Pleiotropic antioxidant potential of rosuvastatin in preventing cardiovascular disorders

Pleiotropic antioxidant potential of rosuvastatin in preventing cardiovascular disorders

European Journal of Pharmacology 711 (2013) 57–62 Contents lists available at SciVerse ScienceDirect European Journal of Pharmacology journal homepa...

639KB Sizes 0 Downloads 32 Views

European Journal of Pharmacology 711 (2013) 57–62

Contents lists available at SciVerse ScienceDirect

European Journal of Pharmacology journal homepage: www.elsevier.com/locate/ejphar

Pleiotropic antioxidant potential of rosuvastatin in preventing cardiovascular disorders Rajkiran Mahalwar, Deepa Khanna n Cardiovascular Pharmacology Division, Department of Pharmacology, Institute of Pharmacy, Rajendra Institute of Technology and Sciences (RITS), Sirsa 125055, India

art ic l e i nf o

a b s t r a c t

Article history: Received 11 February 2013 Received in revised form 12 April 2013 Accepted 18 April 2013 Available online 3 May 2013

Rosuvastatin is a promising synthetic hydrophillic statin which provides potential benefits in reducing cardiovascular risk factors. Rosuvastatin has potent ability to diminish low density lipoprotein, very low density lipoprotein, triglycerides and enhance high density lipoprotein level to manage high cholesterol level and associated cardiovascular diseases. Intriguingly, numerous studies demonstrated that rosuvastatin can reverse the cardiac disorders such as hypertension, atherosclerosis, ischemic heart disease, congestive heart failure and cardiomyopathy by reducing reactive oxygen species mediated oxidative stress. Rosuvastatin maintain the balance between oxidant generation and oxidant scavenging by reducing NADPH (nicotinamide adenine dinucleotide phosphate)-dependent production of reactive oxygen species, suppressing endothelial nitric oxide synthase (eNOS) uncoupling, inducing and upregulating antioxidant defense mechanism. This review, summaries pleiotropic antioxidant evidences of rosuvastatin in favor of cardioprotection. & 2013 Elsevier B.V. All rights reserved.

Keywords: Oxidative stress NADPH oxidase Rosuvastatin Antioxidant enzymes Cardiovascular disorder

Contents 1. 2.

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Role of oxidative stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.1. NADPH oxidase mediated oxidative stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.1.1. Rosuvastatin against NADPH oxidase derived oxidative stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2. Uncoupled endothelial nitric oxide synthase mediated oxidative stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2.1. Rosuvastatin against endothelial nitric oxide synthase uncoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.3. Reduced antioxidant enzymatic defense mediated oxidative stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.1. Rosuvastatin improve antioxidant defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1. Introduction Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors are effective in preventing the pathogenesis of cardiovascular disorders (Davignon, 2004; Kapur and Musunuru, 2008; Zhou and Liao, 2009; Balakumar and Mahadevan, 2012). Clinically, along with lipid dependant effects of statins, nonlipid-dependent effects are also

n

Corresponding author. Tel.: +91 94168 50005. E-mail address: [email protected] (D. Khanna).

0014-2999/$ - see front matter & 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ejphar.2013.04.025

beneficial in primary and secondary prevention of coronary heart diseases by restoring nitric oxide (NO) mediated-endothelial function, enhancing stabilization of atherosclerotic plaques, reducing oxidative stress and vascular inflammation (Takemoto and Liao, 2001; Liao and Laufs, 2005; Lahera et al., 2007). Statins inhibit oxidant formation by affecting NADPH oxidase, upregulating antioxidant enzymes and enhancing the bioavailability of NO which can neutralize radicals. Antioxidant effect of statins likely contribute to their clinical efficacy in managing cardiovascular diseases as well as other chronic conditions associated with increased oxidative stress (Stoll et al., 2004). Several studies proposed ‘Pleiotropic effects’ of

58

R. Mahalwar, D. Khanna / European Journal of Pharmacology 711 (2013) 57–62

statins as key properties to reduce cardiovascular morbidity and mortality (Lahera et al., 2007; Sadowitz et al., 2010). Rosuvastatin, a synthetic hydrophillic statin is widely used to treat dyslipidemia by lowering lipid density lipoprotein, triglycerides and increasing high density lipoprotein levels (Rosenson, 2003). Intriguingly, it has been demonstrated that reactive oxygen species generated oxidative stress and inflammation are potent target site for rosuvastatin in order to manage vascular dysfunction (Gómez-García et al., 2007). Reactive oxygen species is a result of imbalanced oxidant production and endogenous antioxidant defense mechanism which appreciate overproduction of reactive oxygen/nitrogen species and oxidative damage (Lobo et al., 2010). Rosuvastatin attenuate oxidative stress mediating several antioxidant effects viz, reduction of NADPH oxidase, suppression of endothelial nitric oxide synthase (eNOS) uncoupling, upregulation of antioxidant enzymatic defense mechanism and inhibition of hydrogen peroxide induced-DNA damage (Laufs et al., 2002; Grosser et al., 2004; Habibi et al., 2007; Schupp et al., 2008). This review will focus the attention of viewers on root cause of oxidative stress and numerous evidential proofs demonstrating the therapeutic benefits of rosuvastatin in ameliorating oxidative stress associated cardiovascular dysfunction.

retrenchment of reactive oxygen species resulting in deleterious oxidative stress (Fig. 1) (Dhalla et al., 2000; Sorescu and Griendling, 2002; Valko et al., 2007; Paravicini and Touyz, 2008; Zhang et al., 2012). NADPH oxidase is a multisubunit enzyme that catalyzes the reduction of molecular oxygen to form O2dˉ which is liable in pathogenesis of cardiomyocytes (Fig. 2) (Niesner et al., 2008; Arora et al., 2010). NADPH oxidase is readily available from endothelial cells, smooth muