Journal of Volcanology and Geothermal Research 85 Ž1998. 327–354
Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey Abidin Temel b
a,)
, M.Niyazi Gundogdu ¨ ˘ b, Alain Gourgaud
c
a Hacettepe UniÕersity, Department of Geological Engineering, 06532, Beytepe Ankara, Turkey Centre Technique Inter-Unites ´ du Groupe Lafarge, l’lsle d’Abeau Parc de Chesnes, 95 RUE du Montmurier-BP70, F-38291 St. Quentin FallaÕier Cedex, France c Blaise Pascal UniÕersity, Deptartment of Geology, Clermont-Ferrand, France
Abstract Late Miocene to Pliocene volcanic rocks outcrop west, northwest and southwest of the Konya area in Central Anatolia, Turkey. Volcanic products are lava domes, nuee ´ ardentes and ignimbrite deposits, predominantly andesitic to dasitic in composition, together with rare basalt, basaltic andesite, basaltic trachyandesite and trachyandesite Ž50.35–69.39% SiO 2 .. The serie exhibits high-K calc-alkaline affinities. Fractional crystallization of pyroxene, plagioclase and Fe–Ti oxides is the main process in the magmatic evolution of Konya volcanic rocks. Volcanic units exhibit typical high-K calc-alkaline character. Their geochemical characteristics Že.g., enrichments in LIL elements such as K, Rb, Ba, Sr, depletion in HFSE such as Ti, Nb, and high BarNb and Low NbrY ratios. are consistent with those of active continental margin regions. High 87 Srr86 Sr Ž0.704841–0.707340. and low 143 Ndr144 Nd Ž0.512390–0.512618. ratios suggest crustal involvement in their petrogenesis. Correlations between 86 Srr87Sr isotope with Rb, RbrNb, RbrBa, and RbrSr also emphasize the effect of crustal contamination on the andesitic and dacitic magmas. As a consequence, Konya volcanic rocks are products of assimilation and fractional crystallization ŽAFC. processes of a magma which seems to be linked to the subduction of the African plate underneath the Anatolian plate during Miocene. q 1998 Elsevier Science B.V. All rights reserved. Keywords: Turkey; Konya; petrology; geochemistry; calc-alkaline volcanism
1. Introduction The Anatolian plate is deformed as a result of the collision of Eurasian and Arabian plates along the Miocene thrust front ŽFig. 1.. This collision which determines the beginning of the Neotectonic period
)
Corresponding author. Fax: q90-312-299-2136; E-mail:
[email protected]
shortened the Eastern Anatolia and is followed by the formation of the East and North Anatolian faults. The Anatolian block begins to move to the west along these two major faults ŽMcKenzie, 1972; S¸ engor ¨ et al., 1985; Dewey et al., 1986, McKenzie and Yilmaz, 1991.. Widespread volcanic activity took place in Turkey during the Neotectonic period. Depending on these activities, volcanic rocks covered an area of about 85,000 km2 in East, Central and West Anatolia ŽKetin, 1983..
0377-0273r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved. PII: S 0 3 7 7 - 0 2 7 3 Ž 9 8 . 0 0 0 6 2 - 6
328
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Fig. 1. Location map of the Konya volcanic rocks, Central Anatolia ŽTurkey. ŽDSF: Dead Sea Fault; NAF: North Anatolian Fault; EAF: East Anatolian Fault, AF: Akehir fault, TGS: Tuzgolu ¨ ¨ fault, EF: Ecemis fault .. Map is modified from Ketin Ž1983., Koc¸yigit ˘ Ž1991. and Reilinger et al. Ž1997..
In Central Anatolia, calc-alkaline volcanic products cover large areas located in the WSW and NW of Konya city ŽFig. 1.. This area which is surrounded by the North Anatolian Fault ŽNAF. in the north and the African–Anatolian convergence system in the south, is regarded to be developed under transtensive and transpressive tectonic regimes which have been effective since the Late Miocene ŽS¸ engor ¨ et al., 1985; Kempler and Garfunkel, 1991. ŽFig. 1.. According to Keller et al. Ž1977., volcanic activity in this area continued from Late Miocene Ž11.9 Ma. to Pliocene Ž3.35 Ma.. A limited number of studies related to the Konya volcanics have been done ŽOta and Dinc¸el, 1975; Keller et al., 1977; Ulu et al., 1994.. There is a close relationship between the distribution of volcanic activity and plate tectonics, and as the volcanism character that depends on the characteristics of the geodynamic context ŽCondie, 1989; Wilson, 1989.. The petrological and geochemical data obtained from volcanic rocks may provide us some information about the geodynamics of the study
area. The aim of this paper is thus to explain the origin of magmas in the Konya region and try to understand the geodynamic context that created the regional volcanic activity.
2. Regional geology and stratigraphy In the studied area, pre-Miocene basement rocks Žmetamorphic, ophiolitic and marine sediments., Upper Miocene–Pliocene lacustrine, fluvial deposits and volcanics and Quaternary deposits, outcrop. The present study is based on the work of Keller et al. Ž1977. and their geological map and stratigraphic sequence of these authors were used. Radiometric dating by Keller et al. Ž1977. and relative dating based on fossil contents of sediments intercalated with volcanics were used in the stratigraphy of the study area ŽTemel et al., 1995.. The results of both methods are similar. A geological map of the studied area is given in Fig. 2.
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
329
Fig. 2. Geological sketch map of the studied area Žmodified from Keller et al., 1977..
Basement rocks are pre-Miocene. Lower–Upper Permian metamorphic rocks Žgreenschist, calc-schist, quartzite, marble and dolomitic rocks. ŽKarakaya,
1991.; Triassic limestone, shale and quartzite; Upper Triassic and Lower Cretaceous conglomerate, sandstone, quartzite, clayey limestone, shale and Juras-
330
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
sic–Cretaceous ophiolitic rocks, limestone, radiolarite and pelagic sediments ŽGoger and Kiral, 1973. ¨ constitute the basement. 2.1. Volcanic units Volcanic units outcrop in the form of lava domes, nuee ´ ardentes and pyroclastic fall and flow Žignimbrites. deposits. Eight groups have been defined: Ž1. Sille volcanics, Ž2. Kiziloren ignimbrite, ¨ Ž3. lava domes, Ž4. nuee ´ ardentes, Ž5. Erenkaya ignimbrite, Ž6. two-pyroxene andesitic lava domes, Ž7. Kuzagil ignimbrite, Ž8. Sadiklar ignimbrite. Sille Õolcanics, located to the NW of Konya, are the oldest volcanic units according to the radiometric measurement and stratigraphic findings in the area and are seperated from Erenlardag–Alacadag volcanic complex by pre-Miocene basement rocks ŽFig. 2.. Pyroclastic deposits Žfall and flow deposits. together with lava domes and nuee ´ ardente deposits outcrop. Pyroclastics of Sille volcanics are intercalated with the Neogene series consisting of clayed carbonate units. Ignimbrites of Sille volcanics are not welded. Ages of Sille volcanics range from 11.45 to 11.9 Ma ŽKeller et al., 1977.. Kiziloren ¨ ignimbrite outcrops in the N of the area and are observed commonly between Kiziloren ¨ and Yunuslar villages ŽFig. 2.. It is about 100 m thick and composed of one non-welded pyroclastic flow.
Pumices are poor in phenocrysts. They are white and gray colored and have been greatly transformed to clays by weathering and hydrothermal alteration ŽTemel et al., 1995.. Kiziloren ignimbrite is the ¨ oldest unit of Konya volcanism after the Sille volcanics according to the stratigraphic position. Ignimbrite emplacement is followed by lava domes which are 10.9 Ma old ŽKeller et al., 1977., suggesting that Kiziloren ¨ ignimbrite is older than this age. LaÕa domes are 10.9 to 3.35 Ma ŽKeller et al., 1977.. The oldest lava domes of ErenlerdagrAlaca˘ dag˘ volcanism located in the N of Hacibabadag, ˘ NW of the study area, is 10.55–10.9 Ma old, according to Keller et al. Ž1977.. Lava domes in Mesutlar, Fasillar, Huseyinler, Gevrekli and Bostandere, located ¨ along western section of Konya volcanics, are the youngest lava domes of the studied area, and intersect Upper Pliocene continental limestone and carbonaceous marn. Radiometric measurements show that Fasillar lava domes is 3.2 Ma old, Gevrekli lava domes 3.35 Ma ŽKeller et al., 1977.. These results are supported by relative dating based on fossil contents of continental sediments in the area ŽTemel et al., 1995.. The morphology of lava domes remains unchanged and related nuee ´ ardente deposits were not found ŽFig. 2.. The lava domes in Modus and Karadag˘ Tepe are the largest and they are partially covered by nuee ´ ardente deposits ŽFig. 2.. The
Fig. 3. Compositional ranges of feldspars Žc: phenocryts cores; r: phenocrysts rims..
r 0.51 7.91 0.1 6.41 58.74 26.1 99.77
c™ r
c
57.65 3.02 39.33
0.03 0.38 0.00 0.56 2.63 1.38 4.97
0.02 0.53 0.01 0.44 2.48 1.51 4.99 44.53 1.91 53.56
K Ca Fe Na Si Al Total
Ab Or An
36.89 1.58 61.53
0.02 0.61 0.02 0.36 2.40 1.59 4.99
0.27 12.42 0.45 4.12 52.76 29.60 99.62
54.37 2.89 42.74
0.03 0.42 0.01 0.53 2.59 1.41 4.98
0.49 8.68 0.27 6.10 57.84 26.62 100.0
53.28 3.37 43.35
0.03 0.42 0.01 0.52 2.59 1.40 4.97
0.58 8.88 0.25 6.03 58.41 26.73 100.9
13.44 0.31 86.25
0.00 0.87 0.02 0.14 2.15 1.83 5.00
0.05 17.53 0.43 1.51 46.55 33.69 99.76
r™
50.49 2.45 47.06
0.02 0.46 0.01 0.49 2.58 1.41 4.97
26.88 0.72 72.40
0.01 0.72 0.01 0.27 2.28 1.70 5.00
0.12 14.69 0.29 3.01 49.66 31.48 99.25
c
55.91 3.33 40.75
0.03 0.40 0.01 0.54 2.63 1.36 4.97
0.56 8.17 0.25 6.19 58.24 25.55 98.96
63.22 6.33 30.45
1.29 4.98
0.06 0.30 0.01 0.62
1.10 6.32 0.21 7.25 61.22 24.72 100.8
c
67.90 4.48 27.62
0.04 0.26 0.00 0.63 2.71 1.30 4.96
0.73 5.36 0.12 7.28 60.90 24.71 99.10
61.46 4.49 34.05
0.04 0.33 0.00 0.60 2.72 1.34 4.98
0.78 7.02 0.13 7.01 59.95 25.53 100.4
r™
58.24 3.38 38.38
0.03 0.37 0.01 0.57 2.66 1.37 4.98
0.58 7.79 0.15 6.53 58.54 25.85 99.44
c
46.68 3.42 49.90
0.03 0.50 0.01 0.46 2.53 1.45 4.98
0.59 10.25 0.37 5.30 55.93 27.16 99.60
50.15 4.35 45.49
0.04 0.46 0.04 0.51 2.55 1.40 5.01
0.77 9.60 1.06 5.85 56.86 26.52 100.7
c
19.12 0.62 80.25
0.01 0.81 0.03 0.19 2.20 1.76 4.99
0.11 16.53 0.68 2.18 48.19 32.78 100.5
c™
31.39 1.28 67.33
0.01 0.67 0.02 0.31 2.35 1.63 4.99
0.22 13.59 0.57 3.50 51.41 30.18 99.47
r
r™
0.33 11.12 0.25 5.11 55.40 28.58 100.8
c
r™
64.84 4.63 30.53
0.04 0.30 0.01 0.63 2.71 1.28 4.98
0.41 9.43 0.28 5.59 57.05 26.44 99.2
Two-pyroxene andesitic lava domes
50.24 2.77 46.99
0.03 0.45 0.01 0.48 2.56 1.44 4.96
0.79 6.22 0.19 7.29 61.05 24.5 100.04
r™
47.41 1.51 51.07
Ab Or An
K 2O CaO Fe 2 O 3 Na 2 O SiO 2 Al 2 O 3 Total
c™
Erenkaya ignimbrite
0.01 0.50 0.01 0.46 2.51 1.49 4.99
0.47 9.41 0.32 5.56 57.52 27.57 100.85
r
r™
0.26 10.37 0.26 5.32 55.68 28.14 100.03
c™
K Ca Fe Na Si Al Total
K 2O CaO Fe 2 O 3 Na 2 O SiO 2 Al 2 O 3 Total
Lava domes
Sille volcanics
Feldspars
Table 1 Selected feldspar analyses Žc: core, r: rim .
54.71 5.24 40.05
0.05 0.40 0.01 0.55 2.62 1.36 4.99
0.91 8.32 0.39 6.28 58.40 25.67 99.97
r™
40.78 1.65 57.56
0.02 0.59 0.01 0.42 2.63 1.56 5.02
0.29 12.12 0.29 4.75 52.84 28.84 99.13
r™
53.41 4.88 41.71
0.05 0.41 0.01 0.53 2.62 1.6 4.98
0.85 8.61 0.34 6.09 58.35 25.64 99.88
c
42.29 2.38 55.33
0.02 0.55 0.01 0.42 2.42 1.51 4.99
0.41 11.23 0.23 4.74 53.58 27.93 98.12
c
39.22 1.25 59.53
0.01 0.59 0.02 0.39 2.42 1.57 4.99
0.21 11.99 0.43 4.37 53.05 29.17 99.22
r™
27.39 1.19 71.42
0.01 0.71 0.02 0.27 2.30 1.68 5.00
0.20 14.53 0.53 3.08 50.07 31.02 99.43
c
Nuee ´ ardentes
41.89 1.71 56.40
0.02 0.56 0.01 0.42 2.47 1.50 4.99
0.29 11.55 0.39 4.74 54.44 28.10 99.51
r™
24.90 0.52 74.58
0.01 0.74 0.02 0.25 2.27 1.71 4.99
0.09 15.10 0.64 2.79 49.51 31.57 99.70
c
54.10 2.58 43.32
0.02 0.42 0.01 0.52 2.59 1.41 4.97
0.43 8.69 0.23 6.00 52.82 26.72 98.89
c™
38.43 1.19 60.38
0.01 0.60 0.02 0.38 2.40 1.58 4.99
0.21 12.44 0.42 4.37 53.06 29.58 100.1
r
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354 331
332
Biotites Nuee ´ ardentes
Sille volcanics
Erenkaya ign.
Two-pyroxene andesitic lava domes
c™
r
c™
r
c
c™
r
r
c
c
c
r™
c
c
c
c™
r
K 2O TiO 2 Fe 2 O 3 MnO SiO 2 Al 2 O 3 MgO Total
8.98 3.91 17.86 1.38 37.48 14.55 13.12 97.28
9.26 4.29 17.12 0.24 36.36 14.20 12.99 94.46
8.79 3.92 17.12 0.00 36.95 15.54 12.25 94.57
9.29 4.09 18.43 0.37 37.08 14.40 12.86 96.52
8.96 3.80 14.69 0.16 37.54 15.36 13.49 94.00
9.54 4.44 16.47 0.30 37.07 14.56 13.40 95.78
9.51 4.04 17.41 0.17 37.24 14.22 13.69 96.28
8.45 4.68 12.96 0.19 36.92 14.26 15.43 92.89
8.46 4.92 11.67 0.15 38.15 15.35 15.97 94.67
8.27 4.58 13.72 0.11 37.51 13.72 14.68 92.59
8.08 4.53 12.29 0.10 38.37 14.80 14.30 92.47
7.39 4.43 16.00 0.44 37.87 14.57 14.24 94.94
7.26 4.29 13.69 0.12 39.56 13.60 14.01 92.53
9.03 5.66 13.07 0.02 36.94 13.31 16.01 94.04
9.35 5.91 12.45 0.13 36.95 13.27 15.60 93.66
8.85 5.76 11.83 0.21 37.41 13.65 16.87 94.18
8.97 5.84 12.23 0.15 37.08 13.35 15.89 93.51
K Ti Fe Mn Si Al Mg Total
1.70 0.44 2.21 0.17 5.55 2.54 2.90 15.51
1.80 0.49 2.18 0.03 5.53 2.55 2.94 15.52
1.69 0.45 2.16 0.00 5.57 2.76 2.75 15.39
1.77 0.46 2.31 0.05 5.55 2.54 2.87 15.54
1.72 0.43 1.84 0.02 5.64 2.72 3.02 15.38
1.82 0.50 2.06 0.04 5.54 2.57 2.99 15.51
1.81 0.45 2.17 0.02 5.56 2.50 3.05 15.58
1.62 0.53 1.63 0.02 5.54 2.52 3.45 15.31
1.57 0.54 1.42 0.02 5.55 2.63 3.46 15.20
1.59 0.52 1.73 0.01 5.66 2.44 3.30 15.26
1.54 0.51 1.53 0.01 5.71 2.60 3.17 15.07
1.40 0.49 1.98 0.06 5.60 2.54 3.14 15.21
1.38 0.48 1.71 0.02 5.91 2.40 3.12 15.02
1.72 0.64 1.63 0.00 5.52 2.34 3.56 15.41
1.79 0.67 1.56 0.02 5.54 2.34 3.49 15.40
1.67 0.64 1.47 0.03 5.54 2.38 3.64 15.37
1.71 0.66 1.53 0.02 5.55 2.35 3.54 15.36
Mga
54.84
57.14
56.05
54.93
61.81
58.74
58.12
67.65
70.66
65.42
67.29
60.68
64.38
68.55
68.86
70.92
69.58
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Table 2 Selected biotite analyses Žc: core, r: rim.
Table 3 Selected amphibole analyses Žc: core; r: rim.
Nuee ´ ardentes
Lava domes
Erenkaya ign.
r™
c
r™
c
r™
c
r™
c
c™
r
c™
r
c™
r
r™
c
r™
c
r™
c
r™
c
K 2O CaO TiO 2 MnO Fe 2 O 3 FeO Na 2 O SiO 2 Al 2 O 3 MgO Total
1.09 12.23 2.42 0.20 1.49 7.63 2.65 41.25 13.34 14.58 96.88
0.95 11.79 2.60 0.25 3.61 8.30 2.64 40.35 12.74 13.34 96.57
0.98 11.40 2.29 0.18 6.96 4.85 2.30 41.27 10.96 14.73 95.92
1.49 11.77 1.70 0.37 3.89 14.31 1.80 40.43 10.12 10.03 95.91
1.06 12.02 2.46 0.22 5.29 5.62 2.24 42.50 12.20 15.07 98.68
1.11 11.75 2.38 0.10 7.14 3.79 2.26 42.99 12.30 15.71 99.54
1.43 12.26 2.63 0.16 4.87 6.45 2.24 40.92 12.68 14.72 98.36
1.45 12.13 2.65 0.15 5.57 5.37 2.07 40.72 13.42 14.71 98.24
0.86 11.83 1.38 0.53 4.43 10.82 1.59 45.33 8.49 12.72 97.98
0.63 11.42 1.80 0.27 6.06 6.90 1.76 44.77 9.38 14.13 97.12
0.76 11.39 2.68 0.14 8.69 3.92 2.20 42.26 13.23 14.41 99.68
0.58 11.31 2.43 0.25 8.40 4.88 2.15 43.35 11.30 14.36 99.01
0.87 11.60 1.64 0.58 4.87 10.97 1.51 45.07 9.12 12.07 98.30
1.06 11.61 1.61 0.51 6.72 10.10 1.71 44.11 9.58 12.25 99.25
0.58 11.03 1.72 0.40 7.99 4.55 1.50 45.77 8.54 14.87 97.00
0.81 10.95 2.03 0.29 8.46 4.90 1.61 44.43 9.19 14.39 97.06
0.71 10.90 1.91 0.30 9.72 3.60 1.94 44.27 10.11 14.79 98.25
0.74 11.25 1.48 0.36 7.00 5.53 1.34 46.78 7.73 15.04 97.25
0.64 11.12 1.56 0.36 7.57 5.92 1.59 46.05 8.95 14.30 98.06
0.72 11.07 1.63 0.44 7.79 5.56 1.62 45.84 8.99 14.40 98.06
0.94 11.42 2.87 0.20 4.70 7.11 1.95 41.04 11.64 13.40 95.27
0.84 11.84 2.77 0.05 6.44 5.08 2.11 42.19 12.74 14.71 98.76
K Ca Ti Mn Fe 3q Fe 2q Na Si Al Al IV AlVI Mg Total
0.20 0.18 0.19 0.29 0.20 0.20 0.27 0.27 0.16 0.12 0.14 0.11 0.16 0.20 0.11 0.15 0.13 0.14 0.12 0.13 0.18 0.15 1.93 1.89 1.82 1.96 1.86 1.79 1.92 1.89 1.87 1.79 1.74 1.74 1.83 1.82 1.72 1.71 1.68 1.75 1.72 1.71 1.84 1.82 0.27 0.29 0.26 0.20 0.27 0.25 0.29 0.29 0.15 0.20 0.29 0.26 0.18 0.18 0.19 0.22 0.21 0.16 0.17 0.18 0.32 0.30 0.02 0.03 0.02 0.05 0.03 0.01 0.02 0.02 0.07 0.03 0.02 0.03 0.07 0.06 0.05 0.04 0.04 0.04 0.04 0.05 0.03 0.01 0.16 0.41 0.78 0.45 0.57 0.77 0.54 0.61 0.49 0.67 0.93 0.91 0.54 0.74 0.87 0.93 1.05 0.76 0.82 0.85 0.53 0.70 0.94 1.04 0.60 1.86 0.68 0.45 0.79 0.65 1.33 0.84 0.47 0.59 1.35 1.24 0.55 0.60 0.43 0.67 0.71 0.67 0.89 0.61 0.76 0.76 0.66 0.54 0.63 0.62 0.63 0.58 0.45 0.50 0.61 0.60 0.43 0.49 0.42 0.46 0.54 0.38 0.45 0.45 0.57 0.59 6.08 6.02 6.14 6.27 6.13 6.12 5.98 5.93 6.68 6.55 6.01 6.22 6.63 6.46 6.65 6.49 6.38 6.78 6.65 6.62 6.16 6.07 2.32 2.24 1.92 1.85 2.08 2.06 2.18 2.30 1.48 1.62 2.22 1.91 1.58 1.65 1.46 1.58 1.72 1.32 1.52 1.53 2.06 2.16 1.92 1.98 1.86 1.73 1.87 1.88 2.02 2.07 1.32 1.45 1.99 1.78 1.37 1.54 1.35 1.51 1.62 1.22 1.35 1.38 1.84 1.93 0.39 0.27 0.06 0.12 0.21 0.18 0.16 0.23 0.16 0.17 0.23 0.14 0.21 0.11 0.11 0.07 0.09 0.10 0.17 0.15 0.23 0.23 3.20 2.97 3.27 2.32 3.24 3.33 3.21 3.19 2.80 3.08 3.06 3.07 2.65 2.67 3.22 3.13 3.18 3.25 3.08 3.10 3.00 3.15 15.89 15.83 15.67 15.79 15.68 15.62 15.82 15.75 15.49 15.41 15.48 15.44 15.42 15.50 15.25 15.23 15.35 15.26 15.28 15.30 15.59 15.57
Mga
0.77
0.74
0.84
0.56
0.83
0.88
0.80
0.83
0.68
0.78
0.87
0.84
0.66
0.68
0.85
0.84
0.88
0.83
0.81
0.82
0.77
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Amphiboles
0.84
333
334
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
boundaries and contact relations of lava domes are not clear partly because of hydrothermal alteration around Karadag. Nuee ´ ardentes cover a substantial part of the studied area as shown in the geological map of Fig. 2. No stratification and sorting were observed. The size of elements changes from very fine matrix Žrock fragments, minerals, glass shards. to large rock blocks up to 5 m. Erenkaya ignimbrite outcrops in the eastern part of Konya volcanics ŽFig. 2.. The KrAr age is 9–9.9 Ma according to Keller et al. Ž1977.. This unit is white–pink in color and exhibits a particular morphological structure: plateau or band in valley sediments in the west of Hatunsaray region. The thickness is about 60–100 m in Erenkaya and decreases towards the W, S and N of Erenkaya. The ignimbrite
exhibits usually two pyroclastic flow units generally welded with columnar jointing. The ignimbritic rock exhibits biotite and hornblend phenocrysts. Erenkaya pyroclastic flows are intersected by lava domes in the central part of Konya volcanic massif. Two-pyroxene andesitic laÕa domes is dark colored and overlaid Erenkaya ignimbrite. It is located SW and N of Erenkaya and W of Karacaoren ¨ on the Konya–Seydiehir road ŽFig. 2.. These lava domes exhibit both orthopyroxene and clinopyroxene and occasionally olivine. Kuzagil ˘ ignimbrite is interbeded in Neogene aged fluvial-lacustrine sediments in Kuzagil and Sadiklar valley. It is welded, pink colored and their thickness is about 50 m. This unit is located between Erenkaya and Sadiklar ignimbrites. The age is 7.6 Ma, according to Keller et al. Ž1977..
Fig. 4. Compositional ranges of pyroxenes Ža: nuee ´ ardentes; b: two-pyroxene andesitic lava domes..
Orthopyroxenes
Clinopyroxenes
Nuee ´ ardentes c™ CaO 1.32 TiO 2 0.21 Cr2 O 3 0.07 MnO 0.97 Fe 2 O 3 15.34 Na 2 O 0.52 SiO 2 53.98 Al 2 O 3 1.12 MgO 26.97 Total 100.50 Ca Ti Cr Mn Fe Na Si Al Mg Total Wo En Fs
Two-pyroxene andesitic lava domes
r
c™
r
r™
c
1.12 0.17 0.05 0.71 17.90 0.02 52.66 1.56 25.02 99.21
0.89 0.16 0.07 0.88 17.24 0.00 54.07 0.45 25.76 99.52
0.91 0.007 0.06 0.95 18.73 0.01 53.20 0.92 25.08 99.95
1.27 0.27 0.18 0.37 14.91 0.00 53.50 2.44 26.85 99.67
1.31 1.22 1.19 0.13 0.26 0.18 0.14 0.06 0.00 0.49 0.83 0.61 15.19 18.18 18.79 0.04 0.04 0.00 52.63 53.58 54.00 2.13 1.08 0.64 25.94 24.96 25.36 98.04 100.29 100.83
0.05 0.04 0.04 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.03 0.03 0.46 0.55 0.53 0.58 0.04 0.00 0.00 0.00 1.95 1.94 1.98 1.96 0.05 0.07 0.02 0.04 1.45 1.38 1.41 1.38 4.04 4.02 4.00 4.02 2.55 2.21 1.75 1.79 72.75 68.99 70.44 68.18 24.70 28.80 27.80 30.03
0.05 0.05 0.01 0.0 0.00 0.01 0.01 0.02 0.47 0.56 0.00 0.00 1.93 1.94 0.10 0.09 1.45 1.43 4.00 4.01 2.51 2.64 73.89 72.69 23.61 24.67
r™
0.05 0.01 0.00 0.03 0.57 0.00 1.96 0.05 1.36 4.01 2.40 68.36 29.24
r™
c
r™
c
r™
c
r™
c
1.28 1.02 0.87 1.14 1.09 1.09 0.23 0.15 0.12 0.14 0.26 0.18 0.05 0.00 0.05 0.01 0.00 0.00 0.01 0.56 0.83 0.95 0.94 0.68 15.12 16.59 19.34 19.68 19.35 18.32 0.01 0.03 0.04 0.00 0.00 0.00 52.85 54.02 54.16 53.50 53.17 55.38 2.76 0.82 0.44 0.70 0.72 0.56 27.35 26.86 25.13 24.46 24.86 25.71 99.70 100.10 100.93 100.62 100.40 100.12
0.05 0.05 0.01 0.01 0.00 0.00 0.02 0.00 0.46 0.50 0.00 0.00 1.97 1.91 0.03 0.12 1.38 1.48 4.01 4.01 2.31 2.50 68.35 74.30 29.35 23.20
0.04 0.00 0.00 0.02 0.59 0.00 1.96 0.04 1.45 4.02 1.96 72.17 25.87
0.03 0.00 0.00 0.03 0.60 0.00 1.97 0.02 1.36 4.02 1.68 67.77 30.55
0.05 0.00 0.00 0.03 0.59 0.00 1.96 0.03 1.34 4.01 2.23 66.35 31.42
0.04 0.00 0.00 0.03 0.56 0.00 1.95 0.03 1.36 4.02 2.12 67.13 30.76
0.04 0.01 0.00 0.02 0.28 0.00 1.96 0.02 1.40 4.02 2.10 69.19 28.71
r™
c
20.74 21.18 21.76 0.22 0.48 0.28 0.00 0.01 0.00 0.44 0.33 0.50 9.19 9.20 7.73 0.42 0.41 0.31 52.77 51.96 53.09 1.70 1.92 1.10 14.97 14.77 15.39 100.45 100.26 100.16 0.82 0.01 0.00 0.01 0.29 0.03 1.95 0.07 0.83 4.01 42.25 42.43 15.32
0.85 0.01 0.00 0.01 0.24 0.02 1.93 0.08 0.82 4.02 43.08 41.78 15.14
c
r™
c
r™
c
21.85 0.31 0.00 0.41 7.62 0.30 52.99 0.94 15.16 99.58
22.02 0.20 0.01 0.50 8.64 0.39 52.02 1.1.6 14.48 99.42
21.78 0.31 0.05 0.34 8.14 0.27 52.44 0.95 15.21 99.49
21.45 0.56 0.28 0.17 6.29 0.29 50.39 3.88 15.97 99.28
21.82 0.40 0.07 0.37 8.24 0.41 52.18 1.33 15.09 99.91
0.86 0.87 0.89 0.87 0.86 0.87 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.02 0.01 0.01 0.01 0.24 0.27 0.25 0.20 0.20 0.26 0.02 0.03 0.02 0.02 0.02 0.03 1.97 1.97 1.95 1.96 1.87 1.95 0.05 0.04 0.05 0.04 0.17 0.06 0.85 0.84 0.81 0.85 0.89 0.84 4.01 4.01 4.03 4.02 4.03 4.03 43.87 44.40 44.66 43.95 44.03 44.07 43.17 42.85 40.86 42.69 45.61 42.38 12.95 12.75 14.48 13.37 10.36 13.57
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Table 4 Selected pyroxene analyses Žc: core; r: rim.
335
Enclaves
Sille vol.
Kiziloren ¨ ign. Lava domes
4.86 0 13.83 27.33 22.91 11.42 13.61 0 2.45 1.58 0.64 98.63
9.2 150 21.1 1195.2 62.2 17.1 10.8 34.4 38.1 175.5 983.8
Qz C Or Ab An Di Hp Ol Mt Hm Ap Total
Žppm . Nb Zr Y Sr Rb Ga Nl Co Cr V Ba
86
Srr Sr 143 Ndr 144 Nd
87
55.89 16.24 7.33 0.123 4.57 7.79 3.23 2.34 0.83 0.27 0.98 99.59
Žwt.% . SiO 2 Al 2 O 3 Fe 2 O 3 MnO MgO CaO Na 2 O K 2O TiO 2 P2 O5 LOI Total
14.7 113.5 30.5 637.7 51.5 17.1 19.1 27.6 35.9 153.9 936.4
0 0 10.7 29.95 23.52 19.28 6.59 2.04 3.16 1.63 0.64 97.51
52.06 16.4 8.41 0.193 4.13 9.82 3.54 1.81 0.86 0.27 1.87 99.36
5.3 127.6 16.4 1162.1 25.9 13.2 184.5 46.9 635.9 164.4 669.6
0 0 7.74 18.61 25.31 15.87 17.13 9.68 2.08 1.44 0.57 98.44
50.54 14.31 8.61 0.17 1.09 9.39 2.2 1.31 0.76 0.24 0.83 99.25
0.51239
0.70729
13.3 174.9 23.9 468.8 122.2 21.8 5.2 10.8 6.1 73.7 956.5
26.44 1.43 19.56 31.98 15.58 0 3.11 0 0.79 0.89 0.38 100.17
69.5 16.94 1.91 0.022 0.72 3.35 3.78 3.31 0.47 0.16 0.97 101.13
25 158.6 16 785.2 123.5 17.9 6.2 25.7 7.1 36 1085.2
23.29 0.42 21.93 29.19 15.64 0 5.1 0 1.23 0.66 0.36 97.82
66.97 15.84 2.97 0.079 0.94 3.35 3.45 3.71 0.35 0.15 2.25 100.05
24.8 159.2 14.4 758.1 139.7 17.2 5.8 26.9 7.4 33.9 894.3
23.03 0.24 21.16 28.68 15.41 0 5.19 0 1.23 0.66 0.4 96.02
65.82 15.34 2.98 0.078 0.97 3.33 3.39 3.58 0.35 0.17 2.49 98.49
0.51247
0.70673
23 182.3 20.4 459.8 157.4 17.9 11.3 6 72.3 55.6 879.4
24.69 0 22.64 26.31 15.5 0.07 6.59 0 1.49 0.87 0.52 98.69
67.66 14.94 3.6 0.07 1.36 3.43 3.11 3.83 0.35 0.22 1.69 100.37
0.51254
0.70528
26 191.1 18.1 827.9 96.7 19.1 11.6 6 39.3 48.7 1189.3
20.45 0 19.62 32.74 16.21 0.92 6.22 0 1.43 0.87 0.43 98.69
66.47 15.9 3.44 0.08 1.44 3.73 3.87 3.32 0.46 0.18 1.71 100.61
17.70 163.2 20.1 434.3 146.4 16.0 9.2 12.7 17.1 61.2 964.1
23.72 0.42 21.57 27.07 15.49 0 6.99 0 1.54 0.85 0.53 98.9
66.7 15.31 3.72 0.064 1.45 3.36 3.2 3.65 0.46 0.18 0.94 99.02
16.80 184.2 25.6 556.9 122.3 17.8 8.3 21.1 11.1 83.5 1032.5
19.56 0.3 19.33 27.33 19.61 0 7.95 0 1.78 1.08 0.5 97.44
63.55 16.34 4.3. 0.072 1.66 4.23 3.23 3.27 0.45 0.21 1.73 99.16
24.10 184.9 24.2 919.6 114.0 18.6 9.2 12.6 10.9 60.3 1555.6
21.01 1.46 19.74 33.93 15.18 0 4.65 0 1.62 0.93 0.52 99.04
65.95 17.23 3.91 0.084 0.44 3.35 4.01 3.34 0.57 0.22 1.01 100.05
19.50 174.7 17.3 916.3 101.4 18.1 9.0 11.6 10.0 57.1 1332.3
18.02 0 18.97 34.52 17.94 0.7 5.83 0 1.65 0.95 0.52 99.13
65.16 16.67 3.99 0.085 1.03 4.08 4.08 3.21 0.49 0.22 0.44 99.56
14.80 164.2 24.9 629.4 90.7 17.7 10.6 23.6 19.4 136.7 851.4
9.14 0 15.31 28.77 24.46 25.36 11.03 0 2.53 1.54 0.52 98.65
58.04 17.36 6.72 0.115 2.85 6.53 3.4 2.59 0.5 0.22 0.69 99.34
17 173.8 29.1 471.5 119.1 17.6 9.9 19.11 26.5 117.7 1715.2
16.02 0 18.38 27.75 20.14 3.78 8.96 0 2.04 1.42 0.5 98.99
62.44 16.14 5.42 0.082 2.29 5.26 3.28 3.11 0.81 0.21 0.63 99.62
23.7 187.8 20.8 1040.8 80.5 19.2 14.7 17.7 8.9 80.2 1343.6
13.47 0 16.84 33.76 20.01 2.87 8.9 0 1.82 1.14 0.78 99.59
62.48 16.98 4.83 0.102 2.24 5.17 3.99 2.85 0.75 0.33 0.29 99.87
Sample KO-94-39 KO-94-50 KO-94-53 KO-94-57 KO-94-23A KO-94-23B KO-92-10 KO-92-13 KO-94-6 KO-94-7 KO-94-9 KO-94-10 K-O94-11 KO94-21 KO-94-24 no. Ank Ank Ank
Units
Table 5 Whole-rock analyses Žmajor elements, trace elements, and Sr–Nd isotopes . and CIPW normative compositions
336 A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
23.6 183.2 18.6 788.2 108.4 17.9 11.4 5.8 53.7 55.5 1282.9
20.24 0 21.87 30.97 14.78 1.65 6.63 0 1.52 0.84 0.57 99.05
Qz C Or Ab An Di Hp Ol Mt Hm Ap Total
Žppm . Nb Zr Y Sr Rb Ga Ni Co Cr V Ba 87 Srr 86 Sr 14 3 Ndr 14 4 Nd
66.48 15.44 3.66 0.08 1.64 3.7 3.66 3.7 0.44 0.24 1.74 100.78
Žwt.% . SiO 2 Al 2 O 3 Fe 2 O 3 MnO MgO CaO Na 2 O K2O TiO 2 P2 O 5 LOI Total
KO-92-4
Sample no.
16.3 23.2.8 24.3 592.6 86 19 10.8 11 81.7 88.3 988.4
2.94 0 19.86 32.07 15.89 15.05 12.76 0 2.94 1.99 1.07 100.34
56.97 14.87 7.1 0.01 5.66 7.56 3.29 3.36 1.05 0.45 052 100.94
KO-92-5
Lava domes
Units
Table 6
14.7 218.3 26.2 635.4 81.7 19.8 10 20.4 11.1 123.4 991.7
10.49 0 15.31 29.7 23.69 3.61 10.31 0 2.46 1.58 0.81 100.32
59.96 17.72 6.55 0.1 2.32 6.1 3.79 2.59 0.83 0.34 0.64 100.96
KO-92-6
13.9 202.1 26.1 678.8 72.6 19.3 12.6 16.4 97 172.1 1067.7
7.44 0 14.84 30.46 24.59 6.52 11.83 0 2.71 1.71 0.73 100.08
57.8 17.5 7.22 0.13 3.22 6.96 3.51 2.51 0.9 0.31 0.56 100.61
KO-92-7
9.1 149.2 23.5 579.7 44.6 19.5 10.9 18.5 96.8 170.3 510.7
9 0 9.69 30.04 25.96 7.9 12.68 0 2.88 1.79 0.59 100.95
58.36 17.21 7.66 0.12 3.66 7.5 3.6 1.64 0.94 0.25 0.02 100.98
KO-92-18
11.2 148.1 19 886.6 76.6 17.1 10.1 22.9 22.5 127.2 818.1
10.37 0 14.86 29.11 21.51 9.42 10.25 0 2.45 1.41 0.52 100.86
60.41 16.45 6.53 0.12 3.37 6.94 3.55 2.52 0.74 0.22 0.12 100.955
KO-92-19
0.51262
11.3 157.4 20 906.2 76.6 18.1 8.1 22.4 26.1 129.1 814.2 0.70484
10.37 0 14.6 26.65 22.92 7.86 9.92 0 2.42 1.37 0.5 99.12
59.17 16.74 6.45 0.117 2.96 6.82 3.44 2.48 0.72 0.21 0.23 99.35
12.4 222.5 25.7 629 78.5 18.9 8.7 19.1 17.5 127.1 1079.1
13.08 0 12.23 31.14 27.56 4.97 9.77 0 2.14 1.14 0.45 98
59.02 17.52 5.7 0.127 2.59 7.02 3.15 2.07 0.6 0.19 1.2 99.2
KO-92-128 KO-93-129
11.2 181.5 21.1 629.8 113.5 17.3 7.4 18.7 13.2 86.4 1091.6
16.2 0 18.74 26.82 19.06 2.51 7.94 0 2.03 1.1 0.57 99.29
63.47 16.47 4.9 0.154 1.84 4.77 3.68 3.17 0.58 0.24 0.66 99.94
9.9 171.1 23 1047.3 87.7 17.4 11.2 26.2 32.9 162.5 1088.2
8.17 0 16.19 30.54 23.03 8.07 11.84 0 2.54 1.54 0.69 98.9
57.68 16.62 6.77 0.112 3.68 7.01 3.17 2.74 0.81 0.29 0.31 99.19
12.7 206.2 22.3 1334.3 92 18.5 23.5 21.4 20.3 105.6 1190.5
21.37 6.36 8.17 0 2.34 1.33 0.78 98.74
9.71 0 18.15
59.39 17.09 5.64 0.101 2.49 6.3 3.61 3.07 0.7 0.33 0.45 99.18
12.5 193.3 21.2 1148.5 98.4 17.5 18.7 20.6 19.6 111.2 1163.4
10.97 0 18.09 30.8 20.93 6.16 8.17 0 2.28 1.23 0.76 99.38
60.49 16.97 5.51 0.102 2.47 6.15 3.64 3.06 0.65 0.32 0.28 99.66
8.3 151.1 19.2 957.4 48.9 19 10 28.9 25.8 206.2 644.3
6.26 0 12.29 28.94 25.72 9.1 12.61 0 2.46 1.69 0.5 99.55
56.73 17.3 7.35 0.113 3.76 7.69 3.42 2.08 0.89 0.21 0.34 99.89
12.9 171.3 22.3 828.8 120.7 16.4 12.3 17.2 24.4 104.4 1113.9
14.99 0 20.15 28.26 19.82 2.9 8.9 0 2.11 1.25 0.52 99
62.24 16.44 5.62 0.074 1.98 5 3.34 3.41 0.66 0.22 0.82 99.81
KO-93-136 KO-94-14 KO-94-15 KO-94-16 KO-94-17 KO-94-18
10 148.3 20.7 933.8 75.69 16 15.95 28.3 50 126.5 935.0
8.51 0 14.66 28.01 3.28 69.97 10.11 0 2.41 1.33 0.57 98.85
58 16.66 6.42 0.126 3.4 7.46 3.31 2.48 0.7 0.24 0.41 99.23
KO-94-53
10.51 247.4 22.3 1293.8 2.2 19.4 2.7 43.7 147.4 160.5 1053 0.70508
13.18 0 16.19 33 21.53 2.06 10.22 0 2.11 1.22 0.73 100.24
62.12 17.27 5.6 0.1 42.28 5.25 3.9 2.7 0.64 0.31 0.04 100.25
KO-92-1
0.51249
2.2 153.6 12.7 634.4 89.8 17.1 18.9 5.5 66.6 46.8 1413.6 0.70601
23.61 0 22.05 29.87 15.03 0.33 26.21 0 1.25 0.68 0.31 99.32
68.41 15.35 3.01 10.06 1.45 3.28 3.53 43.73 0.36 0.1 3 1.51 100.82
KO-92-15
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354 337
15.8 196.4 19.4 1057 78.2 20.6 39.4 23.1 34.2 93.6 1032.7
Žppm . Nb Zr Y Sr Rb Ga Ni Co Cr V Ba
Srr Sr Ndr 14 4 Nd
14 3
86
0.51256
0.70528
11.89 0 18.03 35.03 17.08 4.63 9.67 0 2.1 1.35 0.59 100.37
Qz C Or Ab An Di Hp Ol Mt Ilm Ap Total
87
62.76 16.37 5.07 0.08 3.01 4.92 4.14 3.05 0.71 0.25 0.2 100.55
KO-92-16
Sample no.
Žwt.% . SiO 2 Al 2 O 3 2 O3 MnO MgO CaO Na 2 O K2O TiO 2 P2 O 5 LOI Total
Lava domes
Units
Table 7
10.4 162.3 21.5 700.7 72 18.4 9.3 18.1 18.8 104.4 731.8
13.61 0 15.07 30.04 21.94 4.92 10.52 0 2.28 1.39 0.54 100.31
61.68 16.64 6.08 0.11 2.8 5.93 4.05 2.55 0.73 0.23 0.73 100.03
KO-92-17
25.5 172 17.4 840 114.7 17.9 8.4 13.7 9.7 47.5 1384.1
20.8 0 19.33 34.27 15.77 0.37 5.84 0 1.35 0.76 0.45 98.94
66.96 15.98 3.27 0.085 1.21 3.52 3.55 3.27 0.4 0.19 0.49 99.42
KO-94-29
12.3 153.1 21.6 601.5 98.4 16.8 8.9 23.8 22 73.5 751.4
18.51 0 16.49 30.04 19.35 2.24 7.67 0 1.82 0.95 0.45 97.53
63.46 15.95 4.4 0.089 1.89 4.7 3.74 2.79 0.5 0.19 1.29 98.81
KO-94-36
16 133.3 19.8 520.6 107.6 16.3 5.2 16.7 8 49.9 910.8
22.14 0 17.79 31.64 16.89 0.29 6.08 0 1.42 0.74 0.4 97.4
66.06 15.6 3.42 0.084 1.22 3.7 3.12 3.01 0.39 0.17 2.12 99.52
KO-94-37
0.51249
0.70644
13.2 171.4 23.1 593.5 112.4 17.2 12.1 10 69 86.5 1066.4
15.84 0 19.62 26.4 20.07 3.24 10.04 0 2.04 1.16 0.62 99.02
62.4 16.08 5.44 0.11 2.49 5.18 3.33 3.32 0.61 0.26 1.19 100.19
0.70672
19 192.2 24.5 572.3 109.1 180 11.4 10.2 74.9 88.3 946.8
16.24 0 18.8 28.17 20.55 3.54 9.07 0 2.23 1.23 0.52 100.36
63.35 16.45 5.39 0.13 2.35 5.3 3.26 3.18 0.65 0.22 0.5 100.85
KO-92-12
Nuee ´ ardentes KO-92-2
15.70 166.7 27.4 511.0 110.7 18.9 7.7 23.7 18.6 134.9 788.5
12.66 0 16.79 27.58 23.53 2.82 11.32 0 2.32 1.5 0.64 99.16
60.15 17.06 6.17 0.106 2.71 5.79 2.63 2.84 0.79 0.27 0.62 99.77
KO-94-1
20.30 184.5 26.3 718.3 118.8 17.2 11.5 21.0 58.8 115.6 870.7
16.46 0 19.5 22.25 21.26 3 11.11 0 2.05 1.33 0.5 97.47
61.14 15.69 5.46 0.098 2.93 5.3 3.43 3.3 0.7 0.21 1.92 99.37
KO-94-2
12.90 171.2 25.1 851.8 89.6 17.8 8.8 17.6 15.9 127.9 1223.6
11.27 0 16.84 29.02 23.23 4.38 9.72 0 2.51 1.71 0.64 99.32
59.51 17.24 6.67 0.112 2.22 6.1 3.25 2.85 0.9 0.27 0.6 99.89
KO-94-3
15.80 166.2 26.3 519.8 104.8 18.1 10.3 22.0 23.7 123.2 976.5
12.48 0 16.49 27.5 23.54 3.69 10.67 0 2.3 1.44 0.64 98.74
59.82 16.99 6.11 0.115 2.62 6 3.25 2.79 0.76 0.27 0.57 99.3
KO-94-5
15.5 174.0 27.0 628.4 110.3 18.1 12.1 19.8 23.8 119.5 1033.8
12.12 0 17.67 27.84 22.16 4.77 10.36 0 2.34 1.42 0.5 99.18
60.26 16.77 6.22 0.109 2.66 5.91 3.29 2.99 0.75 0.21 0.83 100.02
KO-94-5
13.1 166.4 24.9 886.6 89 17.5 8.6 27.2 22.8 145.7 1413.7
10.65 0 16.55 27.41 23.88 5.13 10.59 0 2.53 1.48 0.66 98.88
58.78 17.11 6.74 0.09 2.62 6.43 3.24 2.8 0.78 0.28 0.71 99.57
KO-94-19
19.1 181.8 22.6 572.6 104.8 16.5 16.3 25 56.5 108.4 939.4
11.32 0 17.08 26.48 21.27 8.34 10.32 0 2.23 1.18 0.52 98.73
59.74 16.07 5.93 0.112 3.38 6.63 3.13 2.89 0.62 0.22 0.69 99.42
KO-94-20
14 188.2 25 842.4 102.5 17.3 12.1 18.2 35.2 129.1 831.39
13.29 0 17.79 27.07 22.53 0 10.95 0 2.3 1.44 0.59 95.96
58.86 16.88 6.13 0.091 2.01 4.87 3.2 3.01 0.76 0.25 1.68 99.76
KO-94-22
20.3 167.3 21.5 816.5 88.7 19.3 7.6 15.5 6.3 52.8 1205.7
19.44 0.84 17.2 33.76 17.73 0 6.59 0 1.76 1.06 0.43 98.8
64.84 17.05 4.24 0.088 1.12 3.81 3.99 2.91 0.56 0.18 0.79 9.57
KO-94-25
338 A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Nuee ´ ardentes
20.6 173.3 20.4 915.9 41.4 20.3 10.4 15.1 5.9 72.5 1418.1
Žppm . Nb Zr Y Sr Rb Ga Ni Co Cr V Ba
86
Srr Sr 14 3 Ndr 14 4 Nd
87
23.61 0 21.75 29.78 14.54 0.13 5.05 0 1.15 0.65 0.28 96.94
13.58 0 13.89 34.27 22.85 0.59 9.75 0 1.82 1.2 0.66 98.61
Qz C Or Ab An Di Hp Ol Mt Ilm Ap Total
11.2 141.9 12.6 670.60 93.8 15.2 8 15.8 9.2 5.9 1478.3
67.18 15.1 2.78 0.063 1.03 3.52 3.52 3.68 0.34 0.12 1.92 98.85
Žwt.% . SiO 2 61.5 Al 2 O 3 17.58 Fe 2 O 3 4.84 MnO 0.096 MgO 2.15 CaO 5.12 Na 2 O 4.05 K2O 2.35 TiO 2 0.63 P2 O 5 0.28 LOI 0.71 Total 99.31
14.5 138.8 14 687.3 86.5 16.1 7.8 13 9.2 42.2 1587
23.37 0 20.69 31.73 15.02 0.18 5.02 0 1.17 0.65 0.28 98.1
67.8 15.46 2.82 0.066 1.01 3.12 3.75 3.5 0.34 0.12 0.99 99.09
13 161.6 20.3 551 113.7 18.3 9.7 6.6 47.4 54.4 875.6
21.44 0 18.32 30.29 18.33 0.36 7.41 0 1.65 0.85 0.43 99.08
66.15 15.96 3.98 0.09 1.56 3.23 3.58 3.1 0.45 0.18 1.84 100.9
0.51258
8.2 162 21.6 746.2 90.1 18 7.9 15.9 14.6 109.9 871.7
14.19 0 15.84 29.87 21.1 4.36 10.03 0 2.1 1.23 0.59 99.31
61.73 16.44 5.59 0.114 2.66 4.02 3.53 2.68 0.65 0.25 0.58 99.88
0.70637
12.3 154 21.8 528.8 75 16.5 15.6 21.5 74.3 126.4 636.2
12.3 0 13.77 27.58 22.37 6.5 11.94 0 2.28 1.31 0.5 98.56
59.75 16.08 6.07 0.115 3.65 5.65 3.26 2.33 0.69 0.21 1.24 99.81
21.60 183.8 16.9 929.1 97.9 19.0 10.9 22.0 9.3 69.4 1158.3
16.72 0 20.21 31.81 17.99 2.05 6.88 0 1.57 0.95 0.45 98.63
64.22 16.48 3.79 0.079 1.8 6.39 3.76 3.42 0.5 0.19 1.34 99.95
23.1 172.2 19.7 729.6 101.1 17.8 8 14.3 9.1 46.4 1276.6
20.49 0.27 19.09 31.81 17.55 0 6.35 0 1.39 0.76 0.47 98.18
65.66 16.38 3.35 0.092 1.3 4.38 3.76 3.23 0.4 0.2 1.34 99.49
11.6 151.6 22.9 571.7 57.6 17.6 12.5 22.5 35 201.1 739.2
12.76 0 11.94 29.53 24.62 3.81 12.55 0 2.49 1.41 0.54 99.65
60.12 16.95 6.62 0.116 3.15 3.8 3.49 2.02 0.74 0.23 0.81 100.45
10.6 156.7 23.7 576.6 65.7 18.3 10.6 24.3 30.2 139.7 669.4
11.18 0 12.35 28.43 24.81 4.82 12.48 0 2.52 1.52 0.5 98.61
58.65 16.88 6.71 0.115 3.32 6.2 3.36 2.09 0.8 0.21 1.09 99.68
8.9 145.9 24.6 646.7 60 18.5 15.3 24.6 27 85.8 871.9
9.49 0 11.88 27.84 26.72 4.46 12.81 0 2.69 1.61 0.54 98.05
57.01 17.38 7.15 0.136 3.2 6.46 3.29 2.01 0.85 0.23 0.6 98.64
8.8 138.1 22.8 655.6 59.2 17.7 8.9 29 23.4 151.9 778.8
9.26 0 11.94 28.51 26.94 6.23 11.43 0 2.77 1.67 0.54 99.3
57.51 17.6 7.38 0.126 2.92 7.25 3.37 2.02 0.88 0.23 0.27 99.56
14.8 144.2 18.9 530.1 115.8 16.8 5.6 9 9.5 47.8 883
22.21 0 17.67 31.39 16.32 0.67 5.7 0 1.34 0.68 0.54 96.34
65.63 15.32 3.24 0.082 1.2 3.65 3.71 2.99 0.36 0.15 2.2 98.55
14.7 136.2 17.7 521.4 111.8 16.5 5.3 17.9 8.2 48.4 904.1
22.72 0 17.67 30.46 17.43 0 6.26 0 1.43 0.74 0.36 97.4
65.92 15.88 3.45 0.084 1.22 3.71 3.6 2.99 0.39 0.15 2.17 99.56
10.8 152.6 20.7 875.8 82.9 17 9.2 27.3 24.5 122.2 887.3
12.43 0 16.31 27.07 21.26 6.55 10.14 0 2.2 1.22 0.57 97.75
59.67 16.04 5.86 0.111 3.01 6.21 3.2 2.76 0.64 0.24 0.95 98.7
11.1 158.6 22.5 1138.4 75.2 17.3 10.7 24.2 30.5 128.6 1000.2
10.35 0 16.02 31.73 19.48 7.79 9.55 0 2.28 1.37 0.62 99.19
60.15 16.24 6.08 0.113 2.97 6.18 3.75 2.71 0.72 0.26 0.28 99.45
11 188.7 21.1 1070.8 106.3 17.3 15.6 26.7 40.5 116.5 1119.3
11.26 0 18.91 26.3 20.36 7.44 10.29 0 2.17 1.29 0.83 98.88
59.89 16.04 5.77 0.108 3.31 6.4 3.11 3.2 0.68 0.35 1.38 100.24
17.1 162 22.9 608.6 107.2 17.6 13.1 22.6 28.8 102.2 989.5
12.91 0 18.03 30.37 19.93 5.44 8.88 0 2.09 1.29 0.62 99.55
61.64 16.51 5.55 0.107 2.46 5.69 3.59 3.05 0.68 0.26 0.82 100.35
Sample KO-94-26 KO-94-27 KO-92-28 KO-92-21 KO-93-122 KO-94-123 KO-94-12 KO-94-13 KO-94-31A KO-91-31B KO-94-32 KO-94-33 KO-94-34 KO-94-35 KO-94-39 KO-94-41 KO-94-44 KO-94-49 no.
Units
Table 8
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354 339
7.9 0 13.77 29.61 21.02 11.5 10.79 0 2.38 1.42 0.59 98.98
14.5 144.9 19.9 647.6 74.6 16.5 31.2 25.5 93.6 121.6 808.1
Qz C Or Ab An Di Hp Ol Mt Ilm Ap Total
Žppm . Nb Zr Y Sr Rb Ga Ni Co Cr V Ba
14 3
86
Srr Sr Ndr 14 4 Nd
87
58.22 15.98 6.33 0.118 4.08 7.41 3.5 2.33 0.75 0.25 0.38 99.34
KO-94-50
Sample no.
Žwt.% . SiO 2 Al 2 O 3 Fe 2 O 3 MnO MgO CaO Na 2 O K2O TiO 2 P2 O 5 LOI Total
Nuee ´ ardentes
Units
Table 9
12.3 148.3 23 5138 86 17.7 7.4 21.6 13.3 130.3 726.2
15.75 0 15.37 26.14 23.34 2.03 10.69 0 2.2 1.37 0.45 97.34
60.47 16.45 5.85 0.096 2.41 5.45 3.09 2.6 0.72 0.19 1.97 99.31
KO-94-51
10.7 149.9 25.8 450.6 48.7 18.4 13.3 27.2 34.3 144.4 471.8
9.23 0 10.4 28.85 27.72 5.69 13.47 0 2.82 1.61 0.52 100.3
57.94 17.67 7.49 0.133 3.55 7.27 3.41 1.76 0.85 0.22 0.9 101.19
KO-94-52
10.7 183.3 24.1 1006.3 91.7 18.7 10.8 26.9 17.5 120 984.2
13.81 0 17.2 28.43 21.21 3.18 10.48 0 2.14 1.39 0.64 98.47
60.91 16.45 5.68 0.105 2.63 5.41 3.36 2.91 0.73 0.27 0.99 99.43
KO-94-55
11.4 202.6 24 1038.7 97.4 17.9 14.1 22.8 39.7 98.4 1111.9
12.31 0 18.26 28.94 19.81 6.37 10.02 0 2.23 1.44 0.76 100.13
61.31 16.23 5.92 0.104 2.98 5.98 3.42 3.09 0.76 0.32 0.25 100.36
KO-94-56
0.51248
14.3 187.9 23.6 652 114.7 17.6 9.9 19 19 82.9 1044.4
16.98 0 19.15 26.48 20.56 1.22 9.9 0 2.18 1.2 0.57 98.24
62.39 16.19 5.26 0.1 2.29 4.76 3.13 3.24 0.63 0.24 2.02 100.25
0.70734
16 189 24.6 607.9 123.5 16.5 12.3 22.4 50.6 92.9 866.7
15.36 0 19.98 18.87 21.95 3.97 12.32 0 2.32 1.44 0.66 96.86
59.47 15.37 6.17 0.11 3.31 5.77 2.23 3.38 0.76 0.28 2.63 99.48
KO-92-9
Erenkaya ign. KO-92-8
13.5 170.9 23.2 611.7 160.1 17.2 7.1 22 8.6 78.2 1109.8
17.53 0 19.39 25.04 22.24 1.39 8.56 0 1.91 1.06 0.5 97.62
62.2 16.57 4.62 0.09 2.02 5.1 2.96 3.28 0.56 0.21 2.07 99.67
KO-92-14
13.3 174.6 21.9 569.5 114.7 17.1 11.1 12.5 18.2 75.1 848.3
15.46 0 18.32 24.79 24.49 0.7 11.12 0 2.2 1.31 0.54 98.95
61.16 17.15 5.89 0.11 2.27 5.41 2.93 3.1 0.69 0.23 1.87 100.81
KO-92-20
11.4 180.8 21.2 569.6 115.2 17.3 6.4 20.8 9.6 74.5 953.7
14.42 0 17.79 28.68 21.71 2.75 9.15 0 2.11 1.27 0.5 98.38
61.27 16.79 5.6 0.82 2.03 5.32 3.39 3.01 0.67 0.21 0.73 99.11
KO-93-133
11.6 175.5 19.5 529.1 142.3 17 7.7 10.9 7.9 57.8 837.2
21.11 1.13 22.99 18.02 20.58 0 9.13 0 2.01 1.12 0.54 96.64
62.11 16.38 4.86 0.094 1.89 4.45 2.13 3.89 0.59 0.23 3.19 99.8
KO-93-134
11.8 169.5 22.8 603.4 95.3 17.6 7.1 12.5 10.6 79.6 988.7
14.55 0 17.61 28.43 23.19 1.26 9.83 0 2.16 1.27 0.52 98.83
61.3 17.25 5.75 0.093 1.93 5.27 3.36 2.98 0.67 0.22 0.9 99.72
KO-93-135
0.51253
0.70564
11.5 142.4 20.1 534.9 78.3 16.4 78.4 25.4 74.8 148.5 744.7
8.63 0 14.48 26.99 22.73 11.54 11.45 0 2.58 1.61 0.5 100.51
58.7 16.23 6.87 0.12 4.17 7.71 3.19 2.45 0.85 0.21 0.39 100.88
0.51242
0.70711
12.9 179 23.4 496 113.9 17.8 19.1 19.6 52.4 105.1 773.9
11.87 0 18.44 26.57 21.12 6.72 10.33 0 2.14 1.29 0.5 98.97
60.33 16.28 5.68 0.104 3.23 6.19 3.14 3.12 0.68 0.21 0.97 99.3
KO-93-137
Two-pyroxene andesites KO-92-3
340 A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
341
Fig. 5. Total alkali versus silica ŽTAS. diagram of the Konya volcanics Žaccording to Le Bas et al., 1986. and alkali-subalkali discrimination Ždashed line according to Miyashiro, 1978..
Fig. 6. Compositions of the Konya volcanics in the diagram K 2 O–SiO 2 of Peccerillo and Taylor Ž1976..
342
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Sadiklar ignimbrite is pumice rich, nonwelded and composed of a 20-m-thick pyroclastic flow. Sadiklar and Kuzagil ignimbrites have the same age, according to radiometric dating ŽKeller et al., 1977..
3. Mineralogical and petrographical studies Optical microscopy studies were carried out on Konya volcanic samples for mineral paragenesis and their textural characteristics. A lava dome sample taken from Sille volcanics exhibit hypocrystalline, hypidiomorphic and porphyritic texture and consist of biotites, plagioclase and quartz phenocryts. Groundmass is composed of glass and plagioclase microlites. The samples of Kiziloren ¨ ignimbrite exhibit hypohyaline porphyritic texture, with plagioclase, quartz, and oxide phenocrysts, lithic clasts and pumice fragments. Pumices show fibrous texture and are quite common. Lithics are volcanic. The rocks are defined as vitric tuff according to the classification of Schmid Ž1981.. The rock samples from the lava domes of the ErenlerdagrAlacadag ˘ ˘ massif, include plagioclase, biotite, amphibole, clinopyroxene, quartz and oxide phenocrysts. Some of the plagioclase phenocrysts include dusty zone Žvolcanic glass inclusions starting from the rims.. Biotite is alterated. Amphiboles with green colored are typical. The amphiboles are rimmed by oxides. The core of some large phenocrysts consists of pyroxene while their rims are amphibole. Groundmass is composed of volcanic glass and plagioclase microlites, and some samples show flow texture. The nuee ´ ardente deposits of the Erenlerdagr ˘ Alacadag˘ massif exhibit blocks with plagioclase, clinopyroxene, amphibole, biotite, oxides, quartz and olivine phenocrysts and xenocryts. The amphiboles are common. Olivine is rimmed by iddingsite. Central part of some phenocrysts is composed of pyroxene, while their surroundings is amphibole. Samples of Erenkaya ignimbrite exhibit a hypohyaline porphyritic texture and contain plagioclase, amphibole, quartz, pyroxene, biotite and oxides phenocrysts. According to the classification of Schmid Ž1981., these samples are vitric tuff.
Samples from two-pyroxene andesitic lava domes include plagioclase, orthopyroxene, clinopyroxene, amphibole, biotite and oxide phenocrysts. The texture is hypocrystalline and porphyritic. Volcanic glass inclusions, in the form of dusty zone, are observed starting from the rims of the large plagioclase phenocrysts. The results obtained from mineralogical and petrographical studies can be summarized as follows: 1. Amphiboles and biotites are destabilized Žoxidized rims. and considered as out of equilibrium. 2. Composite phenocryts with pyroxene core and amphibole rim can be related to fractional crystallization. 3. Some plagioclase phenocrysts exhibit dusty zone due to volcanic glass inclusions. Such features are related to magma mixing.
4. Analytical methods Mineral analyses were carried out using a Cameca Camebax electron microprobe in Blaise Pascal University, Clermont-Ferrand, France. Operating conditions were: 15 kV accelarating voltage, 10–12 nA current and 10 s counting time per each element. Major- and trace-element analyses were performed by Philips PW-1480 fully automatic X-ray Spectrometer fitted a 3.0 kW, 100 kV Rh-anode tube
Fig. 7. AFM diagram of Konya volcanics with the dividing line of Irvine and Baragar Ž1971..
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
in the Department of Geological Engineering, Hacettepe University, Ankara, Turkey. Major elements were determined on fused glasses prepared 0.75 g rock powder and 4.5 g lithium tetraborate, while trace elements were determined using pressed powder pellets pressed to 20 tonnes. The spectrometers are calibrated using international standards ŽUSGS and Geostandards. to ensure accurete data. Corrections made using Philips software. Matrix effects were compensated for by using Philips’ alphacoefficients. Corrections for matrix effects for trace
343
elements were made for all wavelenghts regions using the rhodium Compton scatter technique. Sr Ž13 samples. and Nd Ž11 samples. isotope analyses were done, after elemental seperation and purification by ion-exchange column techniques, using Thompson TSN 206 S mass spectrometer in Ankara and V.G. Isomass 54E mass spectrometer in Clermont-Ferrrand. Sr isotopic ratios are normalized to 86 Srr87 Sr: 0.1194. All Nd isotopic ratios are normalized to 146 Ndr144 Nd: 0.7219. The reproducibility for 86 Srr87 Sr and 146 Ndr144 Nd during the
Fig. 8. Variation diagrams of major elements versus silica.
344
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Fig. 9. Variation diagrams of trace elements versus silica.
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
345
5. Mineral chemistry Microprobe analyses have been carried out on samples of lava domes, ignimbrites, and nuee ´ ardente deposits. Core and rims of phenocryts were analysed. 5.1. LaÕa domes of Sille
Fig. 10. Tectonic environment discrimination diagrams of Konya volcanics ŽTir100–Zr–Srr2, after Pearce and Cann, 1973. ŽSymbols as in Fig. 5..
Plagioclase is mainly andesine-labradorite ŽAn 31 – 51 .. Some anorthoclase have been found ŽFig. 3.. Plagioclases show both normal and reverse zoning ŽTable 1.. Mga ŽMgrMgq Fe ratio. of biotite changes between 55 and 62 ŽTable 2.. 5.2. LaÕa domes of Erenlerdagr ˘ Alacadag˘
period of measurements are given by several analyses of NBS 987 and La Jolla with mean values of 0.7012278 " 14 Ž2 s . and 0.511863 " 12 Ž2 s ., respectively.
Plagioclase is oligoclase to labradorite in composition ŽAn 28 – 58 . ŽFig. 3., with both normal and reverse zoning ŽTable 1.. Amphiboles are calcic according to Leake Ž1978.; it is tschermakite, parga-
Fig. 11. MORB-normalized spider diagram of Konya volcanic rocks ŽPearce, 1983. and comparisons with Cappadocian ignimbrites and lavas ŽTemel et al., 1998., Santorini lavas ŽHuijsmans, 1985..
346
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Fig. 12. Variation diagrams of 87 Srr86 Sr versus Rb, RbrNb and RbrBa.
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
site, magnesio-hastingsite, magnesio-hastingsitic hornblende, magnesian hastingsite, magnesian hastingsitic hornblende ŽTable 3.. 5.3. Nuee ´ ardente deposits Plagioclase is andesine to bytownite in composition ŽAn 43 – 75 . ŽFig. 3., with normal and reverse zoning ŽTable 1.. Orthopyroxenes are enstatite in composition ŽMorimoto, 1988. ŽFig. 4a; Table 4.. Amphibole is magnesio-hastingsite, magnesiohastingsitic hornblende, magnesio-hornblende, tschermakitic hornblende, tschermakite ŽLeake, 1978. ŽTable 3.. The Mga of mica is high, between 65 and 71 ŽTable 2.; it is phlogopite. 5.4. Erenkaya ignimbrite Plagioclase is andesine to bytownite in composition ŽAn 43 – 86 . ŽFig. 3. with normal and reverse zoning ŽTable 1.. Amphiboles, according to Leake Ž1978. classification, are magnesio-hornblende, tschermakitic hornblende, magnesio-hastingsite ŽTable 3.. Scarce biotite analysis show a Mga ratio of 61–64 ŽTable 2..
347
5.5. Two pyroxene andesitic laÕa domes Plagioclase is andesine to bytownite in composition ŽAn 40 – 80 . ŽFig. 3., with both normal and reverse zoning ŽTable 1.. According to the classification of Morimoto Ž1988., clinopyroxenes are augite, while orthopyroxenes are enstatite ŽFig. 4b, Table 4.. Mga of biotites range from 69 to 71 ŽTable 2..
6. Geochemistry 6.1. Major- and trace-element geochemistry Tables 5–9 give the results for major- and traceelement analyses of 80 samples, Sr–Nd isotope results and CIPW norms. Total alkali-silica diagram is plotted in Fig. 5 ŽLe Bas et al., 1986.. Although, most of samples generally concentrate on andesite– dacite area, some samples fall in basalt, basaltic andesite, basaltic trachyandesite, and trachyandesite area. The samples falling in basalt, basaltic andesite and basaltic trachyandesite area are enclaves Žcognate xenoliths., while trachyandesite are lava domes. The SiO 2 contents of Konya volcanics are between
Fig. 13. Variation diagrams of 87 Srr86 Sr versus RbrSr and AFC modelling based on the equations of DePaolo Ž1981..
348
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
50.35 and 69.39. Most of the analyzed samples, according to Miyashiro Ž1978., are sub-alkaline, while one sample of lava domes is alkaline. All the samples, except two, are quartz normative, while two enclaves are olivine normative ŽTables 5–9.. Peccerillo and Taylor Ž1976. diagram shows that all samples are similar to calc-alkaline rocks, forming a series which is on the boundary between medium-K and high-K calc-alkaline series ŽFig. 6.. All the samples fall in the calc-alkaline region in the Irvine and Baragar Ž1971. diagram ŽFig. 7.. In the Harker diagrams, as SiO 2 increases MgO, Fe 2 O 3 , CaO, TiO 2 decrease and K 2 O increases ŽFig. 8.. Such negative and positive correlations can be explained by fractional crystallization. Decrease in CaO is consistent with fractionation of calcic plagioclases which is the major phenocryt phase in andesites and dacites. Decreasing in MgO is probably related to
clinopyroxene fractionation. The decrease in Fe 2 O 3 is related to pyroxene and Fe–Ti oxides fractionation. Trace-element data show that, with the exception of enclaves, Ni Ž5–53 ppm. and Cr Ž6–147 ppm. contents ŽTables 5–9. are rather low and very variable and do not correlate with SiO 2 . One enclave, however, has high Ni Ž184.5 ppm. and Cr Ž635.9 ppm. contents, indicating its near primary mantle derived nature. The other trace elements such as Co and V all show strong negative correlation with SiO 2 ŽFig. 9., indicating pyroxene, Ca-plagioclase and iron–titanium oxide fractionation. Ba and Rb increase from basaltic andesite to dacite Žexcept enclaves.. Zr and Nb increase, Y decreases very slightly with SiO 2 ŽFig. 9.. In order to determine the geotectonic environment, element contents of basaltic samples Ž3 en-
Fig. 14. 143 Ndr144 Nd versus 87 Srr86 Sr variation diagram of different tectonic environment volcanics compared to Konya volcanics Ždata from Briqueu et al., 1986; Ito et al., 1987; Chaffey et al., 1989; Gulen, 1990; Chen et al., 1991; Temel, 1992; Temel et al., 1998.. ¨
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
claves and 2 lava domes. are plotted Tir100–Zr– Srr2 diagram ŽPearce and Cann, 1973.. They are mostly populated in the calc-alkaline basalts field ŽFig. 10.. Spiderdiagrams normalized to MORB ŽPearce, 1983. are shown in Fig. 11. MORB-normalized trace elements for the Konya calc-alkaline volcanics show that all incompatible elements are enriched relative to MORB except Ti and Y. They exhibit a slight depletion in Nb, and Ti which are characteristics of subduction related magmas ŽBriqueu et al., 1984; Ringwood, 1990.. Comparison of spiderdiagrams of Konya volcanics with those of Cappadocian ignimbrites and lavas ŽTemel, 1992; Temel et al., 1998. and Santorini volcanic rocks ŽHuijsmans, 1985. ŽFig. 11. which are related to continental margin magmatism, displays various similarities among each other. 6.2. Isotope geochemistry Sr and Nd isotope analyses are performed on 13 and 11 samples, respectively. Measured 87 Srr86 Sr isotope ratios are between 0.70484 and 0.70734; 143 Ndr144 Nd isotope ratios are between 0.51239 and 0.51262. The 87 Srr86 Sr versus Rb, RbrNb, RbrBa, and RbrSr show positive correlations ŽFigs. 12 and 13.. These correlations indicate that the rocks are likely formed by a combination of fractional crystallization and crustal contamination. DePaolo Ž1981. pointed out that positive correlation between RbrSr and 87 Srr86 Sr ratios can be modelled by an assimilation-fractional crystallization ŽAFC. process. For AFC modelling, initial magma Ždepleted mantle. was assumed to have Sr s 120 ppm, Rb s 2 ppm ŽPearce, 1983., and 87 Srr86 Sr s 0.70280 ŽIto et al., 1987.. The values of for DM are typical of MORB. The contaminant Župper crust. was assumed to have Sr s 350 ppm, Rb s 112 ppm ŽTaylor and McLennan, 1985., and 87 Srr86 Sr s 0.71600 ŽVeizer and Compston, 1974.. It is further assumed that the bulk distribution coefficient for Sr is 1 ŽDSr s 1. and for Rb is 0 ŽDRb s 0.. The ratios of the rate of assimilation to the rate of crystallization Ž r values on Fig. 13. are 0.1, and 0.2. The Konya volcanic rock samples are located along the curve of the AFC model. Taking DM as a possible parental magma and assuming UC as the wall rock for the formation of the Konya volcanic rock, the maximum contamina-
349
tion would be around 10%–20% according to this model given in Fig. 13. Assimilation and fractional crystallization mechanism, are suggested for eastern, central and western Anatolian ŽGulen, 1984; Tokel, 1984; Yilmaz, 1990; ¨ Pearce et al., 1990; Savas¸cin, 1991; Savas¸cin and Gulec ¨ ¸, 1991; Gulec ¨ ¸, 1991; Seyitoglu ˘ et al., 1997. and Aegean sea ŽBarton et al., 1983; Huijsmans, 1985; Briqueu et al., 1986. volcanics. Sr–Nd isotopic data of Konya volcanics are plotted in the scatter diagram of Nd–Sr ŽFig. 14.. The isotope results for Santorini, Milos ŽBriqueu et al., 1986., Aegean volcanic rocks ŽGulen, 1990., Cappadocian ¨ ignimbrites and lavas ŽTemel, 1992; Temel et al., 1998., MORB ŽIto et al., 1987., Hawaii ŽChen et al., 1991. and St. Helena ŽChaffey et al., 1989. volcanics are also plotted in the diagram. Konya volcanic rocks are located in the field of Cappadocian ignimbrites and lavas, Milos and Aegean volcanic rocks.
7. Discussion and conclusions 7.1. Characteristics of Konya Õolcanic rocks Volcanic rocks from Konya area are characterized by high degrees of differentiation with large andesitic and dacitic lava domes, nuee ´ ardente and ignimbrite deposits. Phenocryst assemblages of Konya volcanics exhibit plagioclase ŽAn 15 – 86 ., augite, orthopyroxene Ženstatite., various calcic amphiboles Žtschermakite, pargasite, magnesio-hastingsite, magnesio-hastingsitic hornblende, magnesiohornblende, tschermakitic hornblende, magnesian hastingsite, magnesian hastingsitic hornblende., biotite and phlogopite, oxides and less commonly quartz and olivine, such assemblages are typical in medium and high-K calc-alkaline series ŽEwart, 1982.. The K 2 O–SiO 2 diagram ŽFig. 6. shows that the analysed samples are typical of active continental margin calc-alkaline series, at the limit between medium-K and high-K calc-alkaline, but mainly in the high-K calc-alkaline field. High-K calc-alkaline series are typical of continental orogenic regions. Large ion lithophyle ŽLIL. elements Že.g., K, Rb, Ba, Sr, and Zr. exhibit high value in orogenic series ŽGill, 1981..
350
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
7.2. Differentiation of Konya Õolcanic rocks The reverse correlation between SiO 2 with MgO, CaO, Fe 2 O 3 , and TiO 2 in the Konya volcanic rocks is compatible with fractional crystallization process within a closed system. Variation diagrams of compatible Že.g., Co. and incompatible Že.g., Rb, Ba. elements with SiO 2 also support fractional crystallization process as the dominant petrogenetic mechanism in the generation of Konya volcanic rocks. However, mineral chemistry results Že.g., dusty zone on the plagioclase phenocryst rims and reverse zoning in plagioclases., strong enrichments in incompatible elements Že.g., Rb, Sr, Ba, K 2 O. and isotopic composition Že.g., 87 Srr86 Sr and 143 Ndr144 Nd. also suggest open system. The negative correlation between Sr and Nd isotopes indicate that radiogenic isotope interaction occurred between crust and magma. Crust–magma interaction, was also recorded in the volcanic products of Eastern ŽInnocenti et al., 1982; Gulen, 1984; Tokel, 1984; Yilmaz, 1990; ¨ Pearce et al., 1990; Notsu et al., 1995., central ŽTokel et al., 1988; Temel, 1992; Aydar et al., 1995; Notsu et al., 1995; Temel et al., 1998. and western ŽYilmaz, 1990; Gulec ¨ ¸, 1991; Savas¸cin and Gulec ¨ ¸, 1991; Seyitoglu ˘ et al., 1997. Anatolian volcanics. Crustal contamination is related to high 87 Srr86 Sr crust. Multi processes genesis that combined assimilation-fractional crystallization ŽAFC. andror magma mixing between mantle-derived magmas and crustal components is proposed. Positive correlations between 87 Srr86 Sr with Rb, RbrNb, RbrBa, and RbrSr also could result from the assimilation of crustal materials. Since the crustal contamination may affect the incompatible trace element abundances and ratios, incompatible trace elements and ratios Že.g., Rb, RbrSr. with 87 Srr86 Sr show positive correlations. 7.3. Origin of Konya Õolcanic rocks and relation to tectonic It is well-known that high-K calc-alkaline volcanics are typical products of continental orogenic areas ŽGill, 1981; Ewart, 1982; Pearce, 1982; Hawkesworth, 1982.. Konya volcanics strongly resemble other suites of Neogene-recent calc-alkaline magmas from Santorini, Milos ŽBriqueu et al., 1986.,
Aegean ŽGulen, 1990., and Cappadocian ŽTemel, ¨ 1992; Temel et al., 1998.. Sr and Nd isotopic data for the Neogene Konya volcanic rocks are presented in Tables 5–9 and plotted in Figs. 12–14. Negative correlation between Sr and Nd isotope values of Konya volcanic rocks show that a mix of mantle and crustal sources is needed. It is believed that, in contrast to LILE, HFSE are not enriched by the processes involved in the genesis of subduction-related magmas ŽEdwards et al., 1991.. The ZrrNb versus YrNb diagram ŽFig. 15. shows that the Konya volcanic rocks have ZrrNb and YrNb ratios between 6.34–24.08 and 0.64–3.09, respectively. These ratios are similar to those of Cappadocian ignimbrites and lavas which have YrNb ratios of 0.32– 2.55 and ZrrNb of 5.82–26.08 ŽTemel, 1992; Temel et al., 1998.. Some values are also similar to Santorini lavas ŽYrNb: 2.1–5.33 and ZrrNb: 12.09– 29.33. ŽHuijsmans, 1985.. However, Santorini lavas have high YrNb ratios than Konya and Cappadocian volcanic rocks ŽFig. 15.. Santorini lavas generated in a subduction zone which is related to Aegean arc are calc-alkaline. Crustal and the subducted terrigenous materials contribution to Santorini magmas have been limited ŽBriqueu et al., 1986.. In a diagram, such as RbrY versus NbrY ŽFig. 16. vertical trends are produced by subduction zone enrichments or by crustal contamination, as Rb is enriched giving elevated RbrNb ratios. Within-plate type enrichments, however, results in a positive trend between Rb and Nb ŽNbrYs 1. ŽEdwards et al., 1991.. Konya volcanic rocks all show vertical trends and have NbrY ratios between 0.32–1.72. As previously mentioned, presence of systematic relationship between 87 Srr86 Sr with Rb, RbrNb, RbrBa, and RbrSr suggest that crustal contamination is effective in the generation of Konya volcanic rocks. However, they also have low NbrY ratios Ž0.32–1.72., suggesting HFSE depletion, usually seen in other subduction related lavas Že.g., Pearce, 1983.. BarNb ratios of konya volcanic rocks change between 36 and 132. BarNb ratio of the active continental margin magmatism is greater than 28 ŽFitton et al., 1988.. Thus, these high BarNb values are characteristics of subduction related magmatism. High field strenght elements Že.g., Ta, Nb, Ti. are retained in the subducting slab, whereas low field strenght elements Že.g., Rb, Sr, K, Ba. are easily transported to
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
351
Fig. 15. ZrrNb versus YrNb diagram showing the Konya volcanic rocks. For comparison, the fields of St. Helena, Cappadocian ignimbrites and lavas and Sontorini lavas are shown. Ždata from Huijsmans, 1985; Chaffey et al., 1989; Temel, 1992; Temel et al., 1998..
the overlying zone of mantle melting ŽPearce, 1983; Briqueu et al., 1986.. The present geodynamic models depending on geological data suggest that the Anatolian neotec-
tonic regime is formed as a result of the Eurasian and Arabian plates collision ŽMcKenzie, 1972; Dewey et al., 1973; S¸ engor, ¨ 1980.. According to some researchers ŽS¸ engor ¨ and Kidd, 1979; S¸ engor, ¨
Fig. 16. RbrY versus NbrY diagram showing the Konya volcanic rocks. For comparison, the fields of St. Helena, Cappadocian ignimbrites and lavas and Sontorini lavas are shown. Ždata from Huijsmans, 1985; Chaffey et al., 1989; Temel, 1992; Temel et al., 1998..
352
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
1980; S¸ engor ¨ et al., 1985; Dewey et al., 1986., the collision took place in Late Miocene, as the latest continental environment in east Anatolia became marine environment in the Serravalien ŽS¸ engor ¨ et al., 1985. and that east Anatolian–Iranian plateau has an altitude of approximately 2 km. These models require a westerly movement of the Anatolian block, between right-lateral North Anatolian fault and leftlateral East Anatolian fault, towards the Aegean subduction zone ŽMcKenzie, 1972; S¸ engor ¨ et al., 1985; Dewey et al., 1986; McKenzie and Yilmaz, 1991.. The extensive volcanism in Turkey, located on the active boundaries of Eurasian, African, Arabian plates and Anatolian block during the neotectonic period, was developed between late Miocene and Quaternary. Regional volcanism in Eastern Anatolia has been considered to be related to compresional andror extensional tectonics ŽGulen, 1984; Tokel, 1984; ¨ Pearce et al., 1990; Yilmaz, 1990; Buket and Temel, 1998.. Mio-Pliocene aged volcanic rocks from western Anatolia have calc-alkaline character, although those of Quaternary age show alkaline character ŽYilmaz, 1990; Gulen, 1990; Gulec ¨ ¨ ¸, 1991.. It is suggested that the calc-alkaline rocks are essentially generated from the continental lithospheric or shallow asthenospheric mantle during the subduction, and alkaline rocks are derived from isotopically depleted mantle ŽGulen, 1990; Gulec ¨ ¨ ¸, 1991.. The difference in character of volcanism is interpreted as a change of the compressional regime in Mio-Pliocene into an extensional one in the Quaternary ŽYilmaz, 1990; Gulec ¨ ¸, 1991.. In Central Anatolia ŽCappadocia, Karaman and Konya., volcanism developed since the Late Miocene ŽInnocenti et al., 1975; Keller et al., 1977; Innocenti et al., 1982; Temel, 1992; Temel et al., 1998.. The Cappadocian volcanic rocks of Late Miocene– Quaternary were evaluated as being products of a subduction zone by Innocenti et al. Ž1975., Temel Ž1992. and Temel et al. Ž1998.. In the 143 Ndr144 Nd– 87 Srr86 Sr variation diagram ŽFig. 14., Konya volcanic rocks are situated in the area of Milos ŽBriqueu et al., 1986., Aegean volcanic rocks ŽGulen, 1990., Cappadocian ignimbrites ¨ Ž and lavas Temel et al., 1998.. MORB-normalized
spidergrams of the Konya volcanic rocks show trends similar to those reported for Cappadocian ignimbrites and lavas ŽTemel et al., 1998., and Santorini volcanic rocks ŽHuijsmans, 1985. ŽFig. 11.. Milos and Santorini islands that are composed of calc-alkaline lavas are located in the north of the Aegean subduction zone, initiated during the Middle–Late Miocene ŽLe Pichon and Angelier, 1979. and are related to the Aegean arc ŽBarton et al., 1983; Huijsmans, 1985; Briqueu et al., 1986.. Geochemical characteristics Žhigh BarNb and low NbrY ratios, negative Ti and Nb anomalies. of the Konya volcanism are similar to continental margin volcanism like that of the Aegean arc. So, the probable cause of Neogene calc-alkaline volcanism in the Konya region is related to the paleo-subduction of the Cyprean arc ŽReilinger et al., 1997.. At a regional scale, all the volcanoes in Central Anatolia lie along an arc, oriented NW–SE in the west Že.g., Konya and Karaman., and NE–SW, in the east Že.g., Cappadocian volcanics around the Nevs¸ehir and Kayseri regions.. This volcanic arc is almost parallel to the Anatolian–African plate boundary ŽFig. 1. where plate convergence is absorbed by subduction. We consider that this geometry provides a further support for the subduction related origin. In conclusion, high-K calc-alkaline volcanism in the Konya region is probably related to the subduction of the African plate under the Anatolian block in the Middle–Late Miocene time ŽS¸ engor ¨ et al., 1985.. These magmas have been affected by assimilation and contamination processes during ascent through the crust.
Acknowledgements This study was financially supported by the Scientific and Technical Resarch Council of Turkey ¨ ŽTUBITAK, YBAG-0078rDPT., Centre National de Recherche ScientifiquerFrance ŽCNRS, PICS program., The French Embassy ŽFrench Foreign Office. in Ankara, and Hacettepe University. Louis Briqueu and Nurdan Ayd1n are thanked for constructive criticisim, and Catherine Deniel and Tekin Yurur ¨ ¨ provided invaluable advice concerning an earlier version of this manuscript.
