Photodecomposition of several chloroaromatics using a commercial prototype reactor

Photodecomposition of several chloroaromatics using a commercial prototype reactor

Chemosphere, Vol.17, No.lO, pD 1971-1976, Printed in Great Britain 1988 0045--6535/88 $3.00 + .OO Pergamon Press plc PHOTODECOMPOSITION OF SEVERAL ...

255KB Sizes 0 Downloads 27 Views

Chemosphere, Vol.17, No.lO, pD 1971-1976, Printed in Great Britain

1988

0045--6535/88 $3.00 + .OO Pergamon Press plc

PHOTODECOMPOSITION OF SEVERAL CHLOROAROMATICS USING A COMMERCIAL PROTOTYPE REACTOR Yi Ming Xu*, P i e r r e E. Mdnassa**, a n d C o o p e r H. L a n g f o r d * Department of Chemistry Concordia University 1455 de M a i s o n n e u v e Blvd. West Montrdal, Qudbec Canada

H3G 1M8

* P r e s e n t a d d r e s s : Dept. of C h e m i s t r y , Y a n g z h o u T e a c h e r ' s College, Y a n g z h o u , J i a n g s u , P.R. C h i n a +*Present a d d r e s s :

C - I - L , I n c . , E x p l o s i v e s T e c h n i c a l C e n t r e , McMasterville, Qudbec J3G 1T9

Abstract: We r e p o r t o u r r e s u l t s o n t h e s t u d y o f a p h o t o a s s l a t e d c a t a l y t i c d e c h l o r i n a t i o n of t h e o r t h o , meta a n d p a r a - d i c h l o r o b e n z e n e s (o-DCB, m-DCB, p-DCB) a n d 2 ' , 3 , 4 - t r i c h l o r o b i p h e n y l (TCB) b y m e a n s of a p r o t o t y p e commercial r e a c t o r u s i n g t h e s e m i c o n d u c t o r a n a t a s e a n c h o r e d o n a f i b e r g l a s s mesh.

1971

1972

Introduction Chlorinated hydrocarbons hazardous

are classified by the Environmental Protection Agency as

w a s t e , toxic p o l l u t a n t s a n d c a r c i n o g e n s

and the environment.

(1).

Yet t h e y a r e w i d e l y u s e d i n i n d u s t r y

C h l o r o b e n z e n e s a r e o f t e n u s e d in t h e m a n u f a c t u r e o f m a n y p e s t i c i d e s .

They are also by-products

formed from the d e g r a d a t i o n of o t h e r c h l o r i n a t e d h y d r o c a r b o n s

P o l y c h l o r i n a t e d b i p h e n y l s a r e r e m a r k a b l y s t a b l e c o m p o u n d s (2). u s e d in i n d u s t r y etc...).

(1).

They have been intensively

( e . g . d i e l a c t r i c f l u i d s in c a p a c i t o r s a n d t r a n s f o r m e r s ,

dedusting

agents

H o w e v e r , t h e d i s c o v e r y o n e d e c a d e a g o i n E u r o p e (3) a n d N o r t h A m e r i c a {4) o f

chlorinated hydrocarbons environmental problem.

in both n a t u r a l a n d d r i n k i n g w a t e r s h a s f o c u s e d a t t e n t i o n on the T h i s p r o m p t e d d i f f e r e n t s t u d i e s o n m e t h o d s to t r e a t , d e g r a d e a n d

d i s p o s e of t h e s e chemical p o l l u t a n t s . hydrocarbons

It i s k n o w n t h a t t h e t o x i c i t y o f c h l o r i n a t e d

d e c r e a s e s w i t h d e c r e a s i n g c h l o r i n e c o n t e n t (5), t h e r e f o r e e v e n a p a r t i a l

d e c h l o r i n a t i o n m a y h e c o n s i d e r e d a s a p a r t i a l d e t o x i f i c a t i o n t h a t m a y l e a d to t o t a l microbial degradation

{6).

