Phosphonium salts and phosphoranes—VI1

Phosphonium salts and phosphoranes—VI1

PHOSPHONIUM SALTS AND PHOSPHORqNES-VI1 “P NMR SPECTRA OF ACYLMETHYLENEPHOSPHORANES Ju~nr M. BRITLUN and R ALW JONES+ Schoolof CbcmicslSchces, Universi...

617KB Sizes 1 Downloads 192 Views

PHOSPHONIUM SALTS AND PHOSPHORqNES-VI1 “P NMR SPECTRA OF ACYLMETHYLENEPHOSPHORANES Ju~nr M. BRITLUN and R ALW JONES+ Schoolof CbcmicslSchces, Universityof East An&a, Norwich NR4 7IJ, Englmd. (Recekd In UK 2 oclobu 1978)

In the cuurse of our study of the thermal decomposition of tbc beWoaroyimethyknephosphoranes,l 1 and 3, it was of interest to disuwer whether there was any dilfereaceintbeekctronkstructuresaadintbepreferred conformations of the isomeric pbospburanea,which would a&t the e5cklKy of their conversion into the heteroarywyw, 2. Ar’.CO.$.Ar’

A$.CrC.A,‘-Ar’.C.CO.Ar’

_

5. d II

ijPh,

Pph,

I

3

2

H- -

R’

R’

0

R'

+PPh,

PPh,

40

4b R’

v-c

0

R’

+P Ph,

R’

O-

-

negligiik interaction between the quaterwy P’ atom and the anoinic O- atom of the chid htterionic sbucture (4) and although at low temperature, structures anakgoustotbeCmemberedring6havebeencon6m~d as intermedhs in the w* synt&sis of alkenes: such stIllctures have little importance in the ground state strum of the acyhethylenephosphoranc3. The equiliium position for the two cunformers, 4 and

H

+PPh,

tk

I’OtdOld

CllClW

barrier

bCtWWl

tk8C

UMl-

f&men should be affect&j oat only by the electronic characterofR’butshouldalsodependupontbedegree of interaction of Rz with the CO group. In particular,an ekctron-withdrawing R2 substhat would be expected to deshbilixe the zwitwionic structures 4b and sb. Similarly, sterk in&action between the aryl substituents .and the triphenylphosphoryl group should Educe the c&wity of the phosphrane system with a consequent destabilixath of the canonical forms 4b and sb. “P Chemical shift data have been accumulated for a widerangeofphmphwsuunpounds9anditisapparent that “P NMR spectroscopy could provide a ~osticpfobeforthes~oftbeinteractionoftheP atom of tbc phosphoranes with the acylmethylene group. However, no systematic survey of the “P NMR spectra of acylmethykae phospboranes has been reported.

Sb R’

R’ w

0 -

PPh,

6

In previous confstudied of acyhethyknepbospboraws 4*5 extensive use has been made of variabktempenwe’HNMRspectrwop~‘aaditis evident that, when R’ # H, the cisoid structure 4 predominates,attln@itkasbu?nlKMdtbattJEbulkof tbeR’substhnta&tstheequiliiposition.’Botb conformers of the formylmethyknephphaae (4 and S;R’-d-H)exhtinequitibriuminaca t:lratioat room tempeMw,&’ but tbe presence of a strongly electron w&drawing sub&u&, R’, produces an increaseintt.terektivec.oecentrationofthefmn8o&fconformer.“Tlle’HNMRdataalsoMicatedthatthreis

The “P NMR cbmical shifts of the simple acylmethykae pbospboranes (PW=CHCOR), presented in Tabk 1, were in accord with previously reported ‘HNMR data for analogous acylmetllylenepbosptmranes~’ and Micated that, with the exception of the formyl compou& only ‘one conformation exists in &uterdloroform and in deuterobenxene. Comparison of the ma&&s of the observed ‘IP CWdShiftsWithpnviouslyrep0rtedvalues for acyiphosplmranes of known conformation7*‘zcon6rms that the wmpowds under inveshgation have the cisoid sbWure4.TbeshkldingeffectontbePatomoftbe YMe% signal

as observai in the UpfMd shift of tbc rmoMllce Compared With the &&cal shifts of the c.or-

responding pbosphonium salts, is compatiile with either the da-pa inhaction between the P atom and the carbanioniC0l0thykmgroupofIr ortbeconjugationof the phosphonium group with tbc enolate anion w-system

