Phenol and Naphthalene Degradation by Mixed Culture of Microorganisms

Phenol and Naphthalene Degradation by Mixed Culture of Microorganisms

P H E N O L AND NAPHTHALENE DEGRADATION B Y M I X E D CULTURE OF M I C R O O R G A N I S M S N.S. MANUKOVSKI, M.I. TEREMOVA, I n s t i t u t e o ...

310KB Sizes 3 Downloads 133 Views

P H E N O L AND NAPHTHALENE DEGRADATION B Y M I X E D CULTURE

OF M I C R O O R G A N I S M S N.S.

MANUKOVSKI,

M.I.

TEREMOVA,

I n s t i t u t e o f Biophysics,

660036, K r a s n o y a r s k , U S S R

GUREVICH and I . M .

PAN’KOVA

U S S R Academy o f S c i e n c e s ,

Wastewater c o n t a i n s , ces;

Yu.L.

as a r u l e ,

a mixture o f organic substan-

i t ’ s b i o d e g r a d a t i o n i s r e a l i z e d by m i c r o b i a l c o m m u n i t i e s .

The

composition o f t h e communities i s e s t a b l i s h e d spontaneously under non-sterile

c o n d i t i o n s o f no e x t e r n a l c o n t r o l

impact.

T h i s communication d w e l l s upon t h e problem o f t h e p u r p o s e f u l f o r m a t i o n o f t h e m i c r o o r g a n i s m community t h a t i s c a p a b l e t o p u r i f y w a t e r more e f f i c i e n t l y .

The o b j e c t u n d e r i n v e s t i g a t i o n was t h e wa-

t e r o f a cokechemical i n d u s t r y .

B i o d e g r a d a t i o n o f p h e n o l a n d na-phtha-

l e n e was m o s t i n t e r e s t i n g t o u s . We h a v e s t u d i e d t w o ways t o i m p r o v e t h e c o m p o s i t i o n o f m i c r o b i a l community, which p u r i f i e d wastewater

-

from aromatic hydrocar-

bons.

1. One c a n i n t r o d u c e a new s t r a i n i n t o t h e m i c r o b i a l c o m m u n i t y . The s t r a i n c o u l d be o b t a i n e d by a r e c o m b i n a n t DNA,

or s p e c i a l l y se-

l e c t e d , or found i n a d i f f e r e n t environment.

2.

The s p e c i e s c o m p o s i t i o n o f a c o m m u n i t y i s n o t a f f e c t e d

(i.e. n o new s p e c i e s o r s t r a i n i s i n t r o d u c e d ) ,

but the r a t i o o f the

densities o f the species present i s appropriately varied. Community c o m p o s i t i o n s h o u l d b e c h a n g e d w i t h r e s p e c t t o t h e feature o f both microorganisms i n t e r a c t i o n ,

and t h e o x i d a t i o n k i n e -

t i c s o f t h e mixed s u b s t r a t e . S p e c i e s and q r o w t h c o n d i t i o n s . monas s p .

and N o c a r d i a sp.

The b a c t e r i a l c u l t u r e o f P s e u d o -

have been i s o l a t e d from t h e wastewater

on t h e s e l e c t i v e media c o n t a i n i n g p h e n o l , g u i a c o l , The g l a s s f e r m e n t o r

o f t h e 0.45-0.6

and

naphthalene

1 e f f e c t i v e v o l u m e was e q u i p p e d

w i t h an a u t o m a t i c d e v i c e t o m a i n t a i n t h e pH a n d t e m p e r a t u r e . was m a i n t a i n e d w i t h i n t h e 6.7-7.5

range,

The pH

a n d t h e c u l t i v a t i o n tempe-

r a t u r e was e q u a l t o 20

156

a n d 30

OC

OC

f o r N o c a r d i a sp.,

b u t 32-34

OC

f o r Pseudomonas s p . Analysis.

The c o n c e n t r a t i o n o f b o t h p h e n o l a n d g u i a c o l was d e -

termined c o l o r i m e t r i c a l l y over 4-aminosntipyrine 2,3-oxygenase

as t h e i n d i c a t o r ;

a c t i v i t y i n c e l l s was d e t e r m i n e d c o l o r i m e t r i c a l l y o v e r

c a t e c h o l ; n a p h t h a l e n e c o n c e n t r a t i o n was d e t e r m i n e d b y t h e c h r o m a t o graph.

I n addition,

s u p e r n a t a n t a b s o r p t i o n maximum was d e t e r m i n e d

-

w i t h i n t h e r e g i o n o f 370

420 n m a t pH 1 1 . 0

111.

1. D e g r a d a t i o n o f a s i n g l e s u b s t r a t e The c u l t u r e s s t u d i e d h a v e shown d i f f e r e n t a b i l i t i e s t o o x i d i z e the substrate

( s e e T a b l e 1). B o t h t h e d e p e n d e n c e o f t h e c e l l s den-

s i t y and t h e s u b s t r a t e c o n c e n t r a t i o n on t h e d i l u t i o n r a t e ,

and t h e

dependence o f t h e s p e c i f i c r a t e o f s u b s t r a t e c o n s u m p t i o n on t h e g r o w t h r a t e f i t i n Monod's and P i r t ' s models ( s e e F i g .

1

-

3).

TABLE 1 Degradation o f aromatic hydrocarbons as s o l e sources o f carbon i n c h e m o s t a t c u l t u r e s o f Pseudomonas a n d N o c s r d i a Culture, substrate

Substrate input

output

Gs/ll

Dilution rate

[h-']

1000800

< 1

N o c a r d i a spp. guiacol

250

1-5

0.065-

Pseudomonas sp. + N o c a r d i a sp. p h e n o l

BOO

c1

0.140.20

Pseudomonas sp. phenol

Pseudomonas spp.

20004000

Growth yield

0.070.27

c 0.5

0.6

0.12

+ +

0.0750.12

N o t d e t e r m i n e d f o r w a l l g r o w t h and i n s o l u b i l i t y o f n a p h t h a l e n e .

We h a v e m e a s u r e d t h e d e p e n d e n c e o f t h e s p e c i f i c r a t e o f s u b s t r a t e

consumption on t h e d i l u t i o n r a t e . g r o w t h and c e l l s a g g r e g a t i o n ,

The o c c u r r e n c e o f t h e a t t a c h e d

has been measured as w e l l .

o x i d a t i o n d a t a a r e p r e s e n t e d i n T a b l e 2;

I t s h o u l d be n o t e d ,

we'll

d i s c u s s them b e l o w .

t h a t t h e observed v a l u e o f t h e economic

c o e f f i c i e n t i s l e s s tl- n t h e t h e o r e t i c a l one, spent f o r maintenance i s c l o s e t o zero.

a l t h o u g h t h e energy

One c a n e a s i l y see t h a t

d u r i n g t h e p h e n o l d e g r a d a t i o n b y Pseudomonas sp. was a l w a y s c o l o r e d g r e e n ,

The p h e n o l

or b r o w n .

t h e c u l t u r a l medium

-

157

-

0.1

0.2

0.3 DIWTDN RATE [ h-'1

Fig. 1. C h e m o s t a t c u l t u r e o f P s e u d o m o n a s s e . with phenol a s a lim i t i n g substrate. 1 - b i o m a s s , 2 - output c o n c e n t r a t i o n o f phenol

--

- 0.200,

J

0

0.15

-

0.10

.

0.05

-

0

0.05

0.1

0.15

DILUTION RATE

1 0 .h-']

Fig. 2. C h e m o s t a t c u l t u r e o f N o c a r d i a s p . w i t h g u i a c o l a s a limiting s u b s t r a t e ( S o = 0.25 9/11. 1 biomass, 2 autput concentration o f guiacol; a r r o w 8 i n d i c a t e c h a n g e s o f d i l u t i o n r a t e

-

-

-

-

158

'p

1.0

c

-

2

P

n

F i g . 3. S p e c i f i c u p t a k e r a t e o f p h e n o l ( 1 ) a n d g u i a c o l ( 2 ) i n r e l a t i o n t o t h e d i l u t i o n r a t e i n c h e m o s t a t c u l t u r e o f Pseudomonas s p . and N o c a r d i a spp.

N o t e some d i s c r e p a n c i e s b e t w e e n t h e e v i d e n c e a n d t h e m o d e r n theories:

1. N o n - s i n g l e - v a l u e d

r e s u l t o f t h e s u b s t r a t e d e g r a d a t i o n under

c o n s t a n t c u l t i v a t i o n c o n d i t i o n s was o b s e r v e d i n a s e r i e s o f e x p e r i m e n t s (see dash l i n e i n F i g . as w e l l ,

2.

as exp.

7va expa.

Pseudomonaa ap.

2 f o r t h e case o f q u i a c o l o x i d a t i o n ,

1-6 and 13-16 i n Table 2).

c u l t u r e s a l w a y s show m e t e - c l e a v a g e

pathway

f o r catechol oxidation a t the i n i t i a l stage o f c u l t i v a t i o n . (rather long)

2.

t i m e i t disappeared b o t h f o r mixed,

I n some

and m o n o - c u l t u r e s .

Substrate mixture degradation I n s p i t e o f some i n e x p l i c a b l e f e a t u r e s i n s i n g l e s p e c i e s c u l -

t u r e behavior,

t h a t oxidase phenol,

guiacol,

t r i e d t h e m i x e d c u l t u r e o f Pseudomonas aD. them.

+

and naphthalene, N o c a r d i a sp.

we

t o treat

We assumed t h e enzyme k i n e t i c s o f d i f f e r e n t m i c r o o r g a n i s m s t o

d i f f e r f o r v a r i o u s a r o m a t i c h y d r o c a r b o n s . So, complement each o t h e r .

t h e c u l t u r e s should

-

159

-

TABLE 2 Parameters o f phenol d e g r a d a t i o n process i n chemostat ~

NN

Dilution r a p ]

-

Substrate input

hdil

Biomass

output

[mg/l]

1

0.07

1000

0.2

594

2

0.07

1000

0.2

600

Cleavage pathway, absorbtion p e a k [nm]

Economical coef f i c i e n

b/gJ 0.59 0.60

375 meta-

3

0.07

1000

0.3

630

4

0.07

1000

0.2

490

5

0.07

1000

0.2

550

6

0.07

80 0

0.2

510

7

0.07

1000

0.45

440

8

0.08

800

0.2

478

9

0.09

800

0.6

474

10

0.12

1000

0.8

58 2

11

0.14

BOO

0.5

400

12

0.15

1000

0.3

590

13

0.17

880

19.0

454

14

0.17

800

0.5

467

15

0.19

800

21.0

384

0.49

16

0.20

1000

0.5

700

0.70

17

0.23

1000

0.4

510

18

0.26

1000

1.5

672

19

0.27

800

0.9

512

20

0.27

800

1.0

21

0.07

800

0.36

0.63 375

0.55 375 380

0 . 1 h-'.

0.59 0.58 meta-

0.50 0.59 0.50

375

0.58

375

0.51 0.67 0.64

450

410

0.56

610

s m a l l meta

0.76

9/11 and n a p h t h a l e n e because o f t h e e x t r e -

The d i l u t i o n r a t e was e q u a l t o

T h i s i s t h e c r i t i c a l f l o w f o r N o c a r d i a sp.,

i s u t i l i z e d moat e f f i c i e n t l y ;

0.44 0.60

375

t h i s i s the calculated concentration,

mely poor s o l u b i l i t y o f naphthalene).

0.63 ortho-

The m i x e d a u b s t r a t e c o n t a i n e d p h e n o l ( 0 . 5

( 2 g/l);

0.49

that culture didn't

a t which phenol

o x i d i z e t h e naph-

thalene. F o r t h e e x p e r i m e n t we u s e d Pseudomonas ap.

naphthalene.

adapted t o u t i l i z e

The a d d i t i o n o f p h e n o l t o t h e n a p h t h a l e n e u t i l i z i n g

c u l t u r e r e s u l t e d b o t h i n t h e i n t e n s i v e brown c o l o r appearance i n t h e culture,

a n d an i n c r e a s e d r e s i d u a l p h e n o l c o n c e n t r a t i o n .

-

160

-

The m i x e d c u l t u r e was a b s o l u t e l y c o l o r l e s s ,

but the residual

c o n c e n t r a t i o n s o f b o t h p h e n o l and n a p h t h a l e n e were l e s s t h a n 0.2 mg/l.

I t s h o u l d be s t r e s s e d ,

t h a t N o c a r d i a sp.

successfully u t i l i z e d

phenol a t r e l a t i v e l y h i g h i n p u t concentrations o f the former,

with rather great d i l u t i o n rates, The No.

and

mixed c u l t u r e .

2 m e t h o d was i l l u s t r a t e d w i t h t h e f o l l o w i n g e x p e r i m e n t .

The n a p h t h a l e n e o x i d i z i n g c u l t u r e ,

i s o l a t e d from wastewater d i s c h a r -

ged from p h e n o l i c w a t e r b i o l o g i c a l t r e a t m e n t p l a n t , i n t o a n a e r o t a n k i n a s p e c i f i c way.

