Plastic Flow, Instability and Ductile Fracture in Upsetting of Solid Cylinders J. C. Gelin, IUT Le Creusot, J. Oudin, Y. R a v a l a r d , Universitede Valenciennes - Submitted by A. Moisan (1). ENSAM Paris/F
____ SUt'dVRY
: The knowledge o f metal f l o w and s t r a i n a t f r a c t u r e i s o f most importance t o p r e d i c t t h e p l a s t i c damace i n metal forming processes. I n t h i s paper, we analyse t h e metal f l o w i n u p s e t t i n g of s o l i d c y l i n d e r s o f h i c h t t o diameter r a t i o equal t o 1.5, w i t h t h e veiahted r e s i d u a l method. The r e s u l t s about t h e e q u i v a l e n t s t r a i n oatterns a r e compared w i t h those obtained by Vickers hardness i n d e n t a t i o n t e s t s , f o r t h r e e d i f f e r e n t cases o f f r i c t i o n : l u b r i c a t e d v i t h o i l , d r y f r i c t i o n , and rough platens. It shows t h a t t h e experimental and c a l c u l a t e d s t r a i n s are i n good ayeement. A t h e o r e t i c a l method i s prooosed t o determine t h e e q u a t o r i a l surface s t r a i n paths from the maximum diameter t o minimum diameter r a t i o o f c y l i n d r i c a l specimens. using a l o c a l v e l o c i t y f i e l d and a phenomenological r e l a t i o n . The maximum t e n s i l e s t r e s s t o f l o w s t r e s s r a t i o , and t h e h y d r o s t a t i c s t r e s s component t o f l o w s t r e s s r a t i o a r e deduced from t h e s t r a i n paths and LEVY-WISES r e l a t i o n s . The a o p l i c a t i o n o f COCKCROFT f r a c t u r e c r i t e r i a , OYP.IIE f r a c t u r e c r i t e r i a and HILL c r i t e r i a f o r i n s t a b i l i t y orovide s a t i s f a c t o r y canparison w i t h v i s u a l observations i n experimental i n v e s t i g a t i o n . I t seem t h a t t h e values obtained fran the OYANE c r i t e r i a a r e i n good agreement w i t h exnerimentaly measured values. Furthermore, an i d e n t i f i c a t i o n method f o r d e t e n i n a t i o n o f m a t e r i a l c h a r a c t e r i s t i c s i n d u c t i l e f r a c t u r e i s presented.
1. INTRODUCTIOH The p r e d i c t i o n of defects o c c u r r e n c e i n forming processes r e q u i r e s t h e knowledge o f t h e stress, s t r a i n and s t r a i n r a t e t h a t take place d u r i n g deformation i n t o the r!orkpiece. The f l o w o f metal i s mainly a f f e c t e d by t h e i n i t i a l geometry o f t h e workpiece, t h e geanetry o f t h e t o o l s , t h e f r i c t i o n forces a t t h e t o o l -workpiece i n t e r f a c e . The present i n v e s t i g a t i o n i n v o l v e d t h e u p s e t t i n g o f s o l i d c y l i n d e r s o f carbon s t e e l w i t h i n i t i a l height-diameter r a t i o equal t o 1.5, according t o t h e standard procedure f o r t h e Kudo from cooperative works supervised c o l d u p s e t t a b i l i t y t e s t [ 1, by t h e "F" Group o f t h e C I R P . Kudo and Aoi [3J , i n t h e i r i n v e s t i g a t i o n o f t h e w o r k a b i l i t y o f carbon s t e e l , r e l a t e d t h e compression t e s t c o n d i t i o n s t o t h e mode o f f r a c t u r e , t h e f r i c t i o n c o n d i t i o n a t t h e i n t e r f a c e was c o n t r o l l e d q u a l i t a t i v e l y by usina qrooved d i e s and conical dies, w i t h and without l u b r i c a t i o n . An important experimental study on t h e change i n geometry O f t h e f r e e surface i n u p s e t t i n g o f s o l i d c y l i n d e r s was c a r r i e d out i n 1969 by Kulkarni and K a l p a k j i a n [E.] Thej have specified parameters c h a r a c t e r i z i n g b a r r ? l i n g under d i f f e r e n t cases of l u b r i c a t i o n . b a r r e l i n g i s s t u d i e d as an exemple o f f r e e deformat i o n i n p l a s t i c working. consisted of s e r i e s The experiments r e a l i z e d by Kobayashi o f t e s t s i n v o l v i n g t h e u p s e t t i n g o f s o l i d c y l i n d e r s and r i n g s o f SAE 1040 s t e e l under annealed c o n d i t i o n s a t room temperature. t!easurments o f t h e displacement d i s t r i b u t i o n s a t t h e tool-workpiece i n t e r f a c e , bulge p r o f i l e s , s t r a i n s a t t h e f r e e surface, and observations of crack formation f o r various f r i c t i o n condit i o n s and specimen dimensions have been r e a l i z e d . The observat i o n s concerning s t r a i n and s t r e s s h i s t o r i e s , and t h e i r r e l a t i o n s h i p s t o t h e mode o f f r a c t u r e c o n f i r m t h e r e s u l t s of Kudo and Aoi f o r u p s e t t i n g o f s o l i d c y l i n d e r s .
21
.
153
!lore r e c e n t l y . K i v i v u o r i and Sulonen [ 6 ] analysed f o r m a b i l i t y l i m i t s and f r a c t u r i n g modes o f u n i a x i a l compression specimens. The experimental procedure a p p l i e d i s t h e same as t h a t preconiThey assume t h e existence o f sed by Lagasse and De Meester [2] t h r e e modes of f r a c t u r e :
.
W o r k a b i l i t y o f metals have been studied by many authors. Cockcroft and Latham [9] proposed a d u c t i l e f r a c t u r e c r i t e r i a based on t h e t e n s i l e s t r a i n energy density, f r a c t u r e occurs when a maximum t e n s i l e s t r a i n energy i s reached. Oyane [lo] proposed a c r i t e r i a derived fran t h e equations o f p l a s t i c i t y f o r porous m a t e r i a l s [la , f r a c t u r e occurs when t h e volumetric s t r a i n reaches a c e r t a i n value. t h a t depends on m a t e r i a l . s t r a i n h i s t o ry and s t r a i n r a t e . H i l l 0 2 1 , l o c a l i s a t i o n o f deformation o f a defined an i n s t a b i l i t y c r i t e r i a , H i l l analysis o f i n s t a b i l i t y t o I n t h e present work, we have used and compared these d i f f e r e n t approachs t o p r e d i c t t h e defects OccurRnce on t h e e q u a t o r i a l f r e e surface, fran t h e c a l c u l u s o f t e n s i l e s t r e s s f a c t o r and hydros t a t i c s t r e s s f a c t o r a t t h e e q u a t o r i a l c y l i n d e r circumference.
2. _EXPERIMENTAL PROCEDURE Canpression t e s t s o n 14 mn diameter-21 mn h e i g h t c y l i n d e r s were c a r r i e d o u t using a 5 MN h y d r a u l i c press w i t h means o f measuring and recording loads and die-displacements. Two s o r t s o f d i e s have been used :
-
smooth d i e s : Standard Roughness Ra ; 0.2pm M a t e r i a l AFNOR reference 2 200 C 13 (SAE D 3) Hardness : 58-62 Rockwell C.
Before t e s t s t h e d i e s were cleaned and polished w i t h 8u diamond paste. These smooth d i e s have been used w i t h o u t l u b r i cant o r with Mobilube O i l SPE 80/90 l u b r i c a n t .
- grooved d i e s
: Height o f standard scratch : 1 mn M a t e r i a l P.FNOR reference 2 200 C 13 (SP.E D 3 )
Recessed and g r o w e d d i e s were a l s o used. w i t h no l u b r i c a n t . We used two t e s t m a t e r i a l s : AFNOR reference XC 38 (SAE 1038 s t e e l ) , and AFNOR reference 30 ElCC 16 (no SAE equivalence). I n order t o present a normalized s t r u c t u r e . these two m a t e r i a l s have been annealed :
- l o n g i t u d i n a l cracks, - oblique cracks. - double o b l i q u e cracks. Theoccurrence o f two f i r s t modes have been explained by Kudo and Aoi ; l o n g i t u d i n a l cracks occurs when t h e a x i a l component o f t h e e q u a t o r i a l surface s t r e s s i s p o s i t i v e , oblique cracks occurs when t h e a x i a l canponent o f t h e e q u a t o r i a l surface s t r e s s i s negative.
-- aa tt 850" 660"
C C
for for
The chemical canpositior! t a b l e 1.
one hour f o r XC 38. one hour f o r 30 NCD 16. o f t h e two s t e e l s a r e given i n
The aim o f t h e present i n v e s t i g a t i o n i s t o study t h e i n f l u e n ce o f various l e v e l s o f f r i c t i o n a t t h e workpiece-dies i n t e r f a c e on t h e i n t e r n a l metal flow, a t any g i v e n p o i n t a t any i n s t a n t . A procedure and a canputer package. based on t h e weighted r e s i dual method c7.83, has been developped f o r t h e axisymmetric u p s e t t i n g o f s o l i d c y l i n d e r s , which permits t h e determination o f load, a x i a l and r a d i a l displacements, f l o w patterns, s t r e s s and s t r a i n , f o r various l e v e l s o f i n t e r f a c e shear stress. Hardness d i s t r i b u t i o n w i t h i n t h e b i l l e t , c a l c u l a t e d from t h e weight e d r e s i d u a l method have been compared w i t h those obtained from Vickers hardness i n d e n t a t i o n t e s t .
A p r a c t i c a l problem i s t h e r e l a t i o n s h i p between t h e geometric a l change o f f r e e surface and t h e d e f e c t Occurrence on t h e f r e e surface. H i s t o r i e s o f t h e s t r e s s and s t r a i n a t t h e e q u a t o r i a l c i r c u n f e r e n c e where an eventual f r a c t u r e i s expected a r e t h e major concern o f t h i s problem. Kudo and Aoi [3] , i n t h e i r i n v e s t i g a t i o n o f t h e w o r k a b i l i t y o f carbon s t e e l , measured d i r e c t ly, by means o f intended marks, t h e s t r a i n v a r i a t i o n s a t t h e e q u a t o r i a l f r e e surface, t h e i n v e s t i g a t i o n s o f Kobayashi a r e i n t h e same way. I n t h i s study. we propose t h e determination o f t h e s t a t e o f s t r a i n a t t h e e q u a t o r i a l surface f r a n t h e measure o f maximum diameter- minimum diameter r a t i o o f t h e compressed c y l i n d e r .
Lq
Annals of the CIRP Vol. 30/1/1981
Table 1
-
Chemical composition o f t e s t
materials
The c y l i n d e r s were c a r e f u l l y machined i n bars o f diameter 18 mn. The machining c o n d i t i o n s were ( w i t h carbide t o o l ) : C u t t i n g speed : 6 h / m i n , : 0.2 mn, Depth Longitudinal feed : 0. 1 mn/min.
193
I n order t o realize three d i f f e r e n t conditions o f lubrication a t t h e d i e - c y l i n d e r s i n t e r f a c e , t h e c y l i n d e r s were c l a s s i f i e d i n t h r e e grouo, according t o t h e rouqhness o f thP faces.
x O < Ra< 1 . 2 ~ corresponds t o smooth d i e i w i t h l u b r i c a n t llobi lube o i 1 SAE 80/90 x 1.24 Ra< 2um corresponds t o smooth d i e s w i t h no l u b r i cant ( d r y f r i c t i o n ) , x 2 4 Ra 4311171 corresponds t o grooved d i e s .
3. WEIGHTED RESIDUAL IlETHOD AN0 INTERNAL FLOW OF METAL
3.1 - Ihep-e-jca!-a_feep;f We have used t h e weighted r e s i d u a l method [8] t o p r e d i c t deformation patternand equivalent s t r a i n over the diametral s e c t i o n o f workpiece.
Vickers hardness t e s t s have been r e a l i z e d on t h e median c i r cumference o f each c y l i n d e r , a f t e r p o l i s h i n g w i t h special paper. The charge used was equal t o 300 g, the f o l l o w i n g values have been obtained :
The p l a s t i c f l o w i n t h e c y l i n d e r , Figure 2, can be described by using t h e f l o w f u n c t i o n :
HV300 = 162
3 f o r XC 38 s t e e l ,
vo being t h e v e l o c i t y of the d i e and A . . t h e unknown parameters.
HV300 = 260
4 f o r 30 NCD 16 s t e e l .
The f u n c t i o n 0 ( r , z ) i s continuous with f i r s t order d e r i v a t ives. The components o f t h e v e l o c i t y a r e obtained from t h e p a r t i a l d e r i v a t i v e s o f t h e f u n c t i o n 0 (r, z ) :
1J
Marks were i’tlented by Vickers hardness t e s t s a t two l o c a t i o n s along t h e equatocial f r e e surface o f t h e specimen. Distance between t h e marks i n t h e a x i a l d i r e c t i o n a t each l o c a t i o n was 1 mn. A f t e r each increment o f deformation, t h e h e i g h t o f t h e specimen. t h e minimum diameter o f t h e c y l i n d e r and t h e maximum diamet e r o f t h e f r e e surface were measured w i t h a p r o f i l e p r o j e c t o r (accuracy : 0.01 nm). The procedure was repeated f o r each increment o f deformation, u n t i l cracks Were observed w i t h a naked eye ( x 10). Ue decided t h a t f r a c t u r e occured when i t was possible t o observe a t l e a s t one crack o f 0.3 nm length. The mechanical p r o p e r t i e s o f t h e two metals have been d e t e r mined from compression t e s t o f s o l i d c y l i n d e r s . Figure 1 shows t h e s t r e s s - s t r a i n r e l a t i o n u s i n g an exponenti a1 smoothing f o r SAE 1038 s t e e l . The paaameters o f t h e exponential s t r a i n hardening law, ao = AE. , a r e i n t a b l e 2 ; (10 i s t h e flow-stress, A i s t h e f l o w - s t r e s s f o r a u n i t s t r a i n and n strain-hardening coefficient
.
The boundary c o n d i t i o n s a r e : Vz = 0 f o r z = 0 , V r = 0 f o r r = 0, Vz = Vo f o r z = h.
-
To c a l c u l a t e t h e s t a t e o f s t r e s s i n t h e c y l i n d e r , two shape f u n c t i o n s 01 and 02 a r e used ; t h e s t r e s s components a r e :
,FlcI=r 1
a02
;Ti-
(3)
The f o l l o w i n g boundary c o n d i t i o n s a r e required : t h e shear stress i s equal t o zero along r and z axis. t h e normal component o f t h e stress i s equal t o zero on t h e f r e e surface, ( i i i ) a t t h e d i e - c y l i n d e r i n t e r f a c e , t h e shear s t r e s s i s d e f i ned by the f o l l o w i n g r e l a t i o n :
(i) (ii)
ME
%
a,
(T ( ~ = h ) = - % rz vhere ii i s t h e mean f r i c t i o n c o e f f i c i e n t (sublayer model).
The f u n c t i o n s 01 and 07 a r e defined as f o l l o w s :
500
The r e s i d u a l f u n c t i o n i s formed by t h e f o l l o w i n g q u a n t i t y :
2 51 t h a t includes t h e boundary c o n d i t i o n ( i i i ) The weighting f u n c t i o n s a r e :
C
I0
050
Fig. 1
I
E
1.00
- P e l a t i o n s h i v between 7flow-stress
00
and mean
equivalent s t r a i n
-
We o b t a i n L = I x J + (P 1 ) x N + P x Q l i n e a r equations and f o r t h e c a l c u l a t i o n o f t h e unknown parameters F.... 1 J , ,B cPq *
where k €[l L, 1 , and ak i s i d e n t i f i e d t o Aij Bmn o r C 3.2
Table 2
-
I d e n t i f i c a t i o n parameters f o r t e s t m a t e r i a l s
-
w). Nurller!E?!_a_nrr_ex~~~~en~?!-~e~~~;~
The i n f l u e n c e o f f r i c t i o n on t h e i n t e r n a l metal f l o w i s pred i c t e d by t h e g r i d d i s t o r s i o n s i l l u s t r a t e d i n F i g u r e 3. When t h e i n t e r f a c e f r i c t i o n i s h i g h (compression w i t h grooved o r rough d i e s ) , t h e r a d i a l and a x i a l displacements increase and a small f o l d i n g occurs, i n t h e experimental r e s u l t s , an amount o f f o l d i n g i s observed when t h e r e d u c t i o n o f h e i g h t increases strong 1y
.
194
(respectively
The equivalent strain distribution is also a reflection of the internal flow patterns. Figure 4 indicates clearly the areas of high and low deformation obtained from Yickers hardness measunnents and calculated fran the weighted residual method (at 50 % of height reduction for SAE 1038 steel. with dry friction).
D r y friction
I
- ?ii,O.36
Experimental equivalent strain distribution for SPE 1038 steel. at 80 X of height reduction with dry friction, is presented on Figure 5. The maximwi equivalent strains are inside a zone extending from the middle r axis to the corner of the specimen . The maximum hardening zone extends when friction increases.