J.M.Barr~~~~aulRA.Jowra

1140

Table 1.“P NMRckadcal Mb for acyh&bylenepborpbaraa (Pb,lWHCOR)md the m pborpboaium W&W (l’l&!EgOR) phosphon%lY5 Selt

PtXMphoreUe

R

in C6D6

in CDCl3

Hydrogen

in CDC13

-15.0 -19.1 5

Methyl

-14.8 a

-15.8

-13.6 -20.1 2

1-mthyl-Z-pynolyl

-16.6

-17.2

-22.9

P-Thienyl

-16.9

-17.5

-22.1

2-Fury1

-17.2

-17.8

-22.3

PheIIyl

-17.2 d

-17.9

-22.3 2

5

cleoid fom7 -15.0 p.p.m.; trmuoid form7 -19.1 p.p.o.

c

high field el.gnel due to em1 form.12

a

lit,,13

a

2

lb.,12 -14.7 p.p.m.

lit.,13'14-16.7 p.p.m.

-20.7 p.p.m.

Of~~~~Of~~~~f~~ p&spaorancaill~~f~n?~t4dK: cbmicd shift8 of the corresponding CompWds

measuredindeuterobenxene,arccoMi8tenttia greater cuntriition of the exteadcd conjugated system (4b) to resonance hybrid in the more polar soIve& Such ~eff~~d~e~by~~~~~terochloroform to SpeciiIcally8olvate the ylide through H- bondingwith t& enokte 0 atom. This inteqretation of t& solvent shift Mers from that proposed for the solvent e&t upon the ‘H chemical shifts of the conforImtionauy mobik ethoxycarbonylmethyknephOBpilOraneS’” and for the formyhnethyknepbsphwa~cs;'in which it was sqgestcd that the more polar solvent &Slid the fmdif cxmf0rmah. Them is m evidence from the “PNMR spectra for the presenceof the four-memlzred cyclic structure (6)” in either solvent. ‘l%evariationinthedeshkld@eWtofthearyl Wbstituentupon the phosphorous mlckus of the amyl~~yk~~~~ is small and follows the order:

eon-

of ‘%NMR data for alkoxycarboaylmethykIleylides,“batmaybemtioMl.izedintermsof

freqlleEk8 observed for the a4Wy! CQmpoimda”are also in ageementwithtbe~enokteaaion StrucWe. It~~~~~~~~~ of alkoxycarbonylmethyknepho8payteaepaMyrboraaes is sensitive to thestericbulkofalkylRroops,R’,ontheaubanWc centre.‘&boll&hary1aubstitWnt8tendtosEabitiu:the cisoid rotamer.lo30coMilltent with these obllervations, each a-aryi-a-aroyhnethykne-pho#omne exhii only ooe “P msonance sigual, which, by qalogy with the simpk aroylmethykne =mpounds, we have aftsigned to the &o&f &Mner(Table2). However, the introdWtion of the (betero)aryl sub8tihKntat the a-position of the produceda&a-heteroaroylmethykn tinct de&&@ e&t upon the dbosphorus nucks when the spectra were measured in Cm3. The greatest e&t was observed upon the aeon of the 2--l 7 (l.tW.9ppm), whi!st the phosphorus nucleus of phenyl> 2-furyl> 2-thkllyl> l-methyl-2-pyrrolyl. e 2-thtenyl and l-methyl-2-pyrrolyl derivatives was deahklded to a smaller extent (0.7This order approximatesto the expected inductiveekc- 0.9ppm). The smalkat e&t was observed for the atron_witbclrawiaepropertiesoftbearyl~andistbc p&nyl compou& (0.2o~ppm). In contrast to these invcnic of theirfrle-mdcekctropdoaatipgabili?y.TEis obsmations, the int&lChoS Of 8 @Cell, 2-thimlylOf ~~$~~~~~~~I~~~ l-~~~2~~lyl groupat the a-positionof the benzoylP-CL’0 plane, as Scsted by X-ray measureme& in rn~~e~~~p~~~~~w~ the solid state for an8k#oua compom&U pcr5%a in the 2-fury1derivative resonated at lower &Id. Sohlt&.BothtbeiMhKtiWettcctandtheClDSS-i%l!Mokudarmodelsahowthf&forthecMdro~r, jugatio~oftheCOoroupwiththeary1ring~the lleitkbetCfOCyCiiCliOgCanlkilltb8S8Olephlle~tbC c&amonic ceotre have a de&&G& effect up00 the bC-6 ay8tcm ad the deslkiddhg effeds Can be ~~~~~~~ch~~~~~ . . ~*~Cff~~~~ ~~~ofa~~~~d~-p~~~ ~~of~p~~~~~~~ ~~k~~rex~~~~~~~*H~ +system,asareaultofthei$ictiveekctron-with-. shiftsofthemethyk.neprotonwiththechaoSoftbe aroyl &atitumt. However, the small ransc of the drawal by the a-beterorrryl s&Utuent~~.“~ The “achemical shift8 (a 4.05-4.38ppm) Micated that the wbatituent effect” was ksa regular, when the spectra overrid& conjugative inter&on for the simpk acyl- were measured in S but.ingene&a methyknepho@mmes is bed represented by Ib. This &shkunge&twasobnervedforallP-arylder+vaconclusion differs from that previoosly reached from a tives, with the exe&on of the a-(2*furyl)compoo& It

1141

Tabk 2 “P chmid

A2

difts for (a+royl-a~P’iph~

-

in

-1

phenyl n

I,

n

II 2-Thienyl 11

in

C6D6

-16.0

-15.0

1-t4thy1-2-pyrro1y1 -16.8

-16.2

P-Thiemyl

-17.1

-16.5

2-Fury1

-17.5

-16.8

1-Mehyl-2-pyrrolyl phanyl n 1-Methy1-2-Py7m1y1 II

CDC13

-16.7

_

-17.4

-16.9

2-Thhlyl

-17.7

-17.8

2-Fury1

-18.1

phenyl

-16.9

1-Methyl-2-pyrrolyl -17.3

-16.25

n

P-Thienyl

-17.7

-1723

1,

2-Yuryl

-18.7

phenyl

-17.6

-17.2

I,

1-Methy1-2-pymo1y1

-18.4

-17.8

1,

2-Thienyl

-10.0

-18.7

"

2-Fury1

-19.1

-18.8

2-Fury1

Tabk 3."P c.&cmidabifts ofa-selyllada-benzoyhwth~

(Ph,P4!Rz~~R’)

LJ31Pillctx.il 3

AC

m

H

-14.8

0

ne

acety1

-16.6

-2.0

24

1-mcthy1-2-pyrroloyl

-17.0

-2.2

M!

2-thewy1

-17.9

-3.1

Me

P-furoyl

-17.0

-3.0

m

b==Vl

-18.8

-4.0

ph

H

-17.2

0

Ph

acetyl

-18.8

-1.6

Ptl

1-m8thy1-2-pJmro10y1

-17.7

-0.5

Ph

2-themoy1

-19.0

-1.8

Ph

P-fllroyl

-19.1

-1.9

Ph

WY1

-19.0

-1.8

5

A

-

8 (R2-acyl)-8

(R*-i#)

1142

J.MBilnTAlNaDdRA.JoNss

thermal fragmentation of the a-henxoyl-a-beteroaroylmethyknepbospboranes to give the l-ixeteroaroyl-2pheqykthynes (Ar-CO-CxCPh).’The larger and more variable “a-acyl effect” rest&& from the inboduction about the C-C bond of the b%=O system wouldallow of heteroaroyl groups at the a-position of the acetyla greater degree of mesomeric interaction with tbe methyknephospboratk indicated a greater degree of heteroaryl ring!& conjugation of the heteroaroyl group with the carThe introductionof a second a-acyl substituentto give banioniccentre and that both (7b, R=Me)and (7~.R-Me) the a,adiacylmethyknephosphoranes had a signi6caat are impmtant canonical sbuctmes. This resonance deshidding effect upon tbe pbusphorus nucleus (Table stabilixatb is retkcted in the almostequivalentyields of 3). The “a-acyl effect” had a greater intluenceupon the tbe l&eMoarylbut-I-yn-3-ones(Ar-C&-CO-Me)and l“P chemical shift of the a-acetylmethykne- he&oarylbut-3-yn-lunar (ArCOGX!-Me), obtabad phosphoranes (2.0-4.Oppm), compared with the a- upon thermal fragmentation of the u-acetylsbenxeylmethyknephosphoranes (0.5-1.9ppm). By heteroaroylmethyknepbospberanes.’ analogy with tbe preferred conformation of tbe ‘free” similarly, the downtkkl shift of tbe “P resonance anion of @diketones,~ the a,adiacylmethykne- signals, observed upon the formation of the a-acyl phosphoranes would he expected to adopt the con- derivatives of ethoxcarbonylmethyk@rorane, can he formation (7). An inspection of mokcular models, attriitedtoapreaterdekcati&onofthecarbanionic however, indicated that only one acyl group could con- charge. Hence, ahbough steric hi&ance prevents jugate effectively with tlk carbonioniccentre. copkbtyofhoththeRgroupandtbeestersubst&nt is probable that. with the des&Gng effect of the deuterobenxene upon canonical structure 4b. the ylide structure 4a tEc4unesmore importantand partialrotation

P A

Ph,L

\

with the bC-6 system, aumnkal stnmture @e) wouldbeexpectedtoprovi&amajorcontrkutkntotJk resonant hybrid. By analogy with chemical shifts observed with the simpk aroylmethykne compounds (Table 1). it is apparent that the aryl groups Raveessentially only an inductbe ekctron-withdrawingintluence on the system and the variationof tbe “P chemicalshift withtbechangeinthearylgroupisnegligiieflabk4).

8

-R

+

-

/c--R

PhsP-C+C_Ar

fi-Ar

b-

0

70

7b

+ Ph ,P-C

?//C--R \

5-A’

Ph,P+-C

0 7c The

ahost constant and small “4-acyl effect” obser-

/ \

Ph,?-

$-OE’

\\

$-OE’ 0-

aa

ab

8’ Ph a-6

Cd’-’ \

E-OE’ 0

ec

for actboxycarbonylmeU~yIeWr+heoykb&i~~(Ph,l’=CRC4Et)

&ifts

631P in clxx3

AS

A-

0

+3.3

b

n

-17.g

acetyl

-18.1

-1.1

-3.3

benzoyl

-19.4

-2.4

-2.2

2-furoyl

-19.4

-2.4

-2.2

2-thwyl

-19.4

-2.4

-2.5

1-methyl-2-pyrroloyl

-19.4

-2.4

-2.8

a

A

a

A -

r

C-R

/ C

0

ved for the benxoylmethyknep~s and the relatively constant value for the “P chemical shifts of these derivativesis compatiik with(7~.R = Ph) beii the more important canonical structure. Tbe “a-acyl deshklding e&t” for t&se. compounds consequently arises from the inductive electron-withdrawingeffect of the twisted non-conjugating heteroaroyl group. This postulate is in accord with the observed preferential Tabk 4. ,‘P cbmical

0

i? C-R

-

6 @-a~yl)-6

(R-H)

b (Ph3P-CR.co2Et)-6 (P+~~PICHR)

lit.,24 -16.8 p.p.m.

