Petrography, Petrology and Geochemistry of Xenoliths and Megacrysts from the Geronimo Volcanic Field, Southeastern Arizona

Petrography, Petrology and Geochemistry of Xenoliths and Megacrysts from the Geronimo Volcanic Field, Southeastern Arizona

PETROGRAPHY, PETROLOGY AND GEOCHEMISTRY OF XENOLITHS AND MEGACRYSTS FROM THE GERÓNIMO VOLCANIC F I E L D , SOUTHEASTERN ARIZONA by P . D . KEMPTON, M...

843KB Sizes 24 Downloads 415 Views

PETROGRAPHY, PETROLOGY AND GEOCHEMISTRY OF XENOLITHS AND MEGACRYSTS FROM THE GERÓNIMO VOLCANIC F I E L D , SOUTHEASTERN ARIZONA by P . D . KEMPTON, M.A. M E N Z I E S , and M.A.

DUNGAN

A b s t r a c t - The Gerónimo V o l c a n i c F i e l d i s n o t a b l e f o r i t s abundance o f p r i s t i n e T y p e I , T y p e I I and c o m p o s i t e x e n o l i t h s . T h e dominance o f u n f o l i a t e d , g r a n u l o b l a s t l c T y p e I h a r z b u r g i t e s and c l i n o p y r o x e n e - d e p l e t e d s p i n e l I h e r z o l i t e s s u p ­ p o r t s the o c c u r r e n c e of a major d e p l e t i o n e v e n t in the mantle f o l l o w e d by a pe­ riod of reequi1ibration. LREE d e p l e t e d T y p e l a x e n o l i t h s a r e c o n s o n a n t w i t h s u c h a p a r t i a l m e l t i n g e v e n t (^1 b . y . ) . T y p e l b n o d u l e s a r e p e t r o g r a p h i c a l l y t h e same as T y p e l a i n c l u s i o n s , b u t h a v e LREE e n r i c h e d c l i n o p y r o x e n e s . T h e s e may r e c o r d a m a n t l e e n r i c h m e n t e v e n t ( < 0 . 5 b . y . ) c a u s e d by i n f i l t r a t i o n o f CO^+H^O fluids. " ^ C o m p o s i t e x e n o l i t h s a r e o f t h r e e t y p e s based on h o s t / v e i n m a j o r e l e m e n t com­ positions: a) Type I c r o s s c u t t i n g Type I, b) Type I I c r o s s c u t t i n g Type I, c) Type I I c r o s s c u t t i n g Type I I . T h e o r i g i n o f t h e s e c o m p o s i t e samples i s a t ­ t r i b u t e d t o c r y s t a l l i z a t i o n o f b a s a n i t i c magma w i t h i n a p o p h y s e s o r a l o n g c o n d u i t w a l l s as t h e y a s c e n d t h r o u g h t h e m a n t l e . I n f i l t r a t i o n o f magmatic f l u i d s a l o n g g r a i n b o u n d a r i e s r e s u l t s i n p r o f o u n d m o d i f i c a t i o n o f c o n d u i t w a l l s on a t l e a s t a cm s c a l e a d j a c e n t t o t h e b o u n d a r y . T h e s e i n t e r a c t i o n s may i n v o l v e r e e q u i 1 i b r a ­ t i o n o f i n c o m p a t i b l e t r a c e e l e m e n t s , REE and i s o t o p e s o r more c o m p l e t e m a j o r element readjustment. The spectrum of chemical e f f e c t s observed in composite x e n o l i t h s supports the e x i s t e n c e of a heterogeneous mantle beneath s o u t h e a s t e r n Arizona.

INTRODUCTION The Gerónimo V o l c a n i c F i e l d southwestern U . S . A . ,

number and v a r i e t y o f p r i s t i n e includes spinel

(GVF), located in southeastern A r i z o n a of

i s n o t e w o r t h y among x e n o l i t h l o c a l i t i e s due t o t h e ultramafic

nodules p r e s e n t .

amphibole p e r i d o t i t e

to 6 m.y.

basalt

r i n g s w h i c h r a n g e i n age

(Kempton, unpublished d a t a ) .

P r e v i o u s w o r k b y A r c u l u s and D e l a n o (1981) on t h e i n t r i n s i c in the t e r r e s t r i a l

between

The x e n o l i t h s are included in a l k a l i

t o b a s a n i t e c i n d e r c o n e s , f l o w s and p y r o c l a s t i c t u f f

suite

clinopyroxenite,

and t w o - p y r o x e n e g r a n u l i t e ; c o m p o s i t e r e l a t i o n s h i p s

t h e v a r i o u s r o c k t y p e s a r e common. f r o m 0.25

The x e n o l i t h

Iherzolite, harzburgite, websterite, wehrlite,

the great

oxygen

fugacity

m a n t l e f o u n d t h a t GVF a n h y d r o u s I h e r z o l i t e s a r e r e d u c e d

rel­

a t i v e t o b a s a l t i c magmas and p r o b a b l y r e p r e s e n t f r a g m e n t s o f a n c i e n t m a n t l e 3 b . y . ) o n l y r e c e n t l y d i s t u r b e d and p e r h a p s m o d i f i e d

by b a s a n i t i c

O t h e r w o r k on t h e G e r ó n i m o V o l c a n i c F i e l d i n c l u d e s t h a t o f

(1-

volcanism.

L y n c h (1972)

and

E v a n s and Nash ( 1 9 7 9 ) . This

r e p o r t p r e s e n t s p e t r o g r a p h i c , m a j o r e l e m e n t , t r a c e e l e m e n t , REE and i s o -

t o p i c a n a l y s e s o f r e p r e s e n t a t i v e i n c l u s i o n s and l a v a s and d i s c u s s e s some o f petrogenetic implications

of the data.

T h e p e t r o g e n e t i c model p r o p o s e d

p r e t s t h e A l - a u g i t e c l i n o p y r o x e n i t e s as t h e f r a c t i o n a l

crystallization

the

inter­ product

72 o f F e - T i r i c h b a s a n i t e t h a t i n t r u d e d a p a r t o f t h e u p p e r m a n t l e i n i t i a l l y com­ posed o f v a r i a b l y d e p l e t e d s p i n e l

Iherzolite, similar

W i l s h i r e and S h e r v a i s

(1975) and I r v i n g

the southwestern U.S.

The i n t e r a c t i o n

ing from r e e q u i l i b r a t i o n e l e m e n t and m i n e r a l o g i c

p r o p o s e d by from

b e t w e e n t h e a s c e n d i n g magma and t h e

rock is recorded in composite x e n o l i t h s . h o s t / v e i n boundaries indicate

t o models

(1980) f o r o t h e r x e n o l i t h s u i t e s

that the extent of i n t e r a c t i o n

of incompatible

wall

Compositional v a r i a t i o n s r e l a t i v e is v a r i a b l e

to

rang­

t r a c e e l e m e n t s t o more e x t e n s i v e m a j o r

readjustment.

PETROGRAPHY OF INCLUSIONS Xenoliths:

Type

I

Type I i n c l u s i o n s , a r e Mg-

following

the c l a s s i f i c a t i o n

from Gerónimo i n c l u d e s p i n e l

Type I i n c l u s i o n s e x h i b i t unfoliated

(1978), xenoliths

I h e r z o l i t e , h a r z b u r g i t e and w e b s t e r i t e ; b u t

n a n t among t h e s e a r e c l i n o p y r o x e n e - d e p l e t e d s p i n e l

textures

o f F r e y and P r i n z

and C r - r i c h r o c k s composed p r e d o m i n a t e l y o f o l i v i n e . T y p e I

limited textural

domi­

I h e r z o l i t e s and h a r z b u r g i t e s .

variety.

In g e n e r a l ,

o r p o o r l y f o l i a t e d and h a v e g r a n u l o b l a s t i c - e q u a n t

they are

to coarse-equant

(nomenclature a f t e r H a r t e , 1977). T h e w e l l - e q u i l i b r a t e d

nature of

the

t e x t u r e s i s a p p a r e n t i n t h e common c o n f i g u r a t i o n o f g r a i n b o u n d a r y j u n c t i o n s 120^

angles.

Most s a m p l e s l a c k e x s o l u t i o n i n t h e m i n e r a l

phases,

but

in

clino­

p y r o x e n e s f r o m some T y p e I w e b s t e r i t e x e n o l i t h s and v e i n s do show b r o a d e x s o l u ­ tion lamellae.

These w i l l

relationships.

Type I x e n o l i t h s t y p i c a l l y

zoning in the mineral

be d e s c r i b e d more f u l l y

in the context of

composite

show o n l y m i n o r s e c o n d a r y m e l t i n g o r

phases.

R e c e n t w o r k has shown t h a t t h e p r e s e n c e o f m i c r o s c o p i c i n c l u s i o n s c a n h a v e a significant

e f f e c t on t h e t r a c e and r a r e e a r t h e l e m e n t a b u n d a n c e s i n o l i v i n e and

orthopyroxene in peridotites S t o s c h , 1982). ary melting,

( J a g o u t z , e t a l . , 1979;

Brief petrographic descriptions

alteration

Xenoliths:

Type

1980;

including the e x t e n t of second­

and t h e p r e s e n c e o f f l u i d i n c l u s i o n s

I I and c o m p o s i t e x e n o l i t h s a r e g i v e n f o r i n d i v i d u a l

Type I I

S t o s c h and S e e k ,

i n 6VF T y p e I ,

Type

s a m p l e s i n Kempton ( i n p r e p ) .

II

i n c l u s i o n s a r e l e s s common t h a n T y p e I a t G V F , b u t may l o c a l l y

nate the x e n o l i t h population.

T y p e I I x e n o l i t h s a r e more F e , A l and T i

t h a n T y p e I x e n o l i t h s and i n c l u d e c l i n o p y r o x e n i t e , w e h r l i t e , k a e r s u t i t e

domi­ rich

perido­

t i t e and r a r e w e b s t e r i t e . T e x t u r a l l y , x e n o l i t h s o f t h i s g r o u p h a v e an i g n e o u s a p p e a r a n c e i n w h i c h t h e modal p r o p o r t i o n s and t e x t u r a l phases a r e m a r k e d l y v a r i a b l e .

relationships

among t h e

C l i n o p y r o x e n e r a n g e s f r o m i r r e g u l a r l y shaped

g r a i n s o c c u r r i n g between equant o l i v i n e s t o l a r g e p o i k i l i t i c c r y s t a l s w h i c h t o ­ t a l l y e n c l o s e o l i v i n e and s p i n e l . P e t r o g r a p h i c e v i d e n c e f o r m e t a m o r p h i c tallization

e x i s t s i n some s a m p l e s .

E x s o l u t i o n of aluminous spinel from

pyroxene is t y p i c a l ; e x s o l u t i o n of orthopyroxene occurs in Type I I

recrysclino­

clinopyrox-

73 e n e s , b u t i s f a r l e s s common t h a n

spinel.

Amphibole r e p l a c e m e n t o f c l i n o p y r o x e n e i s most f r e a u e n t l y o b s e r v e d i n T y p e I I x e n o l i t h s . The replacement amphibole ranges from cm-sized c r y s t a l s

poikilit-

ically

to

e n c l o s i n g one o r more c l i n o p y r o x e n e s t o i r r e g u l a r

of microns in s i z e .

patches 10's

100's

P l a g i o c l a s e i s r a r e l y p r e s e n t and g a r n e t has n o t been o b ­

s e r v e d i n x e n o l i t h s o f t h i s t y p e . T h e F e - and A l - r i c h s p i n e l s a r e g r e e n t o i n t h i n s e c t i o n and h a v e s u b h e d r a l ent,

clinopyroxene is t y p i c a l l y

to euhedral shapes.

devoid of e x s o l u t i o n .

phases i n v a r i a b l y c o e x i s t i n amphibole p e r i d o t i t e s ,

When a m p h i b o l e In addition,

is

black pres­

two o x i d e

a n e a r l y pure Mg-Al

spinel

and m a g n e t i t e . Xenoliths:

Composite

Structural categories: b) II

relationships a)

Type I I

Type I l i t h o l o g i e s

lithologies

lithologies

b e t w e e n T y p e I and T y p e I I x e n o l i t h s f a l l crosscutting

crosscutting

crosscutting

a Type I host

a host of Type I I a f f i n i t i e s

burgite hosts.

(Cr-diopside) veins crosscutting

Contacts between o l i v i n e - r i c h

assemblages a r e r e l a t i v e l y 2 cm.

three

(Type I/Type I ) ,

a T y p e I h o s t ( T y p e I I / T y p e I ) and c )

Type I / T y p e I composites have e i t h e r w e b s t e r i t e or c l i n o p y r o x e n i t e

into

s h a r p and p l a n a r ;

(Type I I / T y p e

Type

II).

(Cr-diopside + orthopyroxene) spinel

I h e r z o l i t e or harz-

h o s t r o c k s and p y r o x e n e - r i c h v e i n the veins are g e n e r a l l y t h i n ,

1 -

A d j a c e n t t o t h e v e i n , c l i n o p y r o x e n e may be d e p l e t e d and t h e h o s t p h a s e s

enlarged.

T h e p y r o x e n e s i n t h e C r - d i o p s i d e v e i n s and some w e b s t e r i t e s a r e

sig­

nificantly

l a r g e r than the host phases.

ex­

These large pyroxenes f r e q u e n t l y

h i b i t b r o a d e x s o l u t i o n l a m e l l a e w h i l e t h e h o s t p y r o x e n e s do n o t . T h i s t h a t the v e i n assemblage i s igneous in o r i g i n ,

indicates

having i n i t i a l l y c r y s t a l l i z e d

at

a h i g h e r temperature than the h o s t , above the p y r o x e n e s o l v u s . Type I I / T y p e I composites are e x t r e m e l y r a r e at GVF, although they appear be r e l a t i v e l y common i n o t h e r l o c a l i t i e s f r o m t h e s o u t h w e s t e r n U . S . 1980;

W i l s h i r e and S h e r v a i s , 1977;

P r e y and P r i n z ,

1979). C o n t a c t s between host

I h e r z o l i t e and c l i n o p y r o x e n i t e v e i n s a r e s h a r p and t h e o r i e n t a t i o n is t y p i c a l l y

oblique

to f o l i a t i o n in the host.

mm l a r g e r t h a n t h o s e i n t h e h o s t . The composite r e l a t i o n s h i p Type I I c h a r a c t e r i s t i c s l i t e hosts.

of thr

vein

The v e i n minerals average 1 to 2

V e i n w i d t h may be up t o 5 cm.

in which Type I I

lithologies

crosscut a host

i s t h e most common a t G e r ó n i m o . T h e s e c o n s i s t

o f d a r k A l - a u g i t e c l i n o p y r o x e n e and s p i n e l tacts

to

(Irving,

with

typically

+ o l i v i n e veins which crosscut wehr-

O l i v i n e i s f a r more a b u n d a n t i n t h e h o s t s t h a n i n t h e v e i n s .

b e t w e e n h o s t and v e i n r a n g e f r o m g r a d a t i o n a l

to sharp.

range from anastomosing, mm-size v e i n l e t s to c m - s i z e d i k e s . o f t h i s c o m p o s i t e t y p e w i t h o n l y one c o n t a c t

Con­

Vein dimensions Frequent recovery

present suggests a l a r g e r average

w i d t h f o r t h e s e v e i n s t h a n f o r v e i n s f r o m T y p e I I / T y p e I o r T y p e I / T y p e I com­ posites.

A l - a u g i t e i n t h e h o s t commonly e n c l o s e s e q u a n t o l i v i n e c r y s t a l s

in a

74 poikill tic

to s u b p o i k i l i t i c r e l a t i o n s h i p .

The clinopyroxene increases in s i z e

and assumes a more e q u a n t h a b i t t o w a r d t h e v e i n . vary perceptibly

O l i v i n e s i n t h e h o s t do n o t

i n s i z e r e l a t i v e t o d i s t a n c e f r o m t h e h o s t / v e i n b o u n d a r y . Com­

p o s i t i o n a l l y t h e h o s t p h a s e s a r e t y p i c a l l y more F e - r i c h t h a n t h o s e f r o m T y p e inclusions,

b u t f r e q u e n t l y n o t as F e - r i c h as o t h e r T y p e I I

that these Type I I

nodules.

hosts represent e x t e n s i v e l y modified Type I wall

chemical evidence w i l l

be p r e s e n t e d i n t h e f o l l o w i n g

rock.

Geo-

section.

A m p h i b o l e - b e a r i n g a s s e m b l a g e s o c c u r as s e l v a g e s on I h e r z o l i t e h o s t r o c k s GVF, but h o s t / v e i n r e l a t i o n s h i p s

h a v e n o t been f o u n d .

t a c t a p p e a r s s h a r p i n hand s p e c i m e n , b u t i n f i l t r a t i o n

at

The s e l v a g e assemblage

consists of k a e r s u t i t e + a p a t i t e + plagioclase + phlogopite.

T e x t u r a l l y the con­

o f m e l t and

subsequent

c r y s t a l l i z a t i o n o f a m p h i b o l e w i t h i n t h e h o s t p r o d u c e s a more g r a d a t i o n a l on a t h i n s e c t i o n s c a l e .

I

We b e l i e v e

contact

Amphibole in the host I h e r z o l i t e p r e f e r e n t i a l l y

t a l l i z e s around the C r - s p i n e l s or replaces c l i n o p y r o x e n e .

crys­

Adjacent to the

sel­

v a g e s , a z o n e 1 - 2 mm w i d e o c c u r s i n w h i c h c l i n o p y r o x e n e has been c o m p l e t e l y r e p l a c e d by a m p h i b o l e ;

f u r t h e r from the s e l v a g e , incomplete replacement of

py­

r o x e n e can be o b s e r v e d . Xenoliths:

Crustal

C r u s t a l x e n o l i t h s o c c u r o n l y rdre]y

at Gerónimo.

a r e t y p i c a l l y a l t e r e d by m e l t i n g and o x i d a t i o n ;

four r e l a t i v e l y pristine

p l e s , h o w e v e r , h a v e been a n a l y z e d . M i n e r a l o g i c a l l y , ulites.

T h o s e t h a t h a v e been f o u n d sam­

these are two-pyroxene gran-

T h e y a r e composed p r e d o m i n a n t l y o f f e l d s p a r ,

f o l l o w e d i n a b u n d a n c e by

p y r o x e n e ( o r t h o p y r o x e n e and c l i n o p y r o x e n e o c c u r r i n g i n a p p r o x i m a t e l y e q u a l p o r t i o n s ) and l e s s t h a n a b o u t

5% a c c e s s o r y phases

( F e T i o x i d e s and

pro­

apatite).

T h e y a r e f i n e g r a i n e d , c r y s t a l s r a n g i n g f r o m 0.5 t o 1 mm i n s i z e f o r t h e m a j o r phases. E x i s t i n g data i n d i c a t e t h a t the g r a n u l i t e s are c h e m i c a l l y d i v e r s e , par­ ticularly

w i t h r e s p e c t t o t r a c e e l e m e n t s : S r = 570 - 813 ppm; Rb = 0.9 - 22 ppm,

Y = 12.6 - 22.7

ppm;

La = 17.6 - 24.4 ppm; Ce = 35.8 - 47.2 ppm; Yb = 1.0

ppm; Ba = 550 - 1000 ppm; H f = 0.5 - 1.8

ppm.

i n c o r p o r a t e d i n o t h e r p h a s e s , most commonly p l a g i o c l a s e .

have t h i n e x s o l u t i o n

2.3

T h e a p a t i t e i n t h e s e s a m p l e s has

a v a r i a b l e h a b i t r a n g i n g f r o m t u r b i d c r y s t a l s 0.2 mm i n s i z e t o m i n u t e , inclusions

-

clear

Pyroxenes

lamellae.

Megacrysts M e g a c r y s t s o c c u r r i n g i n GVF l a v a s i n c l u d e : pyroxene, o l i v i n e ,

spinel, apatite,

amphibole

(kaersutite),

p l a g i o c l a s e and a n o r t h o c l a s e .

o f t h e s e phases c a n be f o u n d i n n e a r l y e v e r y f l o w i n t h e v o l c a n i c f i e l d . on t h e s i m i l a r i t i e s eral phases, i t

Al-clino-

One o r more Based

i n c o m p o s i t i o n b e t w e e n t h e m e g a c r y s t s and t h e x e n o l i t h m i n ­

is believed that the m a j o r i t y of these are d i s r u p t e d

A s i m i l a r c o n c l u s i o n was r e a c h e d by Wass

(1979).

xenoliths.

75 MINERAL CHEMISTRY Clinopyroxenes from Type I x e n o l i t h s concentrations

and i s o t o p i c

are Cr-diopsides.

characteristics

H o w e v e r , based on REE

T y p e I c l i n o p y r o x e n e s can be s e g r e ­

g a t e d i n t o two g r o u p s . T y p e l a c l i n o p y r o x e n e s h a v e LREE d e p l e t e d T y p e l b c l i n o p y r o x e n e s a r e LREE e n r i c h e d . F i g u r e 1. for

intermediate

types of patterns.

from other

localities

and P r i n z ,

1978).

Similar

REE s i g n a t u r e s

(0.70242 - 0.70470) and Nd (0.51328 - 0.51260) vs.

while

arbitrary reported

San C a r l o s ,

Frey

an e x t r e m e r a n g e i n S r

isotopic

composition.

On an Σ|^^

diagram, c l i n o p y r o x e n e separates o v e r l a p w i t h the "mantle a r r a y "

lie within 2.

is

h a v e been

( D r e i s e r W e i h e r , S t o s c h and S e e k , 1980;

T y p e s l a and l b n o d u l e s e x h i b i t

patterns

The d i v i s i o n

t h e q u a d r a n t c h a r a c t e r i z e d by m a n t l e d e p l e t e d

Thus, for

Concomitant w i t h t h i s enrichment

is a systematic v a r i a t i o n i n most a s p e c t s

in the C r / A l

i n LREE r e l a t i v e

variations

a r e not

I

I

La C e

I I Nd

I I I I I I I Sm E u

REE ATOMIC

Yb Lu

NUMBER

However,

clinopyroxene)

apparent. a r e LREE e n r i c h e d ,

I I I

Tb

ele­

t o HREE

i n t h e c l i n o p y r o x e n e . F i g u r e 3.

( i . e . M g / ( M g + F e ) , t e x t u r e and modal abundance o f

I n common w i t h T y p e l b p y r o x e n e s . T y p e I I A l - a u g i t e s

10"

and Figure

t h e LREE e n r i c h e d T y p e l b c l i n o p y r o x e n e s , i s o t o p e s and t r a c e

ments a r e d e c o u p l e d .

systematic

in l i g h t REE,

I I I I La Ce

Nd

SmEu

REE ATOMIC

I

I

I

but

I Yb L u

Tb

NUMBER

F i g u r e 1. a ) REE c o n c e n t r a t i o n s i n T y p e l a c l i n o p y r o x e n e s n o r m a l i z e d t o c h o n d r i t i c abundances. Samples p l o t t e d i n c l u d e : • Z H l , X 2 0 - 1 0 H , # 2 0 - 9 , φ 2 3 B - 5 , A 23B-2. b) REE c o n c e n t r a t i o n s i n T y p e lb c l i n o p y r o x e n e s n o r m a l i z e d t o c h o n d r i t i c abundances. Samples p l o t t e d i n c l u d e : · 21-6, • ENOl, A 2 0 - 1 2 , φ Z H l . ZHl i s a t r a n s i t i o n a l sample based on t h e c r i t e r i a o u t l i n e d i n t h i s p a p e r , ( s e e F i g u r e 3) and has been p l o t t e d w i t h b o t h T y p e l a and T y p e l b . Dashed l i n e i n d i ­ cates i n s u f f i c i e n t data to c o n f i d e n t l y determine t r e n d of REE.

76

.5133

GERÓNIMO VOLCANIC FIELD A R I Z O N A U.S.A

DEPLETED MANTLE

•ö Ζ •σ Ζ CO

M I N E R A L S IN SPINEL L H E R Z O L I T E INCLUSIONS

.5130 HOST ALKALINE MAGMAS " 1A · ' kDIOPSIDE IB Θ Δ AMPHIBOLE • MICA

.5127 Bulk E a r t h

_L 0.702

J0.703

ENRICHED MANTLE 0.704

0.705

0.706

^Sr/^^Sr

F i g u r e 2 . V a r i a t i o n i n Nd and S r i s o t o p i c c o m p o s i t i o n i n m i n e r a l s s e p a r a t e d f r o m s p i n e l I h e r z o l i t e ( T y p e l a and T y p e l b ) i n c l u s i o n s and a l k a l i b a s a l t s f r o m t h e Gerónimo V o l c a n i c F i e l d , A r i z o n a . Note t h a t s e v e r a l o f t h e u l t r a m a f i c x e n o l i t h s represent fragments o f subcontinental mantle v e r y d i f f e r e n t from t h e source r e ­ gion o f t h e host b a s a l t s . Other mineral data from s e v e r a l sources (see Menzies, 1983, f o r r e f e r e n c e s ) . t h e i r c h o n d r i t e n o r m a l i z e d REE v a l u e s i n c r e a s e more s m o o t h l y f r o m h e a v y REE t o l i g h t REE and p o s s e s s a d i s t i n c t l y

c o n c a v e downward s h a p e . F i g u r e 4 .

Further­

m o r e , t h e y a r e e n r i c h e d i n T Í O 2 ( 1 . 2 - 2 . 4 wt%) and d e p l e t e d i n C r ^ O ^ ( l e s s 0.1, w t % ) .

Analogous chemical d i s t i n c t i o n s

associated mineral

than

in mineral chemistry e x i s t f o r other

phases i n T y p e I and T y p e I I l i t h o l o g i e s .

n o s t i c m a j o r and t r a c e e l e m e n t s a r e s u m m a r i z e d i n T a b l e 1.

Ranges f o r d i a g ­

77 TABLE 1 C o n c e n t r a t i o n r a n g e s f o r s e l e c t e d m a j o r and t r a c e e l e m e n t s i n m i n e r a l s s e p a r a t e d f r o m T y p e l a . T y p e l b and T y p e I I x e n o l i t h s Type

T y p e I¿

lb

Type

II

Type la

ol i v i n e

Type

Type lb

II

clinopyroxene

Fo

88-90

87-90

74-79

Wo

46-48

45-47

44-50

Cr

62-160 (±7-27)

263 (±22)

6-577 (+2-14)

En

49-50

50-51

41-46

Fs

2-5

1-4

2485-2968 (+55-62)

2462 (+52)

232-850 (+23-51)

Ni

0.32-0.68

0.01-0.47

Cr^O^

0.45-1.04

0.84-1.34





Cr

orthopyroxene En

85-90

87-92

72

Cr

2941-1868 (+233-400)

4158 (+515)

n.d.

Ni

705-1272 (+16-27)

718 ( + 16)

n.d.

7.0-14.4

20.7-29.0 185-6230 (+16-473)

Cr Αΐ2θ3

52.8-59.4

36.1-46.5

56.3-62.7

Fe#

0.16-0.19

0.16-0.29

0.29-0.38

Ni

2775-3163 (+63-67)

1917 (+42)

336-445 (+11-33)

Ni

326-1093 (+27)

1.2-2.4

-

60-642 (+7-42) 35-163 (±3-27)

336-496 (+12-28)

Ce

2.91-5.71 6.33-19.62 10.76-17.88 (+0.48-1.38) (+0.51-1.68)(+0.77-2.72

Sm

1.41-1.62 0.60-2.93 3.47-4.97 (+0.03-0.04)(+0.01-0.05)(+0.06-0.23

Tb

0.38-0.64 0.33-0.49 0.61-0.84 (+0.03-0.10)(+0.03-0.10)(+0.04-0.07

Yb

1.68-1.85 0.56-1.79 1.64-2.20 (+0.15-0.27)(+Γ).06-0.15) (±0.17-0.57

spinel Cr203

5-9

Ti0,_,

Cr/Al

.019-.102

.097-.181

0-0.015

Note: C r , N i , C e , Sm, T b and Yb v a l u e s a r e g i v e n i n ppm: 2σ e r r o r g i v e n i n p a r e n t h e s e s . C o n c e n t r a t i o n s d e t e r m i n e d by I n s t r u m e n t a l N e u t r o n A c t i v a t i o n A n a l ­ y s i s at NASA-JSC, Houston, T X . C r 2 0 3 , A l ^ O ^ and T Í O 2 v a l u e s a r e g i v e n i n w t / o : c o n c e n t r a t i o n s d e t e r m i n e d bv e l e c t r o n m i c r o p r o b e a t S o u t h e r n M e t h o d i s t U n i v e r ­ sity, Dallas, TX. . F e ^ ^ / ( F e ^ ^ + Mg)V A R I A T I O N S IN MINERAL CHEMISTRY OF COMPOSITE Figure 5 i l l u s t r a t e s

XENOLITHS

the major element compositional

variation

in clinopyrox­

ene w i t h d i s t a n c e f r o m t h e c o n t a c t b e t w e e n h o s t and v e i n f o r e a c h t y p e o f c o m ­ posite relationship.

A l t h o u g h T y p e I / T y p e I c o m p o s i t e s show s l i g h t l y

Al^O^ in the vein r e l a t i v e to the host, h o s t and v e i n .

Type I I / T y p e

b u t show d i s t i n c t l y the host.

elevated

most m a j o r e l e m e n t s a r e i d e n t i c a l

in

I composites have u n i f o r m Mg/(Mg+Fe^^) and Ti02>

e l e v a t e d A l ^ O ^ and d e p l e t e d C r ^ O ^ i n t h e v e i n r e l a t i v e

Type I I / T y p e

to

I I c o m p o s i t e s e x h i b i t s i m i l a r AI2O3 and C r ^ O ^ t r e n d s ,

b u t a l s o show a m a r k e d d e c r e a s e i n M g / ( M g + F e ^ ^ ) and i n c r e a s e i n T i O - , i n t o t h e +2 vein.

Notice that the Type I I / T y p e

I I composite i s l o w e r i n Mg/(Mg+Fe

) and

C r ^ O ^ , b u t e l e v a t e d i n T Í O 2 f o r b o t h h o s t and v e i n r e l a t i v e t o t h e o t h e r c o m p o s -

78

ω c (D Χ

0-20

^

0-15

DEPLETED <

*ENRICHED

O i-



o

·

c

ΰ

0



10

c

<



1

• •

005

υ 1 10

.

_ ^

20

30

F i g u r e 3. R a t i o o f C r / A l c a t i o n s in recalculated pyroxene analyses ( r e c a l c u l a t i o n p r o c e d u r e o f Cam­ e r o n and P a p i k e , 1981) v s . Ce/Sm (chondrite normalized). A value o f Ce/Sm = 1 i n d i c a t e s no e n r i c h ­ ment o f Ce r e l a t i v e t o Sm. T y p e l a c l i n o p y r o x e n e s h a v e Ce/Sm v a l ­ ues l e s s t h a n 1; T y p e l b c l i n o p y ­ r o x e n e s h a v e Ce/Sm g r e a t e r t h a n 1. N o t e t h a t as c l i n o p y r o x e n e s become p r o g r e s s i v e l y e n r i c h e d i n LREE t h e y a r e a l s o p r o g r e s s i v e l y enriched in C r / A l .

C e ^ / S m ^ in c l i n o p y r o x e n e

i t e t y p e s . C l i n o p y r o x e n e does n o t o c c u r i n t h e amphibole s e l v a g e s . H o w e v e r , t h e m i n e r a l o g i c c h a n g e s and c o m p o s i t i o n a l

variations

i n t h e host I h e r z o l i t e

pyroxenes w i t h d i s t a n c e from t h e s e l v a g e boundary a r e s i g n i f i c a n t .

clino­

W i t h i n 2 mm

of t h e amphibole s e l v a g e c l i n o p y r o x e n e i s c o m p l e t e l y r e p l a c e d by amphibole and amphibole p a r t i a l l y

r e p l a c e s c l i n o p y r o x e n e o r c r y s t a l l i z e s as d i s c r e t e

t i a l c r y s t a l s f o r a d i s t a n c e o f a t l e a s t 2 cm away f r o m t h e s e l v a g e . tallization

intersti­ The c r y s ­

o f amphibole w i t h i n t h e I h e r z o l i t e g r e a t l y e n r i c h e s t h e w a l l

rock

i n REE and o t h e r i n c o m p a t i b l e e l e m e n t s ( M e n z i e s a n d M u r t h y , 1 9 8 0 ) . H o w e v e r , n o ­ t i c e t h a t t h e h o s t c l i n o p y r o x e n e d e c r e a s e s i n A l ^ O ^ and T i O ^ a s w e l l a s C r ^ O ^ toward t h e s e l v a g e .

Furthermore, Cr/Al

Comparison o f these C r / A l

r a t i o d e c r e a s e s f r o m 0.056 t o 0 . 0 5 0 .

t r e n d s w i t h t h e v a l u e s f o r T y p e l a and T y p e l b c l i n o ­

pyroxenes i n F i g u r e 3 demonstrates t h a t t h e metasomatic e f f e c t

on t h e h o s t

l h e r z o l i t e associated w i t h amphibole c r y s t a l l i z a t i o n cannot account f o r t h e d i s -

F i g u r e 4 . REE c o n c e n t r a t i o n s i n Type I I clinopyroxenes normalized to c h o n d r i t i c abundances. Sam­ ples plotted include: ^ 21-M2, # 2 2 - 1 , A 22-11, • 23B-7, • 20-8. 23B-7 a n d 20-8 a r e a n h y d r o u s T y p e I I x e n o l i t h s ; 22-1 and 22-11 a r e k a e r s u t i t e p e r i d o t i t e xenoliths. 21-M2 i s a c l i n o p y r o x ­ ene m e g a c r y s t .

10"

I I I I I I I I I I I I I I LaCe

Nd

SmEu

REE ATOMIC

Tb

NUMBER

Yb Lu

79

CPX

VEIN

CPX

HOST

M g / ( M g + Fe*2) 0-9

08

8-0

A I 2 0 3

70

Q

X O

6.0

10

C r p 3

05

-••-••^•-Λί'

0 2 0

LTiO, I I

10

-4-

JL 20

1 0

DISTANCE

FROM

0

HOST/VEIN

1-0

BOUNDARY

F i g u r e 5. M a j o r e l e m e n t c o m p o s i t i o n a l v a r i a t i o n i n c l i n o p y r o x e n e w i t h d i s t a n c e from h o s t / v e i n boundary in composite x e n o l i t h s . Samples p l o t t e d i n c l u d e : · 20-9 ( T y p e I / T y p e I ) ; A 20-10 ( T y p e I I / T y p e I ) ; • 21-8 ( T y p e I I / T y p e I I ) ; • 22-16 ( k a e r s u t i t e p e r i d o t i t e s e l v a g e on T y p e I s p i n e l I h e r z o l i t e ) . t i n c t major element m i n e r a l c o m p o s i t i o n o b s e r v e d i n T y p e lb

xenoliths.

I n c o n t r a s t t o t h e d i f f e r i n g m a j o r e l e m e n t v a r i a t i o n s b e t w e e n h o s t and v e i n , the incompatible

r a r e e a r t h elements are e s s e n t i a l l y i d e n t i c a l

f o r a g i v e n phase

i n b o t h h o s t and v e i n r e g a r d l e s s o f c o m p o s i t e x e n o l i t h t y p e . F i g u r e 6.

Compar­

i s o n o f F i g u r e 6 w i t h F i g u r e s 1 and 4 d e m o n s t r a t e t h a t c l i n o p y r o x e n e s f r o m sam­ p l e 21-8 ( a T y p e I I / T y p e I I ) liths.

h a v e REE v a l u e s l i k e t h o s e o f normal T y p e I I

C l i n o p y r o x e n e s f r o m 20-9

s i g n a t u r e l i k e Type la I h e r z o l i t e c l i n o p y r o x e n e s . i t e 20-10

xeno­

(a T y p e I / T y p e I ) h a v e a l i g h t REE d e p l e t e d I n t e r e s t i n g l y e n o u g h , compos­

(a T y p e I I / T y p e I ) has REE c o n c e n t r a t i o n s i n t e r m e d i a t e b e t w e e n t h e s e

two t y p e s . Most i m p o r t a n t l y ,

however, w i t h i n a n a l y t i c a l

for a given host/vein pair are e s s e n t i a l l y

e r r o r , t h e REE p a t t e r n s

identical.

Comparison o f compatible t r a c e elements r e v e a l s s i m i l a r d i s t i n c t i o n s

between

h o s t and v e i n t o t h o s e s e e n i n t h e m a j o r e l e m e n t v a r i a t i o n s . C r i n p y r o x e n e and

80 s p i n e l and Ni i n o l i v i n e and s p i n e l a r e t h e most u s e f u l d i s c r i m i n a t o r s

because

t h e r a n g e s o f c o n c e n t r a t i o n s f o r t h e s e e l e m e n t s t e n d t o be d i s t i n c t f o r T y p e and T y p e I I x e n o l i t h s i n t h e s e p h a s e s . show t h a t f o r e a c h c o m p o s i t e t y p e , Type I / T y p e I composite 20-9, considered identical

C r and N i v a l u e s t a b u l a t e d

w i t h i n the a n a l y t i c a l

is small;

e r r o r on t h e d a t a .

is l a r g e r than expected f o r l i t h o l o g i e s

element mineral c o m p o s i t i o n s . A l t h o u g h i t trations

In

h o s t and v e i n c o u l d be In c o n t r a s t ,

m a g n i t u d e o f t h e v a r i a t i o n b e t w e e n h o s t and v e i n i n T y p e I I / T y p e 21-8

in T a b l e 2

v e i n m i n e r a l s h a v e l o w e r C r and N i .

the d i f f e r e n c e

II

w i t h s i m i l a r m i n e r a l o g i e s and m a j o r

m i g h t be a r g u e d t h a t t h e h i g h c o n c e n ­

o f C r i n c l i n o p y r o x e n e and Ni i n o l i v i n e r e s u l t f r o m

fractionation compatible

elements are r e l a t i v e l y high in the m e l t , the Cr c o n c e n t r a t i o n in s p i n e l o r d e r o f magnitude g r e a t e r than t h a t o b s e r v e d in any o t h e r Type I I is,

however, e a s i l y w i t h i n

l i e v e that Type I I / T y p e interaction

the range f o r Type I s p i n e l s .

i s an

xenoliths.