E l e c t r o n s (e-) a n d h o l e s (h*) p h o t o g e n e r a t e d

by b a n d g a p excitation of s e m i c o n d u c t o r

p a r t i c l e s a r e k n o w n to i n d u c e r e d o x r e a c t i o n s t h a t c a n be u s e d to p h o t o d e g r a d e

chlorinated

e n v i r o n m e n t a l p o l l u t a n t s (7).

substantial

In an earlier study

C a r e y a n d O l i v e r (8) r e p o r t e d

r e d u c t i o n in t h e t o x i c i t y o f PCB to a l g a e in w a s t e w a t e r b y u l t r a v i o l e t (UV) i r r a d i a t i o n with anatase powders.

R e c e n t l y we s h o w e d (9) t h a t it w a s p o s s i b l e to e x t e n d a n d g e n e r a l i z e

t h i s d e t o x i f i c a t i o n to mixed p h a s e s anatase. {10).

(hexanee/water, paraffin/water)

H e r e we u s e a p r o t o t y p e of a n e w r e a c t o r f a b r i c a t e d

It c o n s i s t s of a n e a r UV l a m p s u r r o u n d e d

which a t h i n a n a t a s e l a y e r is firmly bonded.

u s i n g a s u r f a c e modified

by Nu-tech, London, Ontario

coaxially by a porous fiberglass

m e s h to

We e x a m i n e d t h e p h o t o a s s i s t e d c a t a l y t i c

d e c h l o r i n a t i o n o f o-DCB, m-DCB a n d TCB i n a q u e o u s s o l u t i o n . Experimental Chemicals P h e n a n t r o l i n e a n d o-DCB {gold l a b e l ) , m-DCB (98~) a n d p-DCB (99+~) w e r e p u r c h a s e d Aldrich.

2'3,4-trichlorobiphenyl

from

(TCB) w a s o b t a i n e d f r o m U l t r a S c i e n t i f i c a n d f o u n d to h a v e

a s i n g l e peak in its g a s c h r o m a t o g r a m .

The h e x a n e (Caledone) u s e d was s p e c t r o s c o p i c g r a d e .

Ferric chloride (Anachemia) and potassium oxaiate {Fisher) were laboratory reagent grade, All t h e c h e m i c a l s w e r e u s e d w i t h o u t f u r t h e r was used throughout

purification.

Doubly distilled deionized water

this study.

Photochemical reactor T h e N u - l i t e cell (10) c o m p r i s e d a j a c k e t , a lamp a n d a p h o t o c a t a l y t i c s l e e v e .

The lamp

{ P h i l l i p s E l e c t r o n i c s "TL"K40W/09N) e m i t s l i g h t i n t h e 300-430 nm r a n g e w i t h a p e a k a t 350 nm.

It is m o u n t e d

coaxially within the jacket.

A r o u n d t h e l a m p l i e s a s l e e v e f o r m e d of a

f i b e r g l a s s m e s h which was coated with a firmly b o n d e d l a y e r of a n a t a s e . w a t e r c i r c u l a t e d i n t h e r e a c t o r w a s 1000 ml w i t h a d e a d v o l u m e of 100 ml. passes through

As t h e w a t e r

t h e s l e e v e , t h e o p e n p o r e c o n f i g u r a t i o n a n d t h e l a r g e s u r f a c e a r e a of t h e

mesh creates a turbulent anatase.

T h e t o t a l a m o u n t of

mixing that ensured

contact between the organic pollutants and the

W a t e r w a s r e c y c l e d b y m e a n s o f a p e r i s t a l t i c p u m p { M a s t e r f l e x 7563-10, Cole

P a l m e r ) w i t h a flow r a t e o f 100 m l / m i n .

T h e flow r a t e w a s n o t a c r i t i c a l p a r a m e t e r .

Analyses Solutions of d i c h l o r o b e n z e n e s were p r e p a r e d

b y d i s s o l v i n g i n w a t e r 240 m g o f DCB's i n

1973

12 litre batches.

The trichlorobiphenyl solution was prepared by first dissolving T C B in a

12 litre batch to effect water dissolution. Stirring was carried out overnight, the prepared solutions contained 20 p p m of DCB's and 10 p p b of TCB.

After irradiation 25 ml of

the aqueous solution was extracted for 50 minutes with 100 ml of hexane. efficiency compared to a standard was found to be above 94~.

Extraction

Degradation percentages were

calculated as a function of the loss of the parent peak:

Deg ~ = Bi - Ci Bi

Where Ci is the ith irradiated sample and Bi its corresponding dark run. All the extracted photolysed and control samples were analyzed chromatographically by a Perkin-Elmer Model Sigma 4B gas chromatograph equipped with an electron capture detector. The packed column used was 2Z O V + 3X QF.

Carrier gas in all the analyses was 6~ methane +

95Z argon at a flow rate of 60 ml per minute. (DCB's analyses) or 200eC (TCB analyses).

Column temperature was set at either 1000C

With these conditions the parent peaks appeared

at ca 5.5 min (o-DCB), 4.9 min (m-DCB), 5.1 min (p-DCB) and at ca 3.9 min for TCB.

No

intermediate peaks were observed. Results and Discussions First, the intensity of the lamp in the reactor's configuration was estimated b y means of ferric oxalate actinometry (11,12). It was found to be 3.05 x 10 n quanta per second.

With

such an intensity one would expect all the light to be absorbed by the anchored anatase and the photoreaction to proceed in a reasonable time. Solutions of o-DCB, m-DCB, p - D C B and T C B were irradiated for different amounts of time ranging from 0.Shr to 3 hr.

The percentage degradation was calculated as mentioned earlier.

Figure I shows this percentage as a function of time.

In o, and m - D C B cases the reaction

starts with zero order kinetics, o-DCB and m - D C B percentage degradation is almost equal even after 3 hours,

p - D C B photodegradation was m u c h less, even after 6 hours.

In the case

of p-DCB, there is deviation from linearity. This suggests that the reaction approaches first-order kinetics. Experimental difficulties prevented us from examining longer irradiation time.

In the case of TCB, 50~ of the starting material was transformed after 3

hours and the kinetics of the reaction resemble those of p-DCB. It is not excluded that due to the hydrophobic nature of the pollutants some of the T C B or DCB's would absorb on the fiberglass surface. until saturation. hexane.

This adsorption would then increase with time

In order to avoid this, between each run the reactor was flushed with

A n adsorption/desorption test showed that within experimental error all the D C B

adsorbed could be desorbed b y running hexanes through the reactor for 3 hours. In order to account for a deviation in linearity found in the p - D C B kinetic curve, an attempt to measure the adsorption isotherms of o-DCB, m - D C B and p - D C B was made. do not imply significant D C B coverage on Ti02 under reaction conditions.

The results

Therefore it is

probable that the photogenerated reactive species desorbs from the Ti02 surface into solution and then reacts with the pollutant.

It is not k n o w n at the present experimental

stage which reactive species is involved in the photodegradation of DCB'e and TCB.

It is

1974

h o w e v e r k n o w n t h a t it is g e n e r a t e d b y Ti0z b a n d - g a p e x c i t a t i o n s i n c e no d e g r a d a t i o n was o b s e r v e d in a similar r e a c t o r b u t w i t h o u t Ti0z.

As well, b a t c h e x p e r i m e n t s u s i n g a wide

b a n d lamp s h o w e d t h a t a 320 nm c u t - o f f f i l t e r s t o p p e d d i r e c t p h o t o l y s i s in t h e a b s e n c e of Ti02. H y d r o x y l r a d i c a l s h a v e b e e n c o n s i d e r e d to h e t h e r e a c t i v e s p e c i e s i n v o l v e d in t h e p h o t o c a t a l y t i c d e g r a d a t i o n of m a n y o r g a n i c c o m p o u n d s (13-16).