Pbosphonium s&s and pbosp&ranes-vI’

1143

(a - 2 - Fwyt - a - 2 - t~~mcthyl~)~~y~~sphomnr (!M%),m.p. l%-lP, dcc. (Fold: c, 74.0; H, 4.8. C2sH*rozPS

-AL

“PNbfRspxtrawc~-crux~daiusingrVariimXL-100spcc-

(!i#%), IX&.K&i%’ @oun& C, fi0.s; H, s& N, 3.2. C.,H,sNOP reauina: C. 81.0: H, 5.7: N. 3.1%J. (a - Bau@ - i - 2 - jWyJGd#&~~~~~SphO~ (99%). qp. 19219y (pouad: C. 8O.R H, 4.9. t&H&P nquirea: C. 89.7; H, 5.2%). (a - Be~~zoyl- a - 2 - th&nytmethyk)t&riplSarrblkorplronuu (!H%),m.p. 2tNP(Found: C, 77.7; H, 5.2. CJ&OPS nqti: C, 77.s; H, 5.0%). (a - 2 - ?Moyi - 0 - 2 - t~y~~~)~~~pwp&omw @f%)* m.p. 188-1W Wlmdz C, 71.4 w, 4.6. C,&OPS rcqmrcs: C, 71.8; H. 4.5%). (4 - (1 - Me&f - 2 - pydyf) - a - 2 - Ml&mcthyt~eWphaWho~pho~e (71%), m.p. 216218” (Found C, 74.9: H. 5.6: N. 27. CmHdJOPS rcdcs: C, 74.7: H, 52; N, peppy-

pho@trmhm~ chloride. W.8~

80%) m.p. 22%W

Wundi

C,

68.1: H, 4.9. C&&lOPS re@irea: c, 68.2; 4.8%). (l-Mtt&~-2-pynv&yf)h&J~jdpho#phaJIimm chlo?fdsz lbalk (9.7& 0.12moQ and 2,b&id& (12&g, 0:12mol) in CHCh WOmlI were added over a wrkwf of ca 1Jltr to a Je~iqt-sobJ of &loNWyl cbkridc 03.6 & 0.12mol) in CHClJ (aoJlli& The JDixtmt wM rduxed for 2 In ad tbc solveot ~v~~n~~r~~~~~vea~wti~ wucoaeclrdrPdwadwxlwitbctbcr(soall).TbscoalbiictJlcr extmcts were wasbed successively witb 3NHCl(2x3Oml) and

H, j3f N, 53, C&&0$ &ire& C, R.5; H, 54; N, 3.1%). (~-(1-~~~-2-p~~-a-2-t~~h~~)t~~~&o&oruiw 181461, m.n Wdec. (Pou& C. 74.k H. S1: N. 2.8% &I&, NOPS mquircs: C, 74.7; H; 5.2; N, 3.0%); ht - (1 - kthti - 2 - DYJW&fi - (I - (1 - m&Y/ - 2 -

wrta (5 x loom& dried (a&So& and cvaporatd to give a ye&w oil. wbkb on tdumtion witb pctrokum& (40-W) s&d&xl to give 2doraaMyipysYok (12gI 65%)*m.p. [email protected] m.p. 474. Tbc 2~~~~ (~~-0.~~) was converted into (l-mUhyi-2-py~~~~y~~~~ chlor& (11p. si%), m.p. 238-2391(F~~LI&C, 712 H. 5-S: N, 3.4. C&,ClNOP requires: C, 715: Ii, 5.5: N, 33%) by a procubue adogoua to tbat de&xii above for thesynthcs~of the tbiopben Jdogtlc. BqJadM of Phosp&wuJW3*The known acyllldykJmpboqoWwcre~ffomtbceornspo~~~ pbomtJmdtsbyo=tbodsdcscAdintbcWaturc. ~rn.~w~~~nt~~~~~~ andfRaad’HNMRspccaaldatawerccomp&kwitbti~~ cxpixted vahbs. TbcbitbatowreportedwmpoundawenpJepadbytbc f~~~~~~ (a-~~~-a~~~~~~~~ea The appm&ak arylmeiJlyltii&n~llium chloride (0.03mo9 was a&id witb stirr& to freshly prqmred NaOEt (0.03mol) in bmtzcne (IWml) under Nt.” Tbe mixture was stinsdfor4SmiaItU*arwltbeE(oHwarnmovedbyrrzeotropit dktiuon. The aaofoDJiatc arovl CbloJide Io.o1slDon in

