Photon-nucleus elastic and total cross sections

Photon-nucleus elastic and total cross sections

8.-~. Nuclear Physics B10 (1969)329-338. North-Holland Publ. Comp., A m s t e r d a m P H O T O N - N U C L E U S ELASTIC AND TOTAL CROSS SECTIONS B...

340KB Sizes 32 Downloads 118 Views

8.-~.

Nuclear Physics B10 (1969)329-338. North-Holland Publ. Comp., A m s t e r d a m

P H O T O N - N U C L E U S ELASTIC AND TOTAL CROSS SECTIONS B. M A R G O L I S * and C. L. T A N G * Institute of Theoretical Physics, McGill University, Montreal 110, Canada

Received 3 F e b r u a r y 1969 Abstract: The forward s c a t t e r i n g amplitude and hence the total cr o ss section for photons incident on nuclei is calculated in the eikonal approximation. The s c a t tering amplitude is taken to be the sum of two types of coherent amplitudes; (a) el as t i c scattering from each nucleon and (b) a r e g e n e r a t i v e amplitude c o r r e sponding to the production of the v e c t o r mesons p, W and (p on one nucleon and radiative capture on another. A considerable effect due to the finite mass of the v e c t o r mesons is seen at e n e r g i e s up to 10 GeV in heavy nuclei. This manifests itself as an apparent violation of v e c t o r dominance for the photon-nucleus i n t e r action which disappears at v e r y high e n e r g i e s if v e c t o r dominance is valid for the photon-nucleon interaction.

1. I N T R O D U C T I O N W e c a l c u l a t e t h e f o r w a r d a m p l i t u d e f o r e l a s t i c s c a t t e r i n g of p h o t o n s f r o m a t o m i c n u c l e i at h i g h e n e r g i e s in t h e e i k o n a l a p p r o x i m a t i o n . T h i s a m p l i t u d e , to l o w e s t o r d e r in t h e f i n e s t r u c t u r e c o n s t a n t , c o n s i s t s of t w o p a r t s : (a) t h e c o h e r e n t s u m of e l a s t i c s c a t t e r i n g a m p l i t u d e s f r o m e a c h nuc l e o n (a ' o n e - s t e p ' p r o c e s s ) and (b) t h e r e g e n e r a t e d a m p l i t u d e w h i c h c o m e s f r o m p h o t o - p r o d u c t i o n of a h a d r o n on one n u c l e o n of t h e n u c l e u s , f o l l o w e d by r a d i a t i v e c a p t u r e on a n o t h e r n u c l e o n (a ' t w o - s t e p ' p r o c e s s ) . We a s s u m e t h a t a l l t w o - b o d y p r o c e s s e s h a v e a m p l i t u d e s w h i c h a r e i n d e p e n d e n t of s p i n and i s o s p i n . We c o m m e n t on d e v i a t i o n s f u r t h e r on. T h e r e s u l t s s h o w in d e t a i l , c h a r a c t e r i s t i c s d i s c u s s e d q u a l i t a t i v e l y by S t o d o l s k y [1]. T h e r e g e n e r a t e d a m p l i t u d e i n t e r f e r e s d e s t r u c t i v e l y w i t h t h e ' o n e - s t e p ' a m p l i t u d e (a). At i n f i n i t e e n e r g y , a s s u m i n g t h a t t h e only i m p o r t a n t i n t e r m e d i a t e h a d r o n s a r e t h e v e c t o r m e s o n s p, w and (P an d a s s u m i n g v e c t o r d o m i n a n c e in p h o t o n - n u c l e o n i n t e r a c t i o n s , one f i n d s t h a t p h o t o n s s c a t t e r f r o m n u c l e i w i t h a d e p e n d e n c e on m a s s n u m b e r A, t h e s a m e a s f o r s c a t t e r i n g of v e c t o r m e s o n s . At f i n i t e e n e r g i e s h o w e v e r t h e n o n - z e r o m a s s of t h e v e c t o r m e s o n s a c t s to d e c r e a s e t h e r e g e n e r a t i v e a m p l i t u d e an d o n e g e t s a n A - d e p e n d e n c e c l o s e r to t h a t f o r t h e p u r e ' o n e - s t e p ' p r o c e s s . T h i s i s d u e to a p h a s e m i s - m a t c h b e t w e e n t h e photon an d t h e i n t e r m e d i a t e h a d r o n w a v e s in t h e ' t w o - s t e p ' p r o c e s s e s . * Supported in part by the National H e s e a r c h Council of Canada.

