Pitfalls in Oncologic Imaging: Complications of Chemotherapy and Radiotherapy in the Chest

Pitfalls in Oncologic Imaging: Complications of Chemotherapy and Radiotherapy in the Chest

Author's Accepted Manuscript Pitfalls in Oncologic Imaging: Complications of Chemotherapy and Radiotherapy in the Chest Chitra Viswanathan MD, Brett ...

24MB Sizes 1 Downloads 399 Views

Author's Accepted Manuscript

Pitfalls in Oncologic Imaging: Complications of Chemotherapy and Radiotherapy in the Chest Chitra Viswanathan MD, Brett W. Carter MD, Girish S. Shroff MD, Myrna C.B. Godoy MD, Edith M. Marom MD, Mylene T. Truong MD

www.elsevier.com/locate/enganabound

PII: DOI: Reference:

S0037-198X(15)00008-5 http://dx.doi.org/10.1053/j.ro.2015.01.007 YSROE50507

To appear in:

Seminar in Roentgenology

Cite this article as: Chitra Viswanathan MD, Brett W. Carter MD, Girish S. Shroff MD, Myrna C.B. Godoy MD, Edith M. Marom MD, Mylene T. Truong MD, Pitfalls in Oncologic Imaging: Complications of Chemotherapy and Radiotherapy in the Chest, Seminar in Roentgenology, http://dx.doi.org/10.1053/j.ro.2015.01.007 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

  Pitfalls in Oncologic Imaging: Complications of Chemotherapy and Radiotherapy in the Chest Chitra Viswanathan MD1 Brett W. Carter, MD2 Girish S. Shroff, MD2 Myrna C. B. Godoy, MD2 Edith M. Marom, MD3 Mylene T. Truong, MD2 Corresponding Author: Chitra Viswanathan Department of Diagnostic Imaging UT MD Anderson Cancer Center 1 1515 Holcombe Boulevard, Unit 1473 Houston, Texas 77030 [email protected] Fax 713.745.1302 Telephone 713.470.8440 *The authors have no disclosures.

All other authors: 2

Department of Diagnostic Imaging UT MD Anderson Cancer Center 3 Department of Diagnostic Imaging The Chaim Sheba Medical Center Tel Hashomer, Israel

      Pitfalls in Oncologic Imaging:  Complications of Chemotherapy and Radiotherapy in the  Chest    Introduction    Advances in cancer chemotherapy and radiation therapy continue to improve patients’  lives and impact patient care.  Chemotherapy has progressed from cytotoxic agents to  newer targeted agents that are geared to attack specific mutations in the cancer cell.   The toxicities of these newer cytotoxic drugs and targeted agents have specific imaging 

appearances depending on the mechanism of action.  Similarly, advances in radiation  therapy  allow  for  better  delivery  to  the  tumor,  with  less  effect  on  normal  adjacent  structures.  Knowledge of the imaging appearance of toxicities of therapy is crucial for  the  radiologist  to  accurately  diagnose  complications  of  therapy  and  to  avoid  imaging  pitfalls.  The radiologist must utilize the clinical history and mechanism of action of the  drugs in order to impact patient care and prevent misdiagnosis.  In this article we will  review  some  of  the  common  pitfalls  of  imaging  that  arise  due  to  complications  of  therapy.      Chemotherapy  Cytotoxic  chemotherapy  is  based  on  interfering  with  rapidly  dividing  cells  and  interrupting deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) synthesis.  These  include  intercalating  agents  such  as  cisplatin  and  the  newer  agent  oxaliplatin.   Topoisomerase  inhibitors  include  irinotecan  and  topotecan.    Antimetabolites  include  methotrexate    and  gemcitabine.    The  expected  toxicities  are  seen  in  the  gastrointestinal system and bone marrow, but toxicity may also be seen in other rapidly  growing cells, such as in the thorax (methotrexate, gemcitabine).  The  newer  targeted  therapies  are  designed  to  target  receptors  on  the  cell,  and  therefore the toxic effects may be more widespread.  The mechanism of action may be  helpful in determining the toxicity.  Drugs that target the vascular endothelial growth  factor  (VEGF)  receptor  include  bevacizumab,  sorafenib,  sunitib,  and  pazopanib. 