- a - (I- methyi - 2 - pym~lyl)muh@Jc)t~$~he~~ylC, 80.$ H, ti& N, 2.9. C&&OP requires: C, 81.0; H, S-7; N, 3.f%). (a - 2 - M - a - 2 - thawytmethylaw)trfpktnytpkosphonmc (5’4%) m-p. 189’. dec. (PopDd: C, 76.6; H, 4.9. C&i&P nsuirca: c, nR; H, 4.9%). (0 - 2 - Bmyf - a - 2 - !Matykth~)t~htnyfphoap~~ (9246)m.p. 177~1W (Founds C, 74.2: H, 4.5. C2JI&FS phoapkomne ilOO%),rm.p. 1225-1230(PO&: C, 70.& ir, j.0. Jequins: c. 74.3; H, 4.7%). C&H&d’s nauires: C. 70.7: H. S.l%b (a - 2 - &U$ - a - (1 - mdyf - 2 - $y~y~m~~~t~~~~~ (73561, m-p. 232-233”(pourd: c. 77.2: H, 5.3; N, 3.5. &&N&P reqircs: C, 77.3; H, S.4: N, 3.1%).

1144

J.M.B~~~~AIN~IMIR.A.J~

(a - BenwyI - a - (1- InerhH - 2 - pymdo~)mJthyiaw)triphalyl(1 - Methyl - 2 - pylroky0mctbyka?fIipbenylpboxpbafw (1.14& 0.003mol) xDd balxok Mbydl+k (1.11. 0.005ID00iu CHCI, (15 ml) were realxed for 12hr. Tbc sdvcot w8arcmovcdaadtbcfeaidudoilaNctedwitbpctrokumetber (b.p. 6M#r, 5 x I5 ml) to nmove tbc cxcca8 knxuic mlbydrik. Tihntion of the residue with dktbyl ether: bexane (1: I) gave (abaud - a - (1 - rndhll - 2 - PwWWWWWWphosphotw (136g, !I3%), q.p. 211-214n(FoundzC.ltO.l. H. 5.4 N, 27. &&N&P rcquirw C, 79.8. H. 5.3; N. 29%). Pllospikomnr

A&no~a~&--We tbxnk Dr. R. K. Hti tbe”Pp.oberodMr.P.HxylettforY~in~tbe”P rcsonxnce w J.M.B. g&fully akwwk&s xll S.R.C. lBFiiatelmIlCc ggarlt

for tbc loan of tbc receipt of

‘PutV.J.M.BritbinPadRA.Jwes.I.CikanRtkaubmittcd for pubuion. Q. J. Bcstnmnn and 1. P. Snyder, 1. Am. Chun. Sot. 89.39% (1967). ‘H. L Zdi~a, J. P. Snyder and H. J. Bestnmnn. Tern&&~ JiurerJ 3313(1970). ‘J. P. Say&r xnd H. 1. Beatmum, Ibid 3317(1970). ‘I. I? Who xnd J. C. T&by, &id. 3769(1970). ‘IA. L. FiBeux-Bkndmrd aad M. G. J. AMio. C.R Acad Sci, Pad8 27#c, 1747(1970). ‘Cc.J. Devtiu ami B. J. Walker, Tdmkdmn L4#clv4323(1971); Teh&edm 1.3501(1972). ‘S. Trippat, Pm AppLCkm. 9.‘255(1954). ‘see, eg, G. Mxrvd. Annual Repott~ of NMR Spectrurapy (Edited by E. F. Mooney), Vol. 5B. Academic Resr. Ladon (wn). xnd s&c&lilt P&did Rqolt3 on orpMoprkosprkons Chcmlstty,vol.3 14 The chemical !3ockty, London (1970-n). “J. P. Snyder, Tdmhedtm L&ma 215 (1971). “cf. CLH. Binun xnd C. N. Matthews, Chew Comma137(1967); E. Vukjr xnd K. A. J. S&k. I. Aa Cha &c. 95.5778 (1973): E. Vedejs. K. A. 1. Snobk and P. L. F@m, 1. Otx. c&em. 3& 1178(1973). ‘15. A. Nermeyaaov, S. T. Bermxn, P. V. Petrovxkii and V. I. Robaa, M Acad Nauk SSSR 22#, 1372(1975):Chea Abrtr. a 138no (1975). “F. Ram&, 0. P. Madau sod C. P. Smith, Tetmhedm 22,567 (1966). ‘+Ibchieberv~uerecordcdbyA.J.SperkkladK.W.Raas.I.

