Photochemistry of bis phenyl carbamates in aqueous solutions

Photochemistry of bis phenyl carbamates in aqueous solutions

Chemosphere, Vol.16, No.2/3, pp 513-517, Printed in Great Britain 1987 0045-6535/87 $3.O0 + .00 Pergamon Journals Ltd. PHOTOCHEMISTRY OF BIS PHENYL...

159KB Sizes 3 Downloads 71 Views

Chemosphere, Vol.16, No.2/3, pp 513-517, Printed in Great Britain

1987

0045-6535/87 $3.O0 + .00 Pergamon Journals Ltd.

PHOTOCHEMISTRY OF BIS PHENYL CARBAMATESIN AQUEOUSSOLUTIONS by P. M~allier and J.P. Percherancier Laboratoires de Photochimie - Universit~ Claude Bernard LYON I 43, Boulevard du 11 novembre 1918 - 69622 Villeurbanne - France M. Mansour GeselIschaft fur Strahlen- und Umweltforschung mDH M~inchen I n s t i t u t fur ~kologische Chemie D-8050 Freising-Attaching F.R.G. We present the photodegradation of some bis phenyl carbamates which are phenmedipham's derivatives.

F X

oo.

0

Nucleus I

Nucleus I I

X is a substituant : H - Cl - F - NO2 or CH3 for phenmedipham. We have calculated the energy of the differents excited states, the quantum yields of fluorescence, phosphorescence and of photodegradation. The spectroscopic study and the knowledge of the photoproducts permit us to give a mechanism of reaction.

Spectroscopic properties The absorption of phenmedipham is contained between 200 and 450 nm. Our results are relative to the f i r s t absorption band in different solvents (table I and I I ) . When we study the results we ren~rk the high value of the molecular extinction c o e f f i cient, the low influence of solvents and substituants, i f we except the particular case of the nitroderivative. We have a band of charge transfer. The energy of : - the f i r s t singlet state is

415 Kj

- the f i r s t t r i p l e t state is

320 Kj

More important is the influence of the wavelength, when we use E.P.A. as solvent phosphorescence experiments.

513

514

®

Eau

X H

" (.

Ethanol

Hexane

x

x

~

%-

27Y

1500

279

2400

3-C113

278

1700

279

1800

277 2100 278

1500

4-C113

283

2700

278

34oo

284

34oo

3-CI

282

1400

283

2000

282 2200

4-CI

281

2600

278

2900

277 2900

3-CF3

283

2800

279

3200

283 2900

4-N02

310

11950

310 11900

309 13000

B

TABLE I : Maxima of absorption an molecular extinction coefficient

..~O/,VAA~' CONDITIONS D'F..XPERIHENTATZON SUaSI|TUA~r H 5,10 -5

U

~exC

IF max (rim)

~F

%

ES1 kJ,=ole -L

20;

300

1,5.10 -2

419

260-28~

300

3.10 -2

1,7,10-2

418

260-285

300

3,3.10 -2

420

260-285

300

2,7. I O-2

411

260-285

300

5. I 0-2

415

260-285

300

6. Io -2

410

5.10 -5

260-285

20"

4'4~ 3 3".Cl

260-285

20"

300

0,5,10 -2

5.10°5H

(,~)

260-285

5.10 -5

pherm

~exc

kJ.mote -I

kV max



3 r.H3(phenm)

lk-~ 2

£S 1

(1~)

300

3"~3

HEXANE

ZTIIAHOL

(.n~)

422

5.10 -5

260-285

20°

300

1,9.10 -2

415 412

5.10 -S

260-205

20"

300

I,S,IO -2

412

5.10 -$

260-285

20"

300

6,3.10 -2

412

260-285

300

JO. 10 -2

414

5,10 -4

260-330

20"

430

< IO-3

335

260-350

420

< 5, 10-3

340

Solvant

t"

exc (nm)

£thanol

20"C

260-285

Hexmne

20"C

260-285

~exc

ES I £T! mole-I k.j ~ l e - I !