Initial
heiq ht -
diomeler rafio
= 1.5
-//A””
21
0.4
i
S
4
.
( b ) calculated
Fig. 2
0
values
/
I /I 0.4
Fig. 4
- Canparison
Fig. 5
- Experimental equivalent strain distributions, SAE 1038 steel, dry friction, 80 X of heigth reduc-
between experimental and calculated equivalent strain distributions.
- Upsetting of solid cylinder between two flat platens tion.
4. VARIATION OF STRAINS AND STRESSES AT THE EQUATORIAL FREE SURFACE IN UPSETTING OF SOLID CYLINDER? 4.1
- bnalur!cal_consldnratlons
The state of stresses at the equatorial free surface of a canpressed cylinder is a plane state. indeed the radial stress and the shear are equal to zero. The levy-Mises equations relate plastic strain increments to stresses.
I
a)
The increment of local equivalent strain i s given by the following relation : 2 (1 t B t 8’)‘ 1 Id .cZZ; I dT = -
Dry friction
(8)
6
where B
= d80
;
(9)
dEZZ
-5 0%
8 is the local slope of the strain paths.
Fran Levy-tlises equations and above relations, we obtain the expressions o f the maximum tensile stress to flow stress ratio and the hydrostatic stress to flow stress ratio :
b)
Compression
with
rough dies
The aim of the present investigation is to give a method for the calculus of B. The strain path can be represented by the following phenomenological relation :
-
=
Fig. 3 Grid distorsions at 50 % reduction in height for two different conditions of friction.
ba,:
-
7
5 2
(12)
Where b i s a parameter that depends on the severity of friction at the die-cylinder interface. 4.2
- h~~l-y-locj~y-f~fld 195
and The p r e d i c t i o n o f the e q u a t o r i a l s t r a i n s E , f i g u p 8 6. r e a l i z e from a l o c a l v e l o c i t y f i e l d
;51
rZZ
The s t r a i n and s t r e s s paths a r e mainly influenced by t h e s e v e r i t y o f f r i c t i o n a t the d i e - c y l i n d e r i n t e r f a c e , when t h e shear s t r e s s increases, t h e d i s t r i b u t i o n o f s t r a i n s become more inhanogeneous.
is
However, t h e c i r c u m f e r e n t i a l s t r a i n s obtained fran t h e d i f f e r e n t c o n d i t i o n s o f l u b r i c a t i o n (smooth dies, grooved o r rough d i e s and l u b r i c a t e d d i e s w i t h llobilube o i l SAE 80/90) a t t h e s a w h e i g h t reduction, present very s i m i l a r values. t h i s i s a t t r i b u t e d t o t h e f a c t t h a t t h e r a d i a l disolacement o f t h e e q u a t o r i a l f r e e surface i s n o t a s i g n i f i c a n t parameter f o r t h e occurence o f b a r r e l i n g . Stress paths f o r c i r c u m f e r e n t i a l and h y d r o s t a t i c stresses are h i g h l y s i g n i f i c a n t o f t h e s t a t e o f s t r e s s a t e q u a t o r i a l surface o f compressed c y l i n d e r w i t h b a r r e l i n g . For 30 NCD 16 s t e e l . we can note t h a t f r a c t u r e occurs when h y d r o s t a t i c s t r e s s f l o w s t r e s s r a t i o i s p o s i t i v e , i t i s i n agreement w i t h the observations reported by Kudo and Aoi
w Fig. 6
- Meridian s e c t i o n o f a compressed barreling.
.
The r a d i a l displacement o f t h e p o i n t
(1
dur = alr
M
131.
cylinder with
i s choosen l i k e t h a t :
- u z 3 t a2 r 3
(13)
where : al and a2 a r e constants. u i s a parameter t h a t depends o f f r i c t i o n .
The i n c o m p r e s s i b i l i t y c o n d i t i o n involves : du,
=
-
2al
(z
-
z3)
-
4 a2 r 3L
(14)
The constants a and a a r e c a l c u l a t e d from t h e boundary c o n d i t i o n s a t t h e eAuatori%l f r e e surface and we o b t a i n :
=zz = 4b
- ( 3 + a RB P) -( 1 t 4 # - 2n RE n) B
(15)
p i s t h e r a d i u s o f curvature o f f r e e surface a t t h e p o i n t 8.