Am.chalLsor.I,279o(1963)i8tbxtofsampkcoa~ by the pboapbonium sdt. “I’. S. Stepben. 1. Chat. Sot. 5658(1%5); A. J. Spexixk awl K. w.Rlt&J.AJn.aa&c.87,5603(1965). ‘6. A. Gray, Ibid %,7736 (1973). “J. M. Brittxin, Ph.D. Tkais. Uaivaity of Exat Anglk (1977). “See P. J. Taylor, &ecbuchia AC& 34,115 (1978). ‘q. Zcligcz, J. P. Snyder and H. J. Butmano, Tetmhdmn I.‘drm 21% (1969). =D. M. Crauae, A. T. Webman xnd E. E. Schweixcq Chem. &mm. 866 (1968). “See S. 0. Grim, W. McParkw and T. J. Marks, J&f. 1191(1%7); S.O.GrimmdJ.H.Ambnu.J.Og.~33.2993(1968). =D. W. ABen, B. G. Hutky and M. T. J. Mellow, 1. Ckm. !hc. PC&II II, 1690(1974). ascc e.g., C. Cambilku, P. Sxrtbw and G. Bnm, Ttimhfmn Letters 281(1976);R A. Jooca, S. Nokkco arid titokb Sii. syatk coma’. I, 1% (1977). y. N. hirttbews xnd G. H. B&I, Tehhdmn L&ma 5707 mm. =G. W& and U. Schcolkopf, h. Syn&. Coil. VoL v, 751 (1973). =H. J. Beatmum and B. Arnaoon. Chem. Bw. 95.1513 (1962). ~II. K. Ymv and D. J!ckhxrdt, Z& f&h&i Kbim. 31.35% (l%l): aall. A&r. n,4621 (1962). ‘K. !kbb#$ xnd H. E%u, lkibi#J Ann. 61676 (1%4). =R. A. Jonea xnd M.-A. Tdmct, AusbDL1. &a. 18,903 (1%5). ‘?3. Atsacs. Acfo Chea Scaad. 15,438 (l%l). “F. Ramilw and s. fkaXbowit& 1. org. aem. 12.41 (1957). ‘*S. Trippctt xnd D. M. Wxlker. 1 Ghan. Sot. 1266(l%l). “H. C. van deerPh ud C. J. Pawoaa, Rec. Tmo. chim. 63,701 (1964). %Iiti& prrtcDt 1, 154. 745 (I%6); Glum. AbJtr. 71. p7Ms6 (1969). UP.A.Cbopard,RJ.G.ScarkandP.H.Dwitt,J.OrgChan. 30.1015 (1965). YP.B.Hulbat.EBuediPOmdC.~.Robinson,~.M~C~: 16,72 (1973). ?d. 1. SbeVChUk id A. v. btllbfOV&ii. a tiJ&Ckd Khflll. 34,916 (1964);Ghan. Abrtr. 60.15810 (1961). ma - A&y1 - i - etboxycubonylmetbyki&&eny@oq&xnG was found to have q .p. 17!&1m M..” ma. 172-174l (Poaod: C. 73.6 H. 6.0. Cxk.. ior C&0$‘:& 73.i; H, 5996). m(l - Methyl - 2 - pynoloy@ctbykn&ipbenylpbospborw, Obtk4iflWmtk~pbospboaiumChbfidC.hSd

m.p. 183-184e(Faund: C. n.9; H. 5.8; N, 3.9. CtJIpNOP quirca: C. 78.2: H, 5.8; N, 3.796).