As s r e s u l t ,

d u a l p h e n o l c o n c e n t r a t i o n d e c r e a s e d a s much a s 30

was i n o c u l a t e d

t h e average r e s i -

X,

b u t the process

s t a b i l i t y o f a sewage b i o l o g i c a l t r e a t m e n t e n h a n c e d ( t h e v a r i a t i o n c o e f f i c i e n t d e c r e a s e d 2.8

4

times).

8

These d a t a s r e shown i n F i g .

12

4.

20

16

MONTMS

F i g . 4. D y n a m i c s o f p h e n o l a t t h e o u t p u t o f b i o l o g i c a l p u r i f i c a t i o n o f wastewater i n coke and b y - p r o d u c t p l a n t . Arrow i n d i c a t e sowing o f nsphth a l e n e - o x i d i z i n g b a c t e r i a Thus,

t h e e x p e r i m e n t s c a r r i e d o u t show t h a t t h e c h a n g e s i n t h e

q u a l i t y a n d number c o m p o s i t i o n o f a m i c r o b i a l c o m m u n i t y , n a l l y s t a b l e c o n t i n u o u s c u l t u r e have a p o s i t i v e e f f e c t , community r e a r r a n g e .

with functioi.e.

make t h e

-

161

-

Now, w e ’ l l d i s c u s s t h e s e i n e x p l i c a b l e f e a t u r e s m e n t i o n e d a b o v e i n t h e s i n g l e species c u l t u r e behaviour. DlSCUSSION

Both b i o c h e m i s t r y and g e n e t i c s of t h e m i c r o b i a l o x i d a t i o n o f

it is

a r o m a t i c h y d r o c a r b o n s are r a t h e r well s t u d i e d . N e v e r t h e l e s s ,

s t r a n g e , t h a t t h e e v i d e n c e on t h e c a t a b o l i s m m u l t i r o u t i n e s s are n o t i n c l u d e d i n t o w a s t e w a t e r t r e a t m e n t , when c o n s i d e r e d a t t h e p o p u l a t i o n and community l e v e l s .

T h i s e v i d e n c e m a k e s us d i s c u s s t h e p r o -

blem of a m u l t i r o u t i n e s s . Jones e t a l . I 2 1 found t h a t t h e r e g i o n o f m i c r o b i a l growth lim i t a t i o n a s w e l l a s i t s i n h i b i t i o n b y p h e n o l h a d t h e i r s p e c i f i c economic c o e f f i c i e n t s . These r e g i o n s a r e n ’ t o f any i n t e r e s t and have n o g e n e r a l b o u n d a r y , a s i t i s shown i n F i g . 5 [2, 3 1 . Assume t h e g r o w t h r a t e d e p e n d e n c e on s u b s t r a t e c o n c e n t r a t i o n b e a s s h o w n i n F i g . 6 . Q u i t e a few r e s e a r c h e r s s u p p o r t t h i s a s s u m p t i o n , T h e maximum o f regions.

p ( S ) belong t o both t h e l i m i t a t i o n , and i n h i b i t i o n

There is no corresponding p o i n t for i t i n Fig.

5, or a

t r a n s i t i o n a r e a from l i n e 1 t o l i n e 2 . Hence, t h e b a s i c assumption presented a t Figs.

5, 6 should be changed.

The p o s s i b l e c h a n g e f o r

i t i s shown i n F i g s . 5 a n d 6 i n d a s h l i n e s .

0

1

2

5

3

6

7 1l p

f h-’I

F i g . 5. R e c i p r o c a l p l o t o f g r o w t h y i e l d a n d g r o w t h r a t e w i t h p h e n o l limitation, 2 inhibition, oxidizing b a c t e r i a (from /3.2/). 1 3 h y p o t h e t i c a l l i n e o f p a s s a g e from l i m i t a t i o n t o i n h i b i t i o n

-

-

-

- 162

-

Taking i n t o account k i n e t i c features o f t h e aromatic hydrocarone c a n e a s i l y show t h e e x i s t e n c e o f t h e a r e a o f t h e

bons o x i d a t i o n , bi-stability i n Fig.

i n behaviour.

I t ’ s evident,

i n part,

f r o m o u r d a t a shown

3 a n d T a b l e 2.