If we assume t h a t t h e t r a c e o f t h e f r e e surface i n meridian s e c t i o n i s approximated by a p a r a b o l i c curve, t h e radius o f curvature i s given by :
Fig. 7a
-
S t r a i n paths f o r t h r e e c o n d i t i o n s o f l u b r i c a t i o n .
H2
(16)
P =
Parameters b and c a r e evaluated by minimizing t h e f o l l o w i n g quantity : (171
( i ) is the ith step o f upsetting. n i s t h e nunber o f steps ; R i s equal t o Log ( ’). and (czz)i i s replaced by equation
EL:)
$’
(15). Thus, s t r e s s and s t r a i n DathS are evaluated fran maximum diameterminimum diameter r a t i o using t h e equation ( l o ) , (11). (12). (15) and (16). 4.3
-
hpgrjFgw~a!-r?+:
F i g . 7b
-
Stress paths f o r t h r e e c o n d i t i o n s o f l u b r i c a t i o n .
5. DUCTILE FRACTURE
The e q u a t o r i a l s t r a i n s and stresses versus h e i g h t r e d u c t i o n curves a r e i l l u s t r a t e d i n F i g u r e 7, f o r 30 NCO 16 s t e e l ( t h r e e conditions o f lubrication).
5 - 1 - neelicatlo?_of_Fncrnscoeic_fra_ctu_re_c uelett~ns-of_rolid-cY!~~dgr:
The continuous curves correspond t o t h e c a l c u l a t e d values, and t h e d i s c r e t e p o i n t s correspond t o t h e experimental s t r a i n s measured w i t h t h e above-mentioned procedure.
Cockcroft and Latham [9] c r i t e r i m s t a t e s t h a t f r a c t u r e occurs i n a m a t e r i a l when t h e q u a n t i t y :
The t h e o r e t i c a l and experimental r e s u l t s a r e i n good agreement, t h e maximum r e l a t i v e d i f f e r e n c e i s l e s s than 5 X czz exp.
- cZZ cal. Q
sZZ exp.
5::
(f
& o o d r > C
(18)
Where CJ* i s t h e maximum t e n s i l e stress, dE i s t h e increment o f e q u i v a l e n t s t r a i n and C i s a c h a r a c t e r i s t i c constant o f a m a t e r i a l a t a given s t r a i n r a t e and temperature. A t t h e e q u a t o r i a l f r e e surface o f a s o l i d c y l i n d e r
equal t o
2
(equation 10) and
d Zis
given from t h e equation (8).
The constant C i s evaluated from a t e n s i l e t e s t :
196
*
$is
-ntl C=A'f,
( E 4
,
c a h l b Oyane crit eria
n + l
o
Nhere A and n a r e t h e parameters o f exponential s t r a i n hardening law, Tf i s t h e equivalent s t r a i n reaches a t t h e f r a c ture.
0
Oyane and a l . [lo] c r i t e r i a s t a t e s t h a t f r a c t u r e occurs when t h e volumetric s t r a i n reaches a c r i t i c a l value :
f
'f ( 1 t
o
:
Hill criteria Cockcroft criteria
0.50
k) c' dF = C CiO
i s t h e h y d r o s t a t i c s t r e s s factor, C ' and C are constants of
t h e m a t e r i a l a t a given s t r a i n - r a t e and temperature. 'm
.
i s given from t h e equation (11) and t h e constants C and C '
a00
a r e evaluated w i t h an i d e n t i f i c a t i o n method.
H i l l c r i t e r i a f o r i n s t a b i l i t y [12; f o l l o w i n g form :
a50
can be expressed on t h e Fig. 8b
1 doo "40 ' 'z __ uo <- 2no dF
-
Comparison o f c a l c u l a t e d and experimental circumference s t r a i n s i n upsetting.
I
From t h e equations (8). ( 9 ) and (1l);the becanes :
1 & - - .d 3 E
2
l t P (1 + 6
(21)
I
t
6. CONCLUSION
above r e l a t i o n
6')'
m i m p o r t a n t remark i s deduced from t h i s r e l a t i o n ; t h e f r a c t u r e due t o i n s t a b i l i t y occurs when t h e s l o w o f l o c a l s t r a i n path i s smaller than 1.