:330

B. M A R G O L I S a n d C. L. T A N G

2. CALCULATION OF PHOTON SCATTERING According to the eikonal a p p r o x i m a t i o n [2-4] we w r i t e the o n e - s t e p a m plitude

w h e r e f~7(O) is the f o r w a r d a m p l i t u d e for e l a s t i c photon-nucleon s c a t t e r i n g , and the t w o - s t e p a m p l i t u d e

F (b),Yy(O) ' -~27r ~x fyx(0)fx)'(0) Ix (A, qx; 0, ½Crx)

(2)

Ix(A, qx; 0,½ ~rx) Z 'T •

A2/d2b fide" e-qx

_!

,,

f

--OO

Z'

Z'~

f

×

1

dz' Px(b, z') e ~crx A

f

px(b, z')dz' eiqx z' .

(2a)

--OO

H e r e x is any p a r t i c l e that can b e p r o d u c e d c o h e r e n t l y by photons i n c i d e n t on the nucleus, k is the photon wave n u m b e r and ~x is the total c r o s s s e c tion f o r p a r t i c l e x incident on a nucleon. It is a s s u m e d h e r e that the x - n u cleon s m a l h - a n g l e s c a t t e r i n g a m p l i t u d e is p u r e i m a g i n a r y . O t h e r w i s e ex is to be r e p l a c e d by Crx(1 - i~x) w h e r e ~x is the r a t i o of r e a l to i m a g i n a r y p a r t of the f o r w a r d s c a t t e r i n g amplitude. T h e longitudinal m o m e n t u m t r a n s f e r qx = m x 2 / ( k + P x ) • The n u c l e a r c e n t r e - o f - m a s s motion is neglected. T h e quantities m x and Px a r e the i n t e r m e d i a t e hadron m a s s and m o m e n t u m r e s p e c t i v e l y . The nucleus is taken as a ' p i e c e of n u c l e a r m a t t e r ' of single p a r t i c l e density Po

Po(r) = Po(b, z) = 1+ e + ( r - a ) / c

(3)

T h e justification f o r this has been d i s c u s s e d s e v e r a l t i m e s [3-5]. The Saxon-Woods or F e r m i f o r m (3) has two p a r a m e t e r s a and c which a r e t a k e n f r o m e l e c t r o n s c a t t e r i n g data (6) and given in t a b l e 1. The neutron and proton d e n s i t i e s a r e a s s u m e d to be the s a m e . Due to the m o m e n t u m t r a n s f e r dependence of the two-body a m p l i t u d e s f ~ x ( q 2) and f x x ( q 2) (the l a t t e r c o r r e s p o n d i n g to e l a s t i c s c a t t e r i n g of x by a nucleon) the ' e f f e c t i v e d e n s i t y ' that a p p e a r s in eq. (2a) is Px(r) where

= _ _1 f F(;~) e - ~ 02x" - eiX" r d3 X (2~) 3

(4)

331

I~HOTON-NUCLEUS CROSS SECTION Table 1 The Saxon-Woods parameters a and c of formula (3) from ref. [6].

Target

12 C

28Si

58Ni

115in

181 T a

208pb

a (fro)

0.42

0.637

0.57

0.523

0.637

0.523

c (fro)

2.29

2.946

4.258

5.25

6.448

6.458

Table 2 The function ~-In(R)(A;qp'0,½~p) given by f o r m u l a (2a). ffp = 26mb

~'----.~ k(GeV/c)

3

5

12 C

1.68

28Si

3.64

Target

10

15

20

2.26

2.55

2.61

2.63

2.66

5.85

7.15

7.43

7.52

7.62

~

58Ni

14.4

18.9

19.8

20.2

20.6

115in

18.7

7.82

35.6

47.9

50.7

51.7

53.0

181Ta

21.5

49.4

74.8

81.0

83.3

86.4

208pb

33.6

68.6

97.7

104

107

111

~p = 3 1 m b 12C

1.96

28Si

4.31

58Ni

9.43

2.61 6.73

2.93 8.15

3.00 8.45

3.02 8.56

3.05 8.66

16.6

21.3

22.3

22.7

23.1

115In

22.8

40.8

53.3

56.1

57.1

58.4

181Ta

27.3

57.4

83.4

89.6

91.9

95.0

41.9

78.9

208pb

108

115

117

120

ffp = 37 mb 12C 28Si

2.29 5.08

3.00 7.72

3.35 9.24

3.42 9.56

58Ni

11.3

19.0

23.9

24.9

115In

27.7

46.3

58.8

61.5

181Ta

34.2

66.2

92.2

98.3

208pb

51.7

89.9

118

124

3.45 9.67 25.3 62.5

3.48 9.79 25.8 63.8

100

103

127

130

The r a n g e [7] in f o r m u l a (6),bp = 8 (GeV/c) -2. The Saxon-Woods p a r a m e t e r s a and c in f o r m u l a (3) a r e taken f r o m ref. [6]. The m a s s m p = 765 MeV.

B. MARGOLIS and C. L. TANG

332

Table 3 The f u n c t i o n I(R)(A;qw, 0,½~o)) g i v e n by f o r m u l a (2a). ffW = 2 6 m b ~k(GeV/c) Target

3

5

12C

1.61

2.22

28Si

3.40

58Ni

7.16

5.70

10

15

20

2.54

2.61

2.62

7.11

14.0

18.7

7.40

7.51

2.66 7.62

19.7

20.1

20.6

l151n

17.1

34.3

47.5

50.5

51.6

53.0

181Ta

19.4

46.9

73.8

80.5

83.0

86.4

208pb

30.7

65.6

96.6

104

107

111

(~¢o = 31 mb 12C

1.88

2.57

2.92

3.00

3.02

3.05

28Si

4.04

6.57

8.10

8.43

8.54

8.66

58Ni

16.1

21.1

22.2

22.6

23.1

115In

21.1

8.70

39.4

52.8

55.9

57.0

58.4

181Ta

24.8

54.8

208pb

38.7

75.9

82.3

89.1

107

91.6

114

117

95.0 120

ff¢o = 37 m b 12C

2.20

28Si

4.78

2.95

3.34

7.54

3.42

9.19

3.45

9.53

58Ni

11.5

18.4

23.7

24.8

115In

25.8

45.0

58.4

61.3

181Ta

31.5

63.6

91.1

97.8

208pb

48.1

86.9

117

124

9.66 25.2 62.4

3.48 9.79 25.8 63.8

100

103

127

130

The r a n g e in f o r m u l a (6), bw = 8 ( G e V / c ) - 2 , o b t a i n e d f r o m r e f . [7]. T h e S a x o n Woods p a r a m e t e r s a and c in f o r m u l a (3) a r e t a k e n f r o m ref. [6]. The m a s s m W = = 783 MeV. where

F(X) = f po(r) We take the same

This is not generally meson.

(5)

-i~. r d3r.

s l o p e f o r f v x ( q 2) a n d f x x ( q 2 ) ,

fvx(q2)/f~x(O)

vector

e

= fxx(q2)/fxx(O)

true but it follows from

i.e.

(6)

= e-½bxq 2 . vector

dominance

if x is a

PHOTON-NUCLEUS CROSS SECTION

333

Table 4

The function

~ - ~ G~e V / c )k~ Target

i~orQ( A m ;q(fl' O, ½tYq~)given

3

5

by formula (2a).