We, t h e r e f o r e , b e ­

I I c o m p o s i t e x e n o l i t h s f o r m as t h e r e s u l t o f e x t e n s i v e

b e t w e e n b a s a n i t i c m e l t and s p i n e l

I h e r z o l i t e wall

Such com­

that interaction

to e x t e n s i v e m o d i f i c a t i o n

o f the upper mantle i n v o l v i n g enrichment in

N a , REE and p o s s i b l y Ca and A l .

between w a l l

rock.

posite xenoliths indicate

r o c k and magma may l e a d Fe, T i ,

I n c o m p e n s a t i o n , t h e magma ( a s r e p r e s e n t e d by

t h e v e i n a s s e m b l a g e s ) must a t l e a s t l o c a l l y become e n r i c h e d i n

Mg, C r and Ni

through chemical exchange w i t h the rock I h e r z o l i t e . • o • Δ • o

I

I I 21-8 21-8 20-10 20-10 20-9 20-9

the

composite

d u r i n g t h e e a r l y s t a g e s o f c r y s t a l l i z a t i o n when t h e c o n c e n t r a t i o n s o f

It

I

I I I I I I I HOST VEIN HOST VEIN HOST VEIN

I I I

p r e s e n t e d by I r v i n g

wall

Geochemical e v i d e n c e (1980) documents s i m ­

i l a r t r e n d s , a l t h o u g h f o r samples r e c o r d ­ ing f a r l e s s i n t e r a c t i o n composites).

(Type I I / T y p e

The extensive

r e c o r d e d i n c o m p o s i t e x e n o l i t h 21-8 gests that greater interaction wall

I

modification sug­

between

r o c k and a s c e n d i n g magma has

oc­

c u r r e d i n t h e m a n t l e b e n e a t h GVF t h a n indicated

by s a m p l e s f r o m K i l b o u r n e H o l e .

F i g u r e 6. REE c o n c e n t r a t i o n s i n clinopyroxenes from composite xenoliths. 21 - 8 i s a T y p e I I / T y p e I I c o m p o s i t e ; 21 - 10 i s a Type I I / T y p e I composite; 20-9 is a Type I / T y p e I composite. REE ATOMIC

NUMBER

81 TABLE 2 C r and N i a b u n d a n c e s i n c l i n o p y r o x e n e , o l i v i n e and s p i n e l f r o m a s s o c i a t e d h o s t and v e i n m i n e r a l a s s e m b l a g e s o f composite x e n o l i t h s VEIN

HOST clinopyroxene

olivine

spinel Type I/Type

Cr

5881+587

Ni

386+19

89+11 2812+62

Cr

3747+190 378+10

141+13

3282+397

Ni

207+20

spinel

366+23

2844+62

n.d. n.d.

I , 20-10

52500+3990

642+42

577+47

5205+396

3163+66

357+10

643+14

3301+69

2639+55

90+10

62+7

4952+572

2857+63

Type I I / T y p e Cr

oli vine

I , 20-9

67360+3970

Type I I / T y p e

Ni

clinopyroxene

II ,

21-8

65465+6462

373+37

10+1

4374+421

1629+46

125+16

848+23

1093+27

1454+33

C o n c e n t r a t i o n s + 1σ a r e g i v e n i n ppm

DISSCUSSION AND SUMMARY P e t r o g r a p h i c o b s e r v a t i o n s combined w i t h m a j o r e l e m e n t , t r a c e e l e m e n t and i s o t o p i c data from x e n o l i t h s o f the Gerónimo V o l c a n i c F i e l d suggest a m u l t i s t a g e e v o l u t i o n f o r the mantle beneath the s o u t h w e s t e r n U . S . h a r z b u r g i t e s and c l i n o p y r o x e n e - d e p l e t e d s p i n e l

T h e dominance o f T y p e

I

I h e r z o l i t e s a t GVF s u p p o r t t h e

occurrence of a major widespread p a r t i a l m e l t i n g event t h a t produced a d e p l e t i o n i n the l i g h t REE, perhaps r e l a t e d t o c o n t i n e n t

formation.

E x t r a c t i o n of melt

(> 1 b . y . ) l e a v e s a I h e r z o l i t e r e s i d u e e v i d e n t as T y p e l a i n c l u s i o n s

(Menzies

and M u r t h y , 1980b; M e n z i e s , e t a l . , 1982; F r e y and G r e e n , 1 9 7 4 ) ; c l i n o p y r o x e n e s in T y p e la nodules have a r e f r a c t o r y major element c o m p o s i t i o n , pleted p r o f i l e s ,

l i g h t REE d e ­

r a d i o g e n i c Nd (0.5133 - 0 . 5 1 3 0 ) , and n o n r a d i o g e n i c S r ( 0 . 7 0 2 -

0.703) i s o t o p i c

c o m p o s i t i o n s . F i g u r e s l a and 2 .

time-integrated

r e s p o n s e t o t h e i n c r e a s e i n Sm/Nd.

Type lb x e n o l i t h s are enigmatic

in o r i g i n .

The isotopic

data r e p r e s e n t a

T h e i r LREE e n r i c h e d p r o f i l e s

can­

n o t be a c c o u n t e d f o r as a r e s i d u e f r o m p a r t i a l m e l t i n g b a s e d on c u r r e n t k n o w l ­ edge o f p a r t i t i o n c o e f f i c i e n t s . t r a t i o n o f a CO2 + H2O r i c h f l u i d

Mantle enrichment

(>0.5 b . y . ) caused by i n f i l ­

( a n a l o g o u s t o component Β p r o p o s e d b y F r e y and

G r e e n , 1974) i s one p o s s i b l e e x p l a n a t i o n f o r t h e s e i n c l u s i o n s . T h i s metasomatism r e s u l t s

infiltration

i n t h e l i g h t REE e n r i c h m e n t o f t h e c l i n o p y r o x e n e p h a s e , b u t

p r o d u c e s no p e t r o g r a p h i c o r m i n e r a l o g i c t r a n s f o r m a t i o n o f t h e p e r i d o t i t e s .

The

82 c o n s i d e r a b l e r a n g e i n Nd ( 0 . 5 1 2 8 - 0.5125) and S r ( 0 . 7 0 3 - 0 . 7 0 5 ) i s o t o p i c position visible

in Type lb nodules ( i . e . modified Type l a ) r e p r e s e n t s a p a r t i a l

r e s p o n s e t o t h e l o w Sm/Nd r a t i o .

However, a d i s t i n c t i v e major element

i s s u g g e s t e d by t h e c o r r e l a t i o n b e t w e e n t h e d e g r e e o f LREE e n r i c h m e n t and C r / A l

ratios

element mineral

com­

in clinopyroxenes.

Furthermore, the modifications

composition which r e s u l t

control (Ce/Sm)

to major

i n a s s o c i a t i o n w i t h h y d r o u s and a n h y ­

drous v e i n i n g a r e not a p p r o p r i a t e to produce the d i s t i n c t i v e

m a j o r e l e m e n t com­

position of Type lb x e n o l i t h s . Nonetheless, interaction

b e t w e e n T y p e l a and T y p e l b

s i l i c a t e m e l t e q u i v a l e n t i n c h e m i s t r y and i s o t o p i c n i t e produces v e i n i n g o f the I h e r z o l i t i c w a l l

(and T y p e I I ) and a

composition to the host basa-

rock.

Mineral assemblages

include

c l i n o p y r o x e n e + s p i n e l + o l i v i n e + k a e r s u t i t e + mica + a p a t i t e + f e l d s p a r . a s s o c i a t e d c o n t a c t metasomatism t r a n s f o r m s the p e r i d o t i t e

d u i t and i n some c a s e s i n t r o d u c e s a m p h i b o l e a n d / o r m i c a i n t o t h e w a l l

rock.

e v e n t i s b e l i e v e d t o be r e l a t i v e l y r e c e n t ( « 1 0 0 m . y . ) s i n c e m i c a i n t h e oy

I h e r z o l i t e has a l o w

The

adjacent to the con­ This

host

Of.

Sr/

S r = 0.70329 and a h i g h R b / S r r a t i o ;

similarly

the

v e i n a m p h i b o l e has a d e c o u p l e d r a r e e a r t h (Sm/Nd = 0 . 1 4 2 ) and a Nd i s o t o p i c position

com­

(Σ|^|^ = + 8 ) .

The v e i n s are b e l i e v e d to r e p r e s e n t f r o z e n conduits or apophyses of melt (Menzies, et a l . ,

1982)

or composite r e l a t i o n s h i p s o f h o s t and v e i n :

a)

basanitic

t h a t s u r r o u n d a d e e p - s e a t e d magma p o c k e t .

a r e o f t h r e e t y p e s b a s e d on m a j o r e l e m e n t

Vein/host chemistries

Type I / T y p e I composites in which Type I spinel

Iherzo-

l i t e s or h a r z b u r g i t e s a r e c r o s s c u t by T y p e I w e b s t e r i t e s o r d i o p s i d e v e i n s ; b)

Type I I / T y p e I composites in which spinel

A l - a u g i t e c l i n o p y r o x e n i t e d i k e s ; and c )

I h e r z o l i t e i s c r o s s c u t by

Type

Type I I A l - a u g i t e c l i n o p y r o x e n i t e dikes crosscut w e h r l i t e hosts of Type I I element compositions.

These r e l a t i o n s h i p s

indicate

that the process of

v e i n i n g i s b o t h an a n c i e n t p r o c e s s ( T y p e I / T y p e I ) and t h a t i t s v a r i a b l e , ranging from r e e q u i 1 i b r a t i o n e x t e n s i v e major element a l t e r a t i o n the e x t e n t of m o d i f i c a t i o n

II

Type I I / T y p e I I composites in which

of incompatible

as w e l l

major

mantle

effects

are

t r a c e e l e m e n t s t o more

(Type I I / T y p e I I ) .

The c o n t r o l s

a r e u n k n o w n , b u t must depend on s u c h c o n d i t i o n s

t h e s i z e o f t h e c o n d u i t s , t h e a s c e n t r a t e o f t h e magma, t h e e x t e n t o f

on

as

modifica­

t i o n e x p e r i e n c e d d u r i n g p r e v i o u s e p i s o d e s o f magma a s c e n t i n t h e same c o n d u i t and t h e t e m p e r a t u r e d i f f e r e n c e b e t w e e n t h e h o s t w a l l

r o c k and magma.

T h e magma

p o c k e t w i t h w h i c h t h e v e i n s a r e b e l i e v e d t o be a s s o c i a t e d i s p a r t o f t h e " g e n e r ­ a t i o n o f magmas" t h a t u l t i m a t e l y

d i s r u p t s and e n t r a i n s t h e m a n t l e f r a g m e n t s .

T h e s e v e i n e d T y p e l a and T y p e l b n o d u l e s i l l u s t r a t e t h e f a c t t h a t m a n t l e

perido­

t i t e s can be m o d i f i e d b y t h e v e r y p r o c e s s e s t h a t t r a n s p o r t them t o t h e s u r f a c e . T h e m a n t l e b e l o w t h e s o u t h w e s t e r n U . S . has an a n c i e n t i s o t o p i c unlike that of a residue (Type la) t e r been m o d i f i e d

l e f t a f t e r e x t r a c t i o n o f MORB.

by v a p o u r - r i c h f l u i d s and b a s a n i t i c m e l t s

signature

not

T h i s has

la­

(composite

xenoliths

83 T y p e I i / T y p e I I , T y p e I I / T y p e I and T y p e I / T y p e I ) .

The a l k a l i basalts

from

GVF h a v e ^ ^ S r / ^ ^ S r = 0.70285 - 0.70327 and ^ ^ ^ N d / ^ ' ^ ^ N d = 0.51304 - 0 . 5 1 2 9 0 , F i g ­ u r e 2.

All

the a l k a l i basalts

plot within

the f i e l d of mid-ocean r i d g e

h a v i n g been d e r i v e d f r o m a m a n t l e w i t h a t i m e - i n t e g r a t e d rare earth elements.

depletion

basalts,

of the

light

T h i s i s c o m p a t i b l e w i t h o b s e r v a t i o n s o f o t h e r B a s i n and

Range b a s a n i t e s and i m p l i e s

t h a t a MORB-type mantle e x i s t s below t h e

southwest­

ern U.S. ACKNOWLEDGEMENTS T h i s r e s e a r c h has been s u p p o r t e d by t h e NASA G r a d u a t e T r a i n e e s h i p P r o g r a m and b y t h e I n s t i t u t e sity.

f o r t h e S t u d y o f E a r t h and Man, S o u t h e r n M e t h o d i s t

Univer­