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
References Aydar, E., Gourgaud, A., Deniel, C., Lyberis, N., Gundogdu, ¨ ˘ N., 1995. Le volcanisme Quaternaire d’Anatolia centrale ŽTurquie.: association de magmatismes calco-alcalin et alcalin en domaine de convergence. Can. J. Earth Sci. 32, 1058–1069. Barton, M., Salters, V.J.M., Huijsmans, J.P.P., 1983. Sr isotope and trace element evidence for the role of continental crust in calc-alkaline volcanism on Santorini and Milos, Aegean Sea, Greece. Earth and Planetary Science Letters 63, 273–291. Briqueu, L., Bougault, H., Joron, J.L., 1984. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: Petrogenetic implication. Earth and Planetary Science Letters 68, 297–308. Briqueu, L., Javoy, M., Lancelot, J.R., Tatsumoto, M., 1986. Isotope geochemistry of recent magmatism in the aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and santorini-geodynamic implication. Earth and Planetary Science Letters 80, 41–54. Buket, E., Temel, A., 1998. Major-element, trace-element, and Sr–Nd isotopic geochemistry and genesis of Varto ŽMus¸. volcanic rocks, Eastern Turkey. Journal of Volcanology and Geothermal Research. Chaffey, D.J., Cliff, R.A., Wilson, B.M., 1989. Characterization of the St. Helena magma source. In: Saunders, A.D., Norry, M.J. ŽEds.., Magmatism in the Ocean Basin, Geological Society Special Publication No. 42, pp. 257–276. Chen, C.-Y., Frey, F.A., Garcia, M.O., Dalrymple, G.B., Hart, A.R., 1991. The tholeiite to alkalic basalt transition at Haleakala Volcano, Maui, Hawaii. Contrib. Mineral. Petrol. 106, 183–200. Condie, K.C., 1989, Plate Tectonics and Crustal Evolution. Pergamon, Oxford, 476 pp. DePaolo, D., 1981. Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189–202. Dewey, J.F., Pitman, W.C., Ryan, W.B.F., Bonnin, J., 1973. Plate tectonics and evolution of the Alpine system. Geological Society American Bulletin 84, 3137–3180. Dewey, J.F., Hempton, M.R.S., Kidd, W.S.F., Saroglu, ˘ F., S¸ engor, ¨ A.M.C., 1986. Shortening of continental lithosphere: The neotectonics of Eastern Anatolia, a young collision zone. In: Coward, M.P., Ries, A.C. ŽEds.., Collisionc Tectonics. Geological Society Special Publication, 19, pp. 3–36. Edwards, C., Menzies, M., Thirlwall, M., 1991. Evidence from Muriah, Indonesia, for the interplay of supra-subduction zone and intraplate processes in the genesis of potassic alkaline magmas. Journal of Petrology 32, 555–592. Ewart, A., 1982, The mineralogy and petrology of Tertiary—Recent orogenic volcanic rocks with special reference to the andesitic–basaltic compositional range. In: Thorpe, R.S. ŽEd.., Andesites: Orogenic Andesites and Plate Tectonics. Wiley, Chichester, pp. 25–95. Fitton, J.G., James, D., Kempton, P.D., Ormerod, D.S., Leeman, W.P., 1988. The role of lithosferic mantle in the generation of Late Cenozoic basic magmas in the Western United States. Journal of Petrology, Special litosphere issue, pp. 331–349.
353
Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics. Springer, Berlin, 390 pp. Goger, E., Kiral, K., 1973. Kiziloren ¨ ¨ dolayinin ŽKonya’ nin batisi. genel stratigrafisi. M.T.A. Genel Mudurlugu, ¨ ¨ ¨ ¨ ArSiv No. 5204 Žin Turkish.. Gulec ¨ ¸, N., 1991. Crust–mantle interaction in western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics. Geol. Mag. 128, 417–435. Gulen, L., 1984. Sr, Nd, Pb, isotope and trace element geochem¨ istry of calc-alkaline and alkaline volcanics, eastern Turkey. PhD Thesis, Massachusetts Institute of Technology, 232 pp. Žunpublished.. Gulen, L., 1990. Isotopic characterization of Aegean magmatism ¨ and geodynamic evolution of the Aegean subduction. In: Savasvin, M.Y., Eronat, A.H. ŽEds.., International Earth Sciˆ ences Congress on Aegean Regions, Izmir, Turkey, pp. 143– 166. Hawkesworth, C.J., 1982. Isotope characteristics of magmas erupted along destructive plate margins. In: Thorpe, R.S. ŽEd.., Andesites: Orogenic Andesites and Plate Tectonics. Wiley, Chichester, pp. 549–571. Huijsmans, J.P.P., 1985. Calc-alkaline lavas from the volcanic complex of Santorini, Aegean Sea, Greece. A petrological, geochemical and stratigraphy study, PhD Thesis, Rijksuniversiteit Utrecht, Utrecht, 316 pp. Innocenti, F., Mazzuoli, R., Pasquare, G., Radicati di Brozolo, F., Villari, L., 1975. The Neogene calc-alcaline volcanic of Central Anatolia: geochronological data on Kayseri–Nide area. Geol. Mag. 112, 349–360. Innocenti, F., Manetti, P., Mazzuoli, R., Pasquare, G. Villari, L., 1982. Anatolia and north-western Iran. In: Thorpe, R.S. ŽEd.., Andesites: Orogenic Andesites and Plate Tectonics. Wiley, Chichester, pp. 327–349. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523–548. Ito, E., White, W.M., Gopel, C., 1987. The O, Sr, Nd and Pb ¨ isotope geochemistry of MORB. Chemical Geology 62, 157– 176. Karakaya, N., 1991. Altiekin ŽKonya. civarinin jeolojisi ve mineralojik-petrografik incelenmesi. MSc thesis, Selc¸uk University, Konya. Keller, J., Jung, D., Burgath, K., Wolf, F., 1977. Geologie und petrologie des Neogenen kalkalkali-vulkanismus von Konya ŽErenler Dag-Alaca Dag-Massiv Zentral-Anatolian.. Geo. Jb. ˘ ˘ B 25, 37–117. Kempler, D., Garfunkel, Z., 1991. The northeast Mediterranean triple junction from a plate kinematic point of view. Bull. Tech. Univ. Istanbul 44, 425–454. ¨ MatKetin, O., 1983. Turkiye jeolojisine genel bir bakis¸. ITU ¨ baasi, Istanbul, 595 s. Koc¸yigit, ˘ A., 1991. Changing stress orientation in progressive intercontinental deformation as indicated by the Neotectonics of the Ankara region ŽNW Central Anatolia.. Bulletin of Turkish Association of Petroleum Geologists 31 Ž1., 48–55. Leake, B.E., 1978. Nomenclature of amphiboles. Bull. Mineral. 101, 453–467.
354
A. Temel et al.r Journal of Volcanology and Geothermal Research 85 (1998) 327–354
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–750. Le Pichon, X., Angelier, J., 1979. The Hellenic arc and trench system: a key to the neoectonic evolution of the Eastern Mediterranean area. Tectonophysics 60, 1–42. McKenzie, D., 1972. Active tectonics of the Mediterranean Region. Geophys. J.R. Astron. Soc. 30, 109–185. McKenzie, D., Yilmaz, Y., 1991. Deformation and volcanism in western Turkey and Aegean. Bull. Tech. Univ. Istanbul 44, 345–373. Miyashiro, A., 1978. Nature of alkalic volcanic rock series. Contrib. Mineral. Petrol. 66, 91–104. Morimoto, N., 1988. Nomenclature of pyroxenes. Bull. Mineral. 111, 535–550. Notsu, K., Fujitani, T., Ui, T., Matsuda, J., Ercan, T., 1995. Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 64, 171–192. Ota, R., Dinc¸el, A., 1975. Volcanic rocks of Turkey. Bull. Geol. Surv. Jpn. 26, 19–45. Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. ŽEd.., Andesites: Orogenic Andesites and Plate Tectonics. Wiley, Chichester, pp. 525–548. Pearce, J.A., 1983. Role of subcontinental lithosphere in magma genesis at active continental margins: in continental basalts and mantle xenoliths. In: Hawkesworth, C.J., Norry, M.J. ŽEds.., Shiva Publishing, Cheshire, UK, pp. 230–249. Pearce, J.A., Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290–300. Pearce, J.A., Bender, J.F., De Long, S.E., Kidd, W.S.F., Low, P.J., Guner, Y., Saroglu, F., Yilmaz, Y., Moorbath, S., Mitchell, J.G., 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 44, 189–229. Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area Northern Turkey. Contrib. Mineral. Petrol. 58, 63–81. Reilinger, R.E., McClusky, S.C., Oral, M.B., King, R.W., Toksoz, ¨ M.N., Barka, A.A., Kinik, O., Lenk, O., Sanli, O., 1997. Global positioning system measurements of present-day crustal movements in the Arabia–Africa–Eurasia plate collision zone. J. Geophys. Res. 102 ŽB5., 9983–9999. Ringwood, A.E., 1990. Slab–mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the Upper Mantle. Chem. Geol. 82, 187–207. Savas¸cin, Y., 1991. Magmatic activities of Cenozoic compressional and extensional tectonic regimes in western Anatolia. In: Savascin, M.Y., Eronat, A.H. ŽEds.., Int. Earth Sci. Congr. ˆ on Aegean Regions, Izmir, Turkey, pp. 420–434. Savas¸cin, Y., Gulec ¨ ¸, N., 1991. Neogene volcanism of Western Anatolia-Field excursion B3. Int. Earth Sci. Congr. on Aegean Regions, Izmir, Turkey.
Schmid, R., 1981. Descriptive nomenclature and classification of pyroclastic deposits and fragment: recommendations of the IUGS subcommissions on the systematics of igneous rocks. Geology 9, 41–43. Neotektoniinin Esaslari. GeoS¸ engor, ¨ A.M.C., 1980. Turkiyenin ¨ logical Society of Turkey, 40 pp. S¸ engor, ¨ A.M.C., Kidd, W.S.F., 1979. Post-collisional tectonics of the Turkish–Iranian plateau and a comparison with Tibet. Tectonophysics 55, 361–376. S¸ engor, ¨ A.M.C., Gorur, ¨ ¨ N., Saroglu, F., 1985. Strike slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, T.R., Christie-Blick, N. ŽEds.., Strike–slip Deformation, Basin Formation and Sedimantation. Soc. Econ. Paleontol. Min. Spec. Publ., 37, pp. 227–264. Seyitoglu, ˘ G., Anderson, D., Nowell, G., Scott, B., 1997. The evolution from Miocene potassic to Quaternary sodic magmatism in western Turkey: implications for enrichments processes in lithospheric mantle. J. Volcanol. Geotherm. Res. 76, 127–147. Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 pp. Temel, A., 1992. Kapadokya eksplozif volkanizmasinin petrolojik ve jeokimyasal ozellikleri. PhD thesis, Hacettepe University, Ankara, Turkey, 208 pp. Temel, A., C¸ elik, M., Tunoglu, ˘ C., 1995. Konya bati-guneybati¨ sinda yer alan Neojen yas¸li volkanosedimanter basenindeki kil ¨ oluumlari. In: Sener, M., Oner, F., Kos¸un, E. ŽEds.., VII. Ulusal Kil Sempozyumu, Kil’ 95, Ankara, Bildiriler kitabi, pp. 32–45 ŽTurkish with English abstract.. Temel, A., Gundogdu, M.N., Gourgaud, A., Le Pennec, J.-L., ¨ ˘ 1998. Ignimbrites of Cappadocia: Petrology and Geochemistry. J. Volcanol. Geotherm. Res. 85. Tokel, S., 1984, Dogu Anadolu’ da kabuk deformasyonu mekanizmasi ve genc volkanitlerin petrojenezi. Ketin Symposium Proceeding, pp. 121–130 ŽTurkish with English abstract.. Tokel, S., Ercan, T., Akbas¸li, A., Yildirim, T., Fis¸ekci, A., Selvi, ¨ Y., Olmez, M., Can, B., 1988. Neogene tholeitic province of central Anatolia: implications for magma genesis and post-collision lithospheric dynamics. METU Journal of Pure and Applied Sciences 21, 461–477. ¨ Ocal, ¨ Ulu, U., H., Bulduk, A.K., Karakas¸, M., Arbas¸, A., Sac¸li, M., Takiran, M.A., Ekmekci, E., Adir, M., Sozeri, S., Kara¨ biyikoglu, M., 1994. Ic¸ Anadolu guneyindeki Tersiyer-Kuva¨ terner volkanizmasi. Bull. Geol. Congr. Turkey 9, 33–47, Turkish with English abstract. Veizer, J., Compston, W., 1974. 87 Srr86 Sr composition of sea water during the Phanerozoic. Geochim. Cosmochim. Acta. 38, 1461–1484. Wilson, M., 1989. Igneous Petrogenesis. London, Unwin-Hyman, 465 pp. Yilmaz, Y., 1990. Comparision of young volcanic associations of western and eastern Anatolia formed under a compressional regime: a review. J. Volcanol. Geotherm. Res. 44, 66–97.