R u b i n , D. M., and H u n t e r , R. E., 1982, Bed f o r m c l i m b i n g i n t h e o r y and nature. Sedi m e n t o l ogy , 29 :12 1- 138. Sharp, R. P, 1963, Wind r i p p l e s . Jour. Geology, 71:617-636. Van E y s i n g a , F.S.B., 1975, G e o l o g i c a l t i m e t a b l e . E l s e v i e r , Amsterdam.
581 Waterhouse, J . B . , 1978, C h r o n o s t r a t i g r a p h y f o r t h e W o r l d Perinian. In: C o n t r i b u t i o n s t o t h e G e o l o g i c Time Scale. Amer. Assoc. P e t r o l . G e o l o g i s t s S t u d i e s i n Geology, No. 6, pp. 299-322. W i l s o n , I . G., 1971, D e s e r t s a n d f l o w b a s i n s and a model f o r t h e development o f ergs. Geog. J o u r n a l , 137:180-199. Wilson, I. G., 1972, Aeolian bedforms--their development and o r i g i n s . S e d i m e n t o l o g y , 19: 173-210. Sed. Geology, 10:77-106. W i l s o n , I. G., 1973, Ergs.