10

15

20

oo

1.26

1.35

1.39

1.44

~

12C

0.30

0.83

28Si

0.33

1.63

3.31

58Ni

0.50

3.04

8.32

1151n

1.42

6.45

21.0

181Ta

1.48

6.06

28.5

208pb

2.65

40.2

10.1

3.77

3.95

i0.0

4.14

10.7

11.6

26.4

28.6

31.8

39.8

47.8

52.1

54.2

60.3

69.2

The range in formula (6), b~0 = 5 (GeV/c)-2, obtained from ref. [71]2 The SaxonWoods parameters a and c in formula (3) are from ref. [6]. (rcp mb. The mass m@ = 1.019 GeV.

At infinite e n e r g y qx = 0 and eq. (2) b e c o m e s

F(b)(o) = -k-2~i~ f ~ x ( 0 ) f x ~ ( 0 YY

) ~

[A

-N(A;

0,½~x) ]

x

(7)

where

N(A; 0, ~ax)l

1

= 2~x

f[1 - e - F a x Tx(b))d2b

(8)

with Tx(b )

: A J Px(b,z)dz .

(9)

--oO

We now a s s u m e that the i m p o r t a n t i n t e r m e d i a t e h a d r o n s a r e the v e c t o r m e s o n s p, ¢o and q~ and that v e c t o r d o m i n a n c e is v a l i d f o r the p h o t o n - n u c l e o n i n t e r a c t i o n . T h e x = V w h e r e the V a r e the v e c t o r m e s o n s p, ¢o and ~p and f y v ( q 21 = ~¼

[\ -Y2V'-I ~-) f v v ( q 21 •

(101

H e r e a is the f i n e - s t r u c t u r e c o n s t a n t and the VV a r e the v e c t o r d o m i n a n c e c o u p l i n g c o n s t a n t s . U s i n g the o p t i c a l t h e o r e m , I m f v v ( 0 ) = (Pv/47r)aV, we h a v e at infinite e n e r g y 2 -1 FVV(0) =

Y7 (0)

V7 (0) =

V

r 42

~V

-1

(11) l

334

B. MARGOLIS and C. L. TANG

I

I

I

l

Ill

17

80

IN

I 2

I S

J 10

I IS

J 20

Fig. 1. The ratio a ( y A ) / f f ( y / ~ as a function of the photon lab momentum k for 208Pb and 181Ta. The v e c t o r dominance coupling constants a r e as given in the text. ffq~ = 12 mb, ffp = cr¢o=26, 31, 3 7 m b ,

This infinite energy result can be derived as well using Glauber theory. The methods are similar to those for deriving vector meson photo-product i o n c r o s s s e c t i o n s [2] ( o n e - s t e p p r o c e s s e s ) . One t h e n h a s , u s i n g t h e o p t i c a l t h e o r e m , t h e t o t a l c r o s s s e c t i o n f o r p h o t o n s i n c i d e n t on n u c l e i . ~ 2 -1 ~(~A) = ~(vN) • v

(12) - ~ 2V - 1

A t f i n i t e e n e r g i e s one h a s , u s i n g e q s . (2), (2a) a n d (10)

PHOTON-NUCLEUS CROSS SECTION

1

I

I

I

335

I

IIII

in 11~

26 mb 31 3"/

Ni

s! 26 31 37

I

I 3

t 5

I 10

I 20

l

lS

Fig. 2. The ratio cr('yA)/~(%N) as a function of the photon lab momentum k for l15In and 58Ni. The v e c t o r dominance coupling constants are as given in the text. qq) = =12 rob, ~p =(Y¢o = 26, 31, 37rob.

a(TA) = Aa(]/N)

-

, v ItS> IVR)

= Relv

T2



-1

!t

i '

(13)

(13a)

In eqs. (12) and (13) cr(TN) is the photon-nucleon total cross section assumed independent of the spin and charge of the nucleon. The situation becomes more complex if there are appreciable spin and iso-spin dependent parts to fTy(0). We note that the nucleus acts to average over spin dependent a m p l i t u d e s , a n d f o r n u c l e i w h e r e N ~ Z , o v e r i s o - s p i n a s w e l l . In t h e heaviest nuclei where there are considerably more neutrons than protons s o m e r e s i d u a l i s o - s p i n d e p e n d e n c e w i l l r e m a i n in FNN if t h e r e is a s i z e a b l e a m o u n t in fT~.