P o s i t i o n 7 i n T a b l e 2 shows t h e r e s u l t s t o b e s t a t i s t i c a l l y d i f f e r e n t from t h o s e p r e s e n t e d i n p o s i t i o n s 1-6. meta-cleavage

o f t h e c a t e c h o l wasn’t

s i t i o n 7 v s p o s i t i o n s 1-6

The c o m p a r i s o n o f

shows t h a t m e t a - c l e a v a g e

l e s s output phenol concentration; p o s i t i o n 21,

observed.

I n t h i s case t h e po-

pathway p r o v i d e s

t h e aame shows t h e e v i d e n c e s i n

obtained from another s e r i e s o f long-time

experiments.

W

t-

a

n

SUBSTRATE

F i g . 6. S p e c i f i c growth r a t e vs. s u b s t r a t e c o n c e n t r a t i o n (hypothemeta-cleavage and 2 - o r t h o - c l e a v a g e t i c a l curves; f o r example, 1 pathways o f phenol, dash l i n e - o t h e r h y p o t h e s i s )

-

O n t h e o t h e r hand, p o s i t i o n s 1 3 - 1 6 d o n ’ t 2,3-oxygenase way)

(which i s the f i r s t -

activity

o f r e g a r d l e s s s i g n i f i c a n t v a r i a t i o n s i n t h e o u t p u t p h e n o l con-

centration.

Probably,

enzymes ( n a m e l y ,

2,3-

we j u s t o b s e r v e d a v a r i a t i o n o f t h e d i f f e r e n t and 1,Z-oxygenase)

complete e l i m i n a t i o n of ta, Fig.

show t h e d e c a y o f

s t e p enzyme o f m e t a - p a t h -

activities,

t h e c a t a b o l i c pathway.

contrary t o

Our e x p e r i m e n t a l d a -

unfortunately, f a i l s t o prove i t . One c a n e a s i l y d e s c r i b e t h e a r e a s o f m u l t i - s t a b l e

2 ( e a r d i a spe.)

and F i g .

3 (Pseudomonas s p . ) .

behaviour i n

Genetic features

o f m i c r o o r g a n i s m s used t o degrade t h e a r o m a t i c h y d r o c a r b o n s have resulted i n the following. t u r e changed meta-pathway

The p h e n o l o x i d i z i n g Pseudornonas sp. f o r ortho-pathway

shown i n p o s i t i o n 2 1 o f T a b l e 2.

i n some t i m e ;

cul-

that’s

When o x i d i z i n g n a p h t h a l e n e ,

we’ve

-

163

-

i n o c u l a t r e d t h e clones showing a g r e a t a c t i v i t y o f i n t o a culture,

b u t ortho-pathway

2,3-oxygenase

h a s b e g u n t o d o m i n a t e soon.

The d e l a y o f t r a n s i t i o n f r o m m e t e - c l e a v a g e

i n t o the orthoclea-

vage p a t h w a y i s e v i d e n c e o f t h e i n t e r a c t i o n b e t w e e n t h e c e l l s m i c r o b i a l p o p u l a t i o n and s u b s t r a t e b i o d e g r a d a t i o n p l a s m i d s , t h e enzyme a c t i v i t i e s t u r n o u t . e x p e r i m e n t s 1-7,

rather than

T h i s l a t t e r c o u l d be observed i n

T a b l e 2 , t h a t were c a r r i e d o u t as a p i l o t e x p e r i -

ment. Hence,

i t i s evident,

t h a t some f e a t u r e s o f a s u b s t r a t e c a t a -

b o l i s m ( a t i n t r e c e l l u l a r l e v e l ) h a v e a s t r o n g i m p a c t on t h e w a s t e w a t e r p r o c e s s i n g on t h e w h o l e . REFERENCES

1 2 3

M a n u a l o f M e t h o d s f o r G e n e r a l B a c t e r i o l o g y . P. G e r h a r d t e.a. ed., W a s h i n g t o n 1 9 8 1 . G.L. J o n e s , F. J a n s e n and A . J . McKay, S u b s t r a t e I n h i b i t i o n o f t h e g r o w t h o f b a c t e r i u m NCIB 8250 b y p h e n o l . L . Gen. M i c r o b i o l . , 7 4 ( 1 9 7 3 ) N I , p. 139-148. Yu.L. G u r e v i c h , S t a b i l i t y a n d R e g u l a t i o n o f G r o w t h i n M i c r o b i a l P o p u l a t i o n s . N o v o s i b i r s k , Nauka, 1 9 8 4 , 165 p .