Erlotinib and Gefitinib target the epidermal growth factor receptor (EGFR). Everolimus  and temsirolimus target the mammalian target of rapamycin (mTor).  Drugs targeting  the  transmembrane  protein  with  tyrosine  kinase  (kit)  receptor  include  imatinib  and  sunitinib.     Rituximab targets the B‐lymphocyte antigen CD20 receptor. Ipilimumab is  an example of an immunomodulating agent that exerts effects upon  T cell receptors.  

These agents may have more toxicities seen on imaging than the conventional agents.                                            Radiation     Technology in radiation therapy has evolved in order to give the greatest dose to the  tumor  and  decrease  the  effect  on  the  normal  tissues.    The  new  technologies  include  intensity‐modulated  radiation  therapy  (IMRT),  stereotactic  body  radiation  therapy  (SBRT) and proton therapy (PT). Acute effects usually manifest in the first 3 months of  therapy and may be a precursor for chronic effects, which typically occur after 1 year.    Chemotherapy    Lung Complications    Pulmonary Toxicity   

Lung toxicity due to chemotherapy may occur during the start of, during, or after many  years of treatment.  Risk factors include advanced age, smoking history, history of pre‐ existing  lung  disease,  prior  radiation,  or  concurrent  chemotherapy  and  radiation.  Multiple  agents  including  the  cytotoxic  therapies  and  the  newer  cytotoxic  and  the  targeted therapies can cause pulmonary toxicity.  There  are  many  different  patterns  of  pulmonary  toxicity,  including  hypersensitivity  pneumonitis, 

nonspecific 

interstitial 

pneumonitis, 

cryptogenic 

organizing 

pneumonia/bronchiolitis  obliterans,  and  diffuse  alveolar  damage.    A  sample  list  of  agents that cause pulmonary toxicity is listed in Table 1[1‐4].  Computed  tomography  (CT)  findings  include  ground  glass  nodules  and  opacities,  reticular  nodules,  interstitial  opacities,  consolidative  opacities.  Findings  vary  amongst  the  causative  agents  (Figures  1‐3).  Correlation  with  the  type  of  chemotherapy  and  timing  of  chemotherapy  is  crucial.    Drug  toxicity  is  a  potential  imaging  pitfall,  as  the  varied  imaging  presentations  can  mimic  pneumonia  and  metastatic  disease.   Treatment is with cessation of the agent and corticosteroids[5].    Pulmonary hemorrhage     While diffuse alveolar hemorrhage has been reported with hematological malignancies  treated  with  chemotherapy  and  stem  cell  transplantation,  severe  pulmonary  hemorrhage (PH) has now been reported as a toxicity of some of the targeted therapy  agents.    Bevacizumab  has  been  associated  with  fatal  PH;  the  risk  factors  include 

squamous histology, baseline tumor cavitation, and vessel infiltration[6, 7]. Drugs such  as sorafenib and sunitinib have also been reported to cause pulmonary hemorrhage[3,  8].    Drugs  such  as  rituximab  used  in  treatment  of  lymphoma  and  gefitinib  are  also  associated  with  pulmonary  hemorrhage.    On  CT,  there  are  bilateral  ground  glass  opacities that represent alveolar filling with  blood.   “Crazy paving” may  be  present[9,  10].    Pleural Complications    Pleural Effusion  Chemotherapy  agents  can  cause  fluid  retention  as  a  result  of  their  mechanism  of  action.  If patient has interval development of significant pleural effusion, it may due to  therapy rather than metastatic disease.  For example, imatinib and dasatinib may cause  fluid  retention  due  to  their  effect  on  the  platelet  derived  growth  factor  (PDGF)  pathway[5].  Gemcitabine acts on the capillaries, causing capillary leak and leading to  pleural  effusion.   Methotrexate and  paclitaxel  can also  have  similar effect.   If patients  are  symptomatic,  then  cessation  of  the  agent  is  necessary.    Thoracentesis  may  be  required in recurrent and refractory cases.    Talc pleurodesis  Talc  pleurodesis  is  performed  for  the  treatment  of  recurrent  pleural  effusion  or  pneumothorax.  The pleural space then takes on a nodular and thickened appearance.  