~F

~P

max

Nx

3

300

-

0.017

418

3

300

--

0.033

/415 420

(.m)

#r

@p

--

d|oxmm~ne esu

20°C

260-285

3

300

--

0.11

20"C

260-285

3

300

-

0.04

HP *

77°K

260-285

$

295

410

0.10

0.50

-

]20

LPA 00

77"K

260-275

5

300

&20

O,O&

0,10

--

325

£FA

770K

260-295

5

300

420

0,06

0,40

_

325

TABLE I I :

Emission of bis phenyl carbamates

N-B

JT 3 D Aj-pe~ell

I~ ~EA~N ApT,srell

515

The quantum y i e l d of phosphorescence is dependant of the wavelength of excitation 260 < ~ex < 275

@p = 0.10

280 <

@p = 0.40

ex < 285

We explain this result by the following mechanism 1,2,3 TI

+ T1

-~

X + SO

annihilation t r i p l e t - t r i p l e t

X

+ SO

+

S1 + SO

X : excited state

SI

For the nitroderivative the results of absorption and emission are d i f f e r e n t . We have an inversion between the transition 1A + 1La and 1A ÷ 1Lb for the cycle which has the substituant NO2. This inversion explains the high value of the molecular extinction c o e f f i cient at 310 nm and i t s low value at 230 nm. We find the same "red s h i f t " for the wavelength of fluorescence, and in these conditions fluorescence comes from the aromatic nucleus substi. tuted by NO2. We have an energy-transfer between the nucleus I I and the nucleus I. These results are obtained by calculation with a semi-empiric method 4,5,6 I

I

!

Lt uoyau II

t b aoysu II

t b novau I

cOavenion interne

ILsu~aul

/

I~aQ~e~ d'~ner~|e u~rS"rn°idcuj-z~re bV sbsmbdo ~ 270 am

hV sb~(xbh k 279 m

FIG I

I

hV dm~l k 430 um (~uorucesce)

S 0

E n e r g ytransfer for nitro-compound

.Photodegradation : Kinetic and photopr_oducts We use an annular photoreactor for our experiments, the lamp emits at 254 nm (2 x 1018 photons/sec). The values of the quantui, yield of photodegradation (Table I l l ) and the effects of diphenyl are characteristic of a t r i p l e t state reaction ( f i g I I ) .

516

pilotolyoe

I

t ,

irradLation

hexane

238 r ~

4,0.10 -2

254 am

3,5.|0 -2

262 mu

3,3.10 -2

Ill

Ethanol d~gaz6

a~r[

15,0.10 -2

0 , 9 5 . 1 0 -2

a~rl

TABLE

du phenm~diphame d~gaz~

I,O. lO- 2

eau

dioxane

a~r~

a~r6

1 , 4 . 1 0 -2

5,8.10 -2

1 , 3 . 1 0 -2

6,8.10

-2

1 , 3 . 1 0 -2

0,99.10 -2

Quantum yields of photodegradation of phenmedipham

i

o.s

FIG I I

i

I.O

l

I.s

2.o

~ [ O~,,E~:(LE] ( .lO",',t )

Desactivation of phenmedipham by diphenyl

The mechanism of photodegradation is radicalar. The product e ~'azodisobutyronitri]e (ADBN) gives radicals when i t is heated or irradied. In presence of ADBN we note an increase of the quantum yield of photodegradation (in water) = This r e s u l t

8.7 x 10-2

i s in good agrement w i t h t h e d a t a o f t h e t a b l e

III.

5I?

We propose the mechanism

XL ~ ~ "

NH- O ICl- O L ' I J '~~ [ ' N H - O IClO-CH3

x N"C



"O~ , N H -

7,8,9.

+ Solvent

.C,oOCH3 + Solvent

hv ,

hu,[]

3 _ _ _ ~ X ~ NH""O 'c' +XZ))j~,yN L~,~~ I'I"O ,C,O CH3

C,

~)

hv ? H ' ~ " N H ' C

I

II ,

OC H 3=

NH2

OH'•

COCH3 O

When we consider 100 excited molecules : 10 give fluorescence 50 give phosphorescence 40 give reaction or desactivation without radiation

Bibliography : 1 - C.A. Parker and C.G. Hatchart

Proc. Chem. Soc., 386, 165, 1962.

2 - B. Stevens and M.S. Walker - Chem. Comm., ~, 8, 1965. 3 - G. Porter "Reactivity of the photoexcited organic molecules". Interscience Publishers John Wiley - NY, 100, 1967. 4 - J. Petruska - J. Chem. Phys., 3_44, 1120, 1965. 5 - P.E. Stevenson - J. Mol. Spectry, 15, 220-256, 1965. 6 - C.C. Trametz and H.H. Scmidtke - Theor. Chim. Acta Allem., 4__22,13-22, 1976. 7 - W. Bussacchini, B. Pouyet and P. M~allier - Chemosphere, 1_~4, n° 1, 155-156, 1985. 8 - M. Mansour - personal communication 1985. 9 - M. Mansour - Photochemical Process Affecting the Fate of SomePesticides in the Aquatic Environ~nt. Paper presented at the 2nd International Congress for Soil Pollution and Protection from Pesticide Residues. Zagazig University, Faculty of Agriculture, Kalubia, Egypt, 7-12 Sept. 1985.