-
5.2
- ve!i~!~y_of-fra_du_r~-~~~~~~~~~~ -
F i g u r e s 8 (a, b) shows t h e s t r a i n paths l c z z ] ) for t h r e e d i f f e r e n t c o n d i t i o n s o f l u b r i c a t i o n and a c o r r e l a t i v e c u r ve between experimental and c a l c u l a t e d values o f c i r c u m f e r e n t i a l s t r a i n s . It seems t h a t t h e Oyane c r i t e r i a presents a good correl a t i o n w i t h t h e experimental values o f s t r a i n s when t h e f i r s t crack occurs. The Cockcroft c r i t e r i o n g i v e s overestimated values, however t h e c h a r a c t e r i s t i c constant o f t h e m a t e r i a l determined from t e n s i l e t e s t i s n o t very s i g n i f i c a n t i n upsetting. H i l l c r i t e r i c a p r e s e n t s an important d i s p e r s i o n comparatively t o Oyane c r i t e r i o s a n d Cockcroft c r i t e r i o n .
The present i n v e s t i g a t i o n about i n t e r n a l metal f l o w i s very s i g n i f i c a n t , t h e weighted r e s i d u a l method i s a poverful t o o l t o t h e l o c a l analysis(f1ow pattern, p r e d i c t i o n o f equivalent s t r a i n s p r e d i c t i o n o f b a r r e l i n g ) . The r e s u l t s r e l a t i v e t o t h e a n a l y t i c a l determination o f s t r a i n and s t r e s s paths a r e i n good agreement w i t h t h e experimental values, t h e maximum r e l a t i v e d i f f e r e n c e i s smaller than 5 X . Furthemore, t h e measure o f maximum diameterminimum diameter r a t i o i s more accurate than t h e measure of s t r a i n s a t t h e e q u a t o r i a l f r e e surface. Maximum diameterminimum diameter r a t i o i s an important f a c t o r t o A r a c t e r i z e t h e s e v e r i t y o f f r i c t i o n and t h e amount o f b a r r e l i n g . The a n a l y t i c a l determination o f t e n s i l e stress-flow s t r e s s r a t i o and h y d r o s t a t i c s t r e s s - f l o w s t r e s s r a t i o i s o f a major importance t o p r e d i c t d u c t i l e f r a c t u r e with macroscopic c r i t e rions. The Oyane c r i t e r i a i s verv s i g n i f i c a n t , and t h e f a c t t h a t volumetric s t r a i n reaches a c r i t i c a l value i s a p r o o f o f the i n t e r n a l damage o f t h e m a t e r i a l .
REFERENCES ~ ___
[ 11 KUDO ti. [ 21
Emr
[ 31
i 41
c
0.60
Unpublished report. C. I. R. P..
"F" Group, 1975
LAGASSE P. E., DE tlEESTER B. Unpublished r e p o r t , C. I. R. P.,
"F" Group. Janv. 1978
KUDO H.. A01 K. J. Japan SOC. Tech. o f P l a s t .
-
6 (1967), pp 17
-
27
-
151
KULKARNI K. H.. KALPAKJIAN S .
J. of Eng. Ind., Trans. PStlE
-
August 1969
KOBAYASHI S. J. o f Eng. Ind., Trans. AWE
-
Hay 1970
-
pp 743
-
754
? - ,
[ 6-1
K I V I V U O R I S . . SULONEN '4. Annals of t h e C. I.R. P.
[ 4 NAKAMURO S. Wiley
[ 83
[ 91 [lo]
- Interscience -
-
27
- 1 (1978),
1977. p 242
LANGE K., REBHOLZ Ft., ROLL K. Proc. 6 t h NAf!RC 1978, pp 142
-
-
-
-
-
-
-
Fig. 8a
-
S t r e s s - s t r a i n paths and d u c t i l e f r a c t u r e p o i n t i n upsetting.
E3]
-
BAQUE P., RONCIN B. Annals o f t h e C. I. R. P.
- 81
1 (1978), pp 325
-
24
-
- 145
39
OYANE H., SAT0 T., OKItlOTO K. J. o f tlech. Work Tech. 4 (1980). pp 65
HILL R. J. o f tlech. and Phys. o f S o l i d s
pp 141
399
149
COCKCROFT !!. G., LATHAIl D. J . I n t . J. o f Metals 96 (1968). pp 33
J. of Hech. Work. Tech.
-
246
i l l ] OYANE M . , SHItlA S . , TABATA T. [123
pp 391
-
341
1 (1952). pp 19
-
30
1 (1975). pp 213
-
218
197