It is a l s o k n o w n t h a t

s u p e r o x i d e ion (02-) h a s n u c l a o p h i l i c (17,181 a n d o x i d a t i v e (19,20) c h a r a c t e r i s t i c s in a v a r i e t y of system s. d e c h l o r i n a t e DDT.

D u r e j a e t al (21) s h o w e d t h a t s u p e r o x i d e g e n e r a t e d in DMF c a n More r e c e n t l y S u g i m o t o e t al (22) s h o w e d t h a t in a n a p r o t i c medium s u c h

a s DMF o r DMSO it w a s p o s s i b l e to c o m p l e t e l y m i n e r a l i z e p o l y c h l o r o a r o m a t i c s , b y a s u p e r o x i d e ion i n i t i a t e d p a t h w a y b u t t h a t DCB's w e r e n o t a t t a c h e d .

60

W h a t e v e r may b e t h e r e a c t i v e

[]

O

R

[]

40

20

0

120

0

240

360

Time (min) F i g u r e 1: P e r c e n t a g e d e g r a d a t i o n a s a f u n c t i o n o f time ( (

) p-DCB, (

) TCB.

) o-DCB, (

I n i t i a l c o n c e n t r a t i o n s in w a t e r :

DCBs = 20 oonm TCB = 10 p p b

) m-DCB,

1975

species

that

is photogenerated,

of reactive

species

the reactor

under

are

produced

(3 h o u r s )

kinetics.

the

time (Figure

kinetics

to b e a p p l i c a b l e

o f Ti0t m u s t b e c o n s t a n t .

since the light intensity

In the case of o-DCB and the reaction

By plotting

irradiation

zero-order

on the surface

consideration

kept constant.

period

for

kinetics

natural

and

m-DCB and

This is the case for

the amounts

within

concentration

o f Ti0~ a n d

the available

follows with a good approximation

log of normalized

the concentration

water

experimental

zero order

of p-DCB and

TCB v~s

2) i s o n l y l i n e a r i n t h e c a s e o f p - D C B .

0 9 ~ "--'lnh- 0.5

-o

_J

0.5

o

'

2- o

90

3do

Time (rain)

Figure

2:

I n Bi a s a f u n c t i o n

of time (

) p-DCB, (

) TCB.

I n i t i a l concentrations in

Ci water:

This suggests may not. species

p - D C B = 20 p p m , TCB = 10 p p b .

that

is constant

DCB's are different have

the degradation

From the preceding

of p-DCB follows first-order

discussion

one can conclude from those

to a w a i t f u r t h e r

and

that

o f TCB.

kinetics

since the photogeneration

reaction

pathways

A full explanation

involving

w h i l e t h a t o f TCB of the reactive

the dechlorination

of each of these

pathways

will

experiments.

Conclusions Our study

of the Nulite reactor

showed

that

it could

be used

for a partial

degradation

of

1976

of h i g h l y r e f r a c t o r y

chlorinated hydrocarbons

trichlorobiphenyls.

Our experimental data showed different percentages

a f u n c t i o n of time.

o-DCB a n d m-DCB b e i n g d e g r a d e d

adsorbed

such as dichlorobenzenes and of d e t o x i f i c a t i o n a s

f a s t e r t h a n p-DCB.

No e v i d e n c e f o r

DCB's o n t h e Ti0t s u r f a c e c o u l d b e o b t a i n e d from a d s o r p t i o n / d e s o r p t i o n

measurements.

This suggests

a d e s o r p t i o n f r o m t h e Ti02 s u r f a c e of t h e p h o t o g e n e r a t e d

r e a c t i v e s p e c i e s r e s p o n s i b l e f o r t h e d e c h l o r i n a t i o n o f DCB's a n d TCB. t h e f o r m e r f o l l o w i n g a z e r o to f i r s t - o r d e r

T h e d e g r a d a t i o n of

k i n e t i c s while t h a t of t h e l a t t e r b e i n g more

complex. Acknowledgements The authors

w i s h to t h a n k C o n c o r d i a E c o t o x i c o l o g y L a b o r a t o r i e s :

Dr. P e r r y A n d e r s o n , f o r

t h e u s e of t h e e q u i p m e n t a n d Mr. P r a s a d Aysola f o r t e c h n i c a l a s s i s t a n c e . supported

T h e w o r k was

b y a n NSERC S t r a t e g i c G r a n t a n d FCAR (Quebec) f u n d s .