The talc nodules which develop in the parietal pleura cause an inflammatory reaction,  which may be F‐18‐fluorodeoxyglucose (FDG)‐avid on positron emission tomography‐ computed tomography (PET‐CT) and mimic metastatic disease[11] (Figure 4) .    Pneumothorax  Spontaneous  pneumothorax  has  also  been  reported  as  a  complication  of  chemotherapy.    It  is  thought  that  the  tumor  response  causes  necrosis  in  the  tumor,  causing it to rupture in the pleural space, leading to pneumothorax[12, 13].      Vascular Complications  Vasculitis  Vasculitis  of  the  head  and  neck  and  thoracic  vasculature  has  been  reported  with  patients  treated  with  gemcitabine.    Other  agents  reported  to  cause  vasculitis  are  Tamoxifen,  filgastrim  and  anastrazole.  Patient  symptoms  include  fever,  pain  and  swelling after the administration of chemotherapy[14]. On imaging, the affected vessel  walls are thickened and show uniform contrast enhancement[15]. The thickened wall of  the vessel may be metabolically active on PET‐CT due to inflammatory change and may  mimic  a  node,  a  potential  pitfall.    Knowledge  of  this  complication  is  essential  to  recognize this entity and alert the clinician to start treatment with steroids and stop the  causative agent.   

Thrombus and Hemorrhage    Arterial  and  venous  thrombosis  and  hemorrhage  occur  as  a  result  of  anti‐angiogenic  therapy.  Drugs  such  as  thalidomide  can  cause  venous  thromboembolism.    The  older  agents such as cisplatin and newer agents such as bevacizumab, sunitinib and sorafenib  are  associated  with  arterial  thromboembolism  due  to  their  action  on  the  VEGF  receptor[4,  16].  There  is  also  an  increased  risk  of  hemorrhage  with  the  VEGF/VEGFR  agents[17].  Patients  present  with  hypotension  and  a  change  in  their  hemoglobin  and  hematocrit (Figure 5).    Aortic Dissection    Aortic dissection may occur as a result of hypertension in patients treated with the anti‐ angiogenesis  agents  bevacizumab,  sunitinib  and  sorafenib.    Hypertension  is  the  most  common side effect of bevacizumab.  These drugs induce development of hypertension  or worsening of pre‐existing hypertension through their actions on the VEGF receptor.   These  drugs  should  be  used  with  caution  in  patients  with  pre‐existing  hypertension.   Careful  attention  should  be  paid  to  the  patients  blood  pressure  while  on  therapy  to  prevent this complication[18].    Cardiac Complications   

Chemotherapy  can  have  toxic effects upon the  heart.   There  are  two  types  of cardiac  effects, one that is dose related and cumulative causing myocyte death, and the other  not dose related or cumulative and causing cell dysfunction or hibernation.  Risk factors  include advanced age, peripheral and coronary artery disease, and medical comorbities.   Toxicities  due  to  chemotherapy  include  arrhythmias,  coronary  artery  disease,  cardiomyopathy,  hypertension  and  left  ventricular  dysfunction,  pericardial  effusion,  and acute coronary syndrome[19, 20].  Patients may present  with cardiac tamponade  that may mimic a malignant pericardial effusion.    Radiation      Lung Disease    Risk factors for radiation induced lung disease are divided into patient risk factors such  as  underlying  lung  conditions,  chemotherapy  and  tumor  location  near  mediastinum  and  nerves,  and  therapy‐related  factors,  such  as  dose  and  the  characteristics  of  the  radiation.  Radiation changes may be present for up to 15 months after completion of  radiotherapy.    Radiation  effects  can  be  divided  into  early  phase  which  is  1‐6  months  after completion of radiation, and late phase 6‐12 months or longer after completion of  radiation.   