336

B. MARGOLIS and C. L. TANG [

O",(r~ O"(r~

I

I

24

Si •11

26 rn b

31

37

C 11

7

26 31 37

I

I

1

1

I

3

5

10

15

20

kL.k (Gev/¢)

Fig. 3. The ratio cr(yA)~/(r(yN) as a function of the photon lab moment~tm k for 28Si and 1~C. crq~ = 12 rob, (Tp= (7co =26, 31, 3 7 m b .

R e t u r n i n g to the c a s e of i n f i n i t e e n e r g y we h a v e [2] FTV(0 ) = f y v ( O ) Y ( A ; O, ½aV) oc f v v ( O ) N ( A ;

O, ½aV) = F v v ( O ) ,

(14) (14a)

s o t h a t e l a s t i c s c a t t e r i n g of p h o t o n s at e x t r e m e l y high e n e r g y h a s a d e p e n d e n c e on a t o m i c n u m b e r l i k e t h a t f o r the s c a t t e r i n g of v e c t o r m e s o n s o r f o r p h o t o - p r o d u c t i o n of v e c t o r m e s o n s . In fact f o r m u l a (12) o b t a i n s if one a s s u m e s v e c t o r d o m i n a n c e f r o m the b e g i n n i n g r a t h e r t h a n c o n s i d e r i n g the s u m of a m p l i t u d e s f o r p r o c e s s e s (a) a n d (b), i.e. if one a s s u m e s v e c t o r d o m i n a n c e in p h o t o n - n u c l e u s i n t e r a c t i o n . We now e x a m i n e n u m e r i c a l l y the e n e r g y d e p e n d e n c e of the t o t a l p h o t o n n u c l e u s c r o s s s e c t i o n f o r e n e r g i e s f r o m a few GeV up, u s i n g eqs. (2a) a n d (13). T a b l e s 2 - 4 g i v e Iv(R) f o r a r a n g e of m a s s n u m b e r s a n d i n c i d e n t p h o t o n e n e r g i e s f o r crq~ = 12 m b a n d ~p =o"w = 26, 31 a n d 37 m b . U s i n g the v a l u e s

PHOTON-NUCLEUS CROSS SECTION

337

[7] (1/47r)y 2 = 0.52, 4.69 a n d 3.04 f o r V = p, ¢o a n d q), r e s p e c t i v e l y , we c a l c u l a t e a(yA)/a(yN) a n d t h e r e s u l t s a r e g i v e n in f i g s . 1, 2 a n d 3. One s e e s c o n s i d e r a b l e v a r i a t i o n with e n e r g y in the r a n g e a t t a i n a b l e with p r e s e n t a c c e l e r a t o r s , e s p e c i a l l y f o r the h e a v y e l e m e n t s .

3. DISCUSSION T h e r e s u l t s o b t a i n e d h e r e d e p e n d on the a s s u m p t i o n s that (i) the only i m p o r t a n t i n t e r m e d i a t e h a d r o n s t a t e s a r e the v e c t o r m e s o n s p, ~o and •, a n d (ii) v e c t o r d o m i n a n c e is v a l i d in p h o t o n - h a d r o n i n t e r a c t i o n . One would s t i l l h a v e a d e v i a t i o n f r o m the r e l a t i o n s h i p otyA) cc A if the a s s u m p t i o n s w e r e v i o l a t e d a s l o n g a s i n t e r m e d i a t e h a d r o n s c o n t r i b u t e s i g n i f i c a n t l y , but the r e s u l t s w o u l d d i f f e r i n d e t a i l f r o m t h o s e found h e r e . T h e m o s t s t r i k i n g f e a t u r e of the c a l c u l a t i o n s p e r f o r m e d a b o v e i s the s t r o n g effect due to the n o n - z e r o m a s s of the v e c t o r m e s o n s at e n e r g i e s of a few GeV, on the r a t i o (r(yA)/~(yN) f o r h e a v y n u c l e i . We m i g h t t e r m t h i s a n a p p a r e n t v i o l a t i o n of v e c t o r d o m i n a n c e . G i v e n t h a t v e c t o r d o m i n a n c e is v a l i d , it i s m e r e l y a n o f f - s h e l l effect due to t h e m i s - m a t c h of p h o t o n a n d v e c t o r m e s o n w a v e n u m b e r due to the v e c t o r m e s o n m a s s . T h i s d i f f e r e n c e of wave n u m b e r h a r d l y a f f e c t s the r e s u l t s f o r a n u c l e u s a s s m a l l a s C a r b o n but is i m p o r tant for larger nuclei. We s e e f r o m eq. (13) t h a t s i n c e y2 is s e v e r a l t i m e s s m a l l e r t h a n ~o- or ¢1 y ~ , t h e t e r m s c o r r e s p o n d i n g to V = ¢o o r ~ c o n t r i b u t e w e a k l y . It is to b e "F n o t e d t h a t a c c o r d i n g to the q u a r k m o d e l one e x p e c t s (rco = ap. T h e r a t i o a(yA)/cr(yN) f o r g i v e n A d e p e n d s t h e n m a i n l y on the e f f e c t i v e n u c l e o n d e n s i t y g i v e n by eq. (4), on crp a n d on the l o n g i t u d i n a l m o m e n t u m t r a n s f e r qp. We c o m m e n t on t h e r e l i a b i l i t y of the r e s u l t s o b t a i n e d h e r e . T h e a p p r o a c h u s e d i s of a n o p t i c a l m o d e l c h a r a c t e r . S i m i l a r c o n s i d e r a t i o n s h a v e b e e n f o u n d to g i v e c o n s i s t e n t r e s u l t s i n p h o t o p r o d u c t i o n of v e c t o r m e s o n s [2, 7] f o r a r a n g e of n u c l e i o v e r the p e r i o d i c t a b l e . It h a s a l s o b e e n u s e d s u c c e s s f u l l y f o r e l a s t i c s c a t t e r i n g of p r o t o n s at 20 GeV (ref. [8]). It i s e x p e c t e d t h a t , a l t h o u g h one i s not u s i n g a d e t a i l e d n u c l e a r m o d e l , one will h a v e the same success here. We wish to thank Professor D. G. Stairs for raising a question which led to this investigation. One of us (B.M.) also thank Professor K. Gottfried for a useful discussion.

REFERENCES [i] L. Stodolsky, Phys. Rev. Letters 18 (1967) 135. [2] K. S. KSlbig and B. Margolis, Nucl. Phys. B6 (1968) 85. [3] R. J. Glauber, Boulder lectures in theoretical physics, Vol. I (1958) (Interscience Publ. Inc., New York, 1959). [4] J. S. Bell, CERN preprint TH.887 (1968). [5] R. J. Glauber, High-energy physics and nuclear structure (North-Holland Publ. Comp., Amsterdam, 1967) p. 311.

338

B. MARGOLIS and C. L. TANG

[6] R. Hofstadter, Revs. Mod. P h y s . 103 (1956) 1454; L. R. B. Elton, Nuclear sizes (Oxford University Press, 1961). [7] S. C. C. Ting, Electromagnetic interactions, rapporteur's summary at the 14th Int. Conf. on high-energy physics, Vienna, September 1968, DESYInternal Report F31/4. [8] R. J. Glauber, private communication.