References (1)

M. S i t t i n g " H a n d b o o k of Toxic a n d H a z a r d o u s C h e m i c a l s " , Noyes P u b l i c a t i o n s :

Park

Ridge, NJ (1981). (2)

O. H u t z i n g e r , S. Safe, a n d V. Zitko.

" T h e C h e m i s t r y of PCB's".

CRC P r e s s I n c . ,

(3)

R.R. Rook, J. Amer. Water Works Assoc. 68, 106 (1976).

(4)

P.D. Foley, G.A. M i s s i n g h a m , ibid, 68, 106 (1976).

(5)

N.I. Sax in "Dangerous Properties of Industrial Materials", 3rd ed., p. 550, Von-

C l e v e l a n d , Ohio (1974).

Nostrand-Reinhold, N e w York, 1968. (6)

D. Ghosal, I.S. You, D.K. C h a t t e r j e e a n d A.M. C h a k r a b a r t y ,

(7)

M. B a r b e n i , E. P r a m a u r a , E. P e l i z e t t i , E. B o r g a r e l l o , N. S e r p o n e a n d M.A. J a m i e s o n ,

S c i e n c e , 228, 135 (1985).

C h e m o s p h e r e , 15, 1913 (1986). (8)

J.H. C a r e y , a n d B.G. Oliver, Water PolL, Res. J. of C a n a d a , New S e r i e s :

Vol. 15,

No. 2, 157 (1980). (9)

P.E. M d n a s s a , M.K.S. Mak a n d C.H. L a n g f o r d , s u b m i t t e d to Env. T e c h n o l . Lett. (1988).

(10)

Nulite, Ltd. L o n d o n , O n t a r i o , P a t e n t p e n d i n g

(11)

C.G. H a t c h a r d a n d C.A. P a r k e r , Proc. R. Soc.

(1987). L o n d o n , Ser. A. 235, 518 (1956).

(12)

A.D. Kirk a n d C. N a m a s i v a y a m , Anal. Chem., 55, 2429 (1983).

(13)

R.W. M a t h e w s , J. Chem. Soc., F a r a d a y T r a n s . 1, 80, 457 (1984).

(14)

I. Izumi, W.W. D u n n , K.O. W i l b o u r n , F.F. F r a n , a n d A.J. B a r d , J. P h y s . Chem., 84,

(15)

M. F u j i h i r a , Y. S a t o h , a n d T. Osa, Bull. Chem. Soc. J p n , 55 666 (1982).

(16)

I. Izumi, F.F. F r a n , a n d A.J. B a r d , J. P h y s . Chem., 85, 218 (1981).

(17)

E.J. C o r e y , K.C. Nicolaou, M. S h i b a s a k , Y. M a s h i d a a n d C.S. S h i n e r , T e t r a h e d r o n

3207, (1984).

Lett., 3183 (1975). (18)

J. S a n F i l i p p o J r . , L.J. Romano, C-I C h e r n , a n d J.S. V a l e n t i n e , J. Org. Chem., 41 586

(19)

Y. M o r o - o k a a n d C.S. Foote, J. Amer. Chem. Soc., 98, 1510 (1976).

(1976). (20)

J. S a n Filippo J r . , C-I. C h e r n , a n d J.S. V a l e n t i n e , J. Org. Chem., 41, 1077 (1976).

(21)

P. D u r e j a , J.E. C a s i d a a n d L.O. Ruzo, T e t r a h e d r o n

(22)

H. Sugimoto, S. Matsumoto, a n d D.T.S. S a w y e r , J. Am. Chem. Soc., 109, 1081 (1987).

(Received

in

Germany

4 April

1988;

accepted

L e t t . , 23, 5003 (1982).

28 J u l y

1988)