Patients may present  with dyspnea  and  cough,  fever  and chest  pain.   Chronic  fibrosis  may  cause  cor  pulmonale.    On  imaging,  the  acute  phase  may  have  ground  glass  and  consolidative  opacities.    These  findings  may  be  FDG‐avid  on  PET‐CT,  mimicking  recurrent  disease  and  pneumonia.    Radiation  changes  are  typically  confined  to  the  radiation  treatment  plan  and  evolve  over  time  (Figure  6).  Chronic  fibrosis  may  cause  volume  loss,  scarring,  pleural  thickening  and  ipsilateral  displacement  of  the  mediastinum.  Other long‐term effects such as bronchopleural fistula and sinus tracts  may occur [21, 22] (Figure 7).    Esophageal Disease    The incidence of radiation related complications are increased with the administration  of concurrent chemotherapy.  Acute complications include esophagitis and esophageal  dysmotility.    Chronic  complications  of  radiation  include  strictures,  tracheoesophageal  fistula,  and  radiation  induced  esophageal  cancer.  Patients  may  develop  symptoms  starting 2 weeks after the initiation of therapy.  Inflammation, ulceration or strictures  can  be  metabolically  active  on  PET‐CT  and  can  be  misinterpreted  as  recurrent  or  residual disease[23, 24] (Figure 8).    Cardiac Disease   

The  effects  of  radiation  on  the  heart  are  most  frequently  seen  in  patients  that  are  younger treated for Hodgkin’s disease, those that receive mediastinal radiation > 30 Gy  and higher dose techniques. It can occur at lesser doses in patients treated for breast  cancer.    Complications of radiation to the heart include vasculopathy, coronary artery disease,  ascending aorta calcification, and pericardial disease, including pericardial effusion and  pericardial  thickening.  Pericardial  effusion  may  be  seen  soon  after  therapy,  and  pericardial  thickening  can  occur  greater  than  48  months  after  therapy.    The  other  cardiac effects usually present years after exposure to radiation[25, 26].     Bone Disease    Benign Bone Conditions  Radiation  injury  to  the  bone  can  result  in  fractures,  osteoradionecrosis,  and  osteomyelitis[25, 27].  Findings may mimic metastatic disease (Figure 9).    Secondary Malignancy    Radiation induced secondary malignancy is a complication of radiation that may occur  any  time  from  a  few  years  to fifty  years  after  the  treatment.    The  characteristics  of  a  postradiation  sarcoma  include  the  history  of  radiation,  time  lapse  from  radiation  to  onset of tumor, location within the radiation treatment plan, and pathologic finding of 

sarcoma[28].  The most common radiation induced tumors of bone are osteosarcomas,  and  the  most  common  soft  tissue  sarcoma  due  to  radiation  is  malignant  fibrous  histiocytoma[29].  Imaging  findings  include  soft  tissue  mass,  abnormal  enhancement,  and bony destruction (Figure 10).  This may mimic metastatic disease or infection.    Conclusion    In  conclusion,  it  is  critical  that  the  radiologist  be  aware  of  the  imaging  appearance  of  complications of therapy in order to avoid these potential pitfalls and provide accurate  and timely information to the clinician to impact patient management.        References      1.  Myung HJ, Jeong SH, Kim JW, et al. Sorafenib‐induced interstitial pneumonitis  in a patient with hepatocellular carcinoma: a case report. Gut and liver 2010;  4:543‐546  2.  Ryu JH. Chemotherapy‐Induced Pulmonary Toxicity in Lung Cancer Patients.  Journal of Thoracic Oncology 2010; 5:1313‐1314 1310.  3.  Sharma  N,  Pennell  N,  Nickolich  M,  et  al.  Phase  II  trial  of  Sorafenib  in  conjunction  with  chemotherapy  and  as  maintenance  therapy  in  extensive‐ stage small cell lung cancer. Invest New Drugs 2014; 32:362‐368  4.  Vahid  B,  Marik  PE.  Pulmonary  complications  of  novel  antineoplastic  agents  for solid tumors. Chest 2008; 133:528‐538  5.  Chikarmane  SA,  Khurana  B,  Krajewski  KM,  et  al.  What  the  emergency  radiologist  needs  to  know  about  treatment‐related  complications  from  conventional  chemotherapy  and  newer  molecular  targeted  agents.  Emergency radiology 2012; 19:535‐546 

6. 

7. 

8.  9.  10. 

11.  12.  13. 

14.  15.  16.  17.  18.  19. 

Reck  M,  Barlesi  F,  Crinò  L,  et  al.  Predicting  and  managing  the  risk  of  pulmonary haemorrhage in patients with NSCLC treated with bevacizumab: a  consensus  report  from  a  panel  of  experts.  Annals  of  Oncology  2012;  23(5):1111‐20  Sandler AB, Schiller JH, Gray R, et al. Retrospective evaluation of the clinical  and radiographic risk factors associated with severe pulmonary hemorrhage  in  first‐line  advanced,  unresectable  non‐small‐cell  lung  cancer  treated  with  Carboplatin  and  Paclitaxel  plus  bevacizumab.  J  Clin  Oncol  2009;  27:1405‐ 1412  Yamada  T,  Ohtsubo  K,  Izumi  K,  et  al.  Metastatic  renal  cell  carcinoma  complicated  with  diffuse  alveolar  hemorrhage:  a  rare  adverse  effect  of  sunitinib. Int J Clin Oncol 2010; 15:638‐641  Spira D, Wirths S, Skowronski F, et al. Diffuse alveolar hemorrhage in patients  with hematological malignancies: HRCT patterns of pulmonary involvement  and disease course. Clinical Imaging; 37:680‐686  Torrisi  JM,  Schwartz  LH,  Gollub  MJ,  Ginsberg  MS,  Bosl  GJ,  Hricak  H.  CT  Findings  of  Chemotherapy‐induced  Toxicity:  What  Radiologists  Need  to  Know  about  the  Clinical  and  Radiologic  Manifestations  of  Chemotherapy  Toxicity. Radiology 2011; 258:41‐56  Asad S, Aquino SL, Piyavisetpat N, Fischman AJ. False‐positive FDG positron  emission  tomography  uptake  in  nonmalignant  chest  abnormalities.  AJR  American journal of roentgenology 2004; 182:983‐989  Leslie MD, Napier M, Glaser MG. Pneumothorax as a complication of tumour  response to chemotherapy. Clinical oncology 1993; 5:181‐182  Anupama  Upadya  MD,  Yaw  Amoateng‐Adjepong  MD,  Raymond  G.  Haddad  MD.  Recurrent  Bilateral  Spontaneous  Pneumothorax  Complicating  Chemotherapy  for  Metastatic  Sarcoma.  Southern  Medical  Journal  2003;  96:821‐823  Ramsay  LB,  Stany  MP,  Edison  JD,  Bernstein  SA,  Schlegal  KE,  Hamilton  CA.  Gemcitabine‐Associated  Large  Vessel  Vasculitis  Presenting  as  Fever  of  Unknown Origin. JCR: Journal of Clinical Rheumatology 2010; 16:181‐182   Bendix  N,  Glodny  B,  Bernathova  M,  Bodner  G.  Sonography  and  CT  of  Vasculitis  During  Gemcitabine  Therapy.  American  Journal  of  Roentgenology  2005; 184:S14‐S15  Fernandes DD, Louzada ML, Souza CA, Matzinger F. Acute aortic thrombosis  in  patients  receiving  cisplatin‐based  chemotherapy.  Current oncology  2011;  18:e97‐e100  Zangari M, Fink LM, Elice F, Zhan F, Adcock DM, Tricot GJ. Thrombotic events  in patients with cancer receiving antiangiogenesis agents. J Clin Oncol 2009;  27:4865‐4873  Aragon‐Ching  JB,  Ning  YM,  Dahut  WL.  Acute  aortic  dissection  in  a  hypertensive  patient  with  prostate  cancer  undergoing  chemotherapy  containing bevacizumab. Acta oncologica 2008; 47:1600‐1601  Tan T, Scherrer‐Crosbie M. Cardiac Complications of Chemotherapy: Role of  Imaging. Curr Treat Options Cardio Med 2014; 16:1‐19 

20.  21. 

22.  23.  24. 

25.  26.  27.  28.  29.     

Walker CM, Saldana DA, Gladish GW, et al. Cardiac complications of oncologic  therapy.  Radiographics  :  a  review  publication  of  the  Radiological  Society  of  North America, Inc 2013; 33:1801‐1815  Choi  YW,  Munden  RF,  Erasmus  JJ,  et  al.  Effects  of  Radiation  Therapy  on  the  Lung:  Radiologic  Appearances  and  Differential  Diagnosis.  Radiographics : a  review  publication  of  the  Radiological  Society  of  North  America,  Inc  2004;  24:985‐997  Benveniste MF, Welsh J, Godoy MC, Betancourt SL, Mawlawi OR, Munden RF.  New  era  of  radiotherapy:  an  update  in  radiation‐induced  lung  disease.  Clinical radiology 2013; 68:e275‐290  Bruzzi JF, Munden RF, Truong MT, et al. PET/CT of esophageal cancer: its role  in  clinical  management.  Radiographics  :  a  review  publication  of  the  Radiological Society of North America, Inc 2007; 27:1635‐1652  Erasmus  JJ,  Munden  RF,  Truong  MT,  et  al.  Preoperative  chemo‐radiation‐ induced ulceration in patients with esophageal cancer: a confounding factor  in tumor response assessment in integrated computed tomographic‐positron  emission  tomographic  imaging.  Journal  of  thoracic  oncology  :  official  publication of the International Association for the Study of Lung Cancer 2006;  1:478‐486  Libshitz  HI,  DuBrow  RA,  Loyer  EM,  Charnsangavej  C.  Radiation  change  in  normal  organs:  an  overview  of  body  imaging.  European  radiology  1996;  6:786‐795  Mesurolle  B,  Qanadli  SD,  Merad  M,  et  al.  Unusual  radiologic  findings  in  the  thorax  after  radiation  therapy.  Radiographics  :  a  review  publication  of  the  Radiological Society of North America, Inc 2000; 20:67‐81  Takahashi  I,  Kaneyasu  Y,  Yamamoto  Y,  et  al.  Radiation‐induced  pyogenic  vertebral  osteomyelitis  after  re‐irradiation  for  para‐aortic  lymph  node  metastases in a patient with cervical cancer. Int Canc Conf J 2014:1‐4  Hall  EJ,  Wuu  CS.  Radiation‐induced  second  cancers:  the  impact  of  3D‐CRT  and  IMRT.  International journal of radiation oncology, biology, physics  2003;  56:83‐88  Gladdy  RA,  Qin  L‐X,  Moraco  N,  et  al.  Do  Radiation‐Associated  Soft  Tissue  Sarcomas  Have  the  Same  Prognosis  As  Sporadic  Soft  Tissue  Sarcomas?  Journal of Clinical Oncology 2010; 28:2064‐2069 

Figurre Legends s Figurre 1. Pulmonary toxiccity due to chemothera c apy - Bleom mycin. 33-yyear-old fema ale with Hod dgkin’s lymphoma trea ated with Ad driamycin, Bleomycin,, Vinblastine, dac carbazine, and a rituximab for 7 mo onths. Patient develop ped progressive pulmonary opa acities throughout both lungs, co ompatible with w drug B mycin, the patient p wen nt toxiccity due to Bleomycin. Despite disscontinuation of Bleom on to o develop pneumothor p races, pneu umomediastinum and subcutaneo s ous emph hysema as a result of the lung disease. A, B. Axial CT Ts in lung windows w and d show w diffuse gro ound glass opacities throughout t both lungs and air in the t pleural spacce, mediastinum and subcutaneo s us tissues. As her Ble eomycin rellated drug toxiccity was sterroid refractive, patient required care in the In ntensive Ca are Unit and ventiilatory supp port.

A

B

Figurre 2. Pulmo onary toxicity due to ch hemotherap py: temsiro olimus. 69--year-old fema ale with mettastatic metaplastic brreast cance er treated with w temsirolimus prese ented with cough and malaise. A, A B. Axial CT scans show s bilate eral lower lobe consolidatiive opacitie es and meta astatic nodu ule in right middle m lobe e. nchoscopy yielded y neg gative culturres and cyttology was negative fo or malignant Bron cells. Temsiroliimus was discontinued d d, and patie ent was sta arted on steroids for presu umed drug toxicity. C, C D. Axial CT C scans tw wo months after disco ontinuation of tem msirolimus and startin ng steroids show s impro ovement in the bilatera al lower lobe opacities. Metastatic M nodule is slightly large er. Patient also reportted marked ovement in her well-be eing and co ough after starting s sterroids. impro A

C

B

D

Figurre 3. Pulmo onary toxicity due to ch hemotherap py- gemcita abine and docetaxel. d 45-ye ear-old male with radia ation-inducced angiosa arcoma of th he left claviicle treated with 3 months of o gemcitab bine and docetaxel afte er progresssion on pacllitaxel and acizumab. Patient hass had increa asing shortn ness of bre eath, mild dry cough, beva and upper u respiratory symptoms. Axxial CT lung window sh hows bilaterral perihilarr linea ar and consolidative op pacities and d peribronchovascularr thickening g with effussions, and differential d c consideratio ons include e pneumoniia, lymphan ngitic spread of tum mor and drrug toxicity. Bronchosccopy was performed p a showed and d no signs of ma alignancy and a culturess were nega ative. Drug g toxicity du ue to gemciitabine mayy prese ent in this fashion f and d mimic infe ection and metastatic m d disease.

Figurre 4. Talc pleurodesis p s. 64-year-old female with historyy of a T2 N1 stage IIB non-small cell lu ung cancerr treated witth right middle lobecto omy and talcc T-CT perforrmed 2 years later sho ows continu ued FDG pleurrodesis. A.. Axial PET avidity in the ple eural space e. B. Axial correspond ding CT shows these areas of uptakke correspo onding to th he high atte enuation talc deposits (arrows). The FDG avid pleural rea action due to o talc should not be co onfused witth recurrencce or meta astasis. The inflamma atory reactio on produced by talc may persist years y after the procedure. p If the pleura al thickenin ng increases, then susspicion musst be raised for tu umor. A

B

Figurre 5. Hemo orrhage due e to rituximab. 74-year-old female e with marg ginal zone lymp phoma treatted with 10 days of ritu uximab and d bendamusstine presenting with hypo otension, sh hortness of breath and d chest pain n. A. Axial CT C prior to therapy show ws right paratracheal adenopathy a y. B. Axial CT after the initiation of chem motherapy shows s deve elopment off high atten nuation fluid d within the mediiastinum an nd bilateral pleurae, co onsistent with hemorrh hage. Rituxximab is a mono oclonal antibody used for treatme ent of lymphoma and rheumatoid d arthritis and is i also asso ociated with h pulmonarry toxicity. Symptoms S of hypotension should d raise e suspicion for hemorrhage in pattients taking g Rituximab b.

A

B

Figurre 6. Radia ation Induce ed Lung Injjury. 67-year-old male e with right upper lobe squa amous cell carcinoma c treated with h chemorad diation. A. Axial CT sh hows the prima ary tumor in n the right upper u lobe (arrow). B. Restaging CT 3 montths after the e start of radiation n shows a new n cavitarry lesion in the right up pper lobe (w white arrow w). Because e of its foca ality within the t radiation treatment plan and irregular appe earance, the e lesion wa as suspiciou us for metastatic disea ase. C. PE ET-CT show wed mild inc crease in FDG-avidity in the rightt upper lobe e cavitary le esion. The lesion was biopsied, and pathology p showed lung g parenchym ma with exttensive c inflammation and neccrotizing pn neumonitis without ma alignancy. D. D fibrossis, chronic Follo ow up CT 5 months aftter the startt of radiation shows filling in of the cavitary lesion and deve elopment off other adja acent opacitties, consisstent with ra adiation chan nge. B

C

A

D

Figurre 7. Radia ation Induce ed Fistula/S Sinus tract to t superior vena cava (SVC). 75 year old female e with stage e IV lung cancer with bilateral b lung g tumors with left hilarr ph nodes tre eated with chemoradia c ation with proton thera apy to the le eft lung and d lymp convventional fra actionation radiation th herapy to th he right hila ar nodes two o years prior. Patient has had long g history off recurrent infections and a radiation fibrosis. ent presents s with coug gh, fever an nd shortness of breath. Axial CT scan Patie show wed a new linear l air co ollection exttending from m the trach hea to the SVC S (arrow). The combinatio on of radiatio on fibrosis and chronicc infection predispose ed the ent to development of this t tract. patie

Figurre 8. Radia ation Induce ed Esophag geal Strictu ure. 80-yea ar-old male with historyy of recurrent Can ndida esophagitis diag gnosed with h esophage eal adenoca arcinoma att diation. Pattient had sig gnificant 25-29 cm and trreated with concurrentt chemorad p e dysphagia a 8 months after treatm ment. A. Axial A CT for restaging and progressive show ws thickenin ng of the wa all of the mid esophag gus (white arrow) a with an adjacen nt enlarrged node. B. Coron nal PET-CT T shows a lo ong segmen nt of FDG-a avidity within the treate ed mid esop phagus (arrrow). C. En ndoscopic image show ws esop phagitis and d stricture at a 26-cm. D. Patient underwent dilation d of th he stricture with relief of dys sphagia. Post-radiatio P on complica ations are a potential pitfall p as they may have FDG-avidity and mimic malignan ncy.

A

B

C

D

Figurre 9. Radia ation Induce ed Osteomyelitis. 50-year-old female with small s cell carciinoma treatted with che emoradiatio on to the rig ght lower lo obe 3 years prior and radia ation to the right upperr lobe 2 yea ars prior. A.. Axial conttrast enhan nced CT in bone e algorithm showed rig ght mediasttinal and hilar soft tissu ue and cavitary chan nges in the right lung with w destrucction of the adjacent ve ertebral bod dies. B. Axiall PET-CT showed s incrreased FDG G-avidity in the right lu ung soft tisssues conssistent with tumor recurrence. FDG-avid scle erotic chang ges of T5 and a T6 are susp picious for metastatic m d disease. C. Sagittal MRI M T1 Fat Saturated S im mage post contrrast showed d enhancem ment of T5 and T6, su uspicious fo or metastaticc disease. Biopsy showed osteomyelitis and diskitis.

A.

B

C

Figurre 10. Rad diation Inducced Sarcom ma. 45-yea ar-old male treated with mediiastinal radiation at ag ge 6 for acu ute lymphob blastic leuke emia develo oped arm pain and weakn ness. Axial CT of the thorax t show w a soft tisssue mass (a arrow) with he left clavicle. Biopsyy showed angiosarcom a ma. This iss a radiation ndestrruction of th inducced sarcom ma given the e long laten ncy period from f the rad diation trea atment to deve elopment off the tumor (39 years), history of radiation r to o the mediastinum, and d patho ologic findin ngs.

 

 

Table 1. Possible causative agents of pulmonary toxicity Bleomycin

Cytotoxic

Paclitaxel

Cytotoxic

Oxaliplatin

Cytotoxic

Everolimus, temsirolimus Gefitinib

mTor

Erlotinib

TKI HER1/EGFR

Imatinib Sorafenib

TKI MKI

TKI EGFR

Pulmonary opacities Ground glass opacities Interstitial opacities Interstitial opacities interstitial pneumonitis, diffuse alveolar damage, fibrosis and alveolar hemorrhage. Severe pneumonitis and respiratory failure Pneumonitis Interstitial Pneumonitis

    Abbreviations:  mTor mammalian target of rapamycin  TKI Tyrosine Kinase Inhibitor  EGFR endothelial growth factor receptor  STKI serine/threonine kinase inhibitor  HER human epidermal growth factor receptor  MKI multitargeted kinase inhibitors  GIST gastrointestinal stromal tumor  CML chronic myelogenous leukemia  HCC hepatocellular carcinoma   

Leukemia Breast Cancer Colon cancer Lung cancer, renal cell Lung cancer

Lung cancer

GIST, CML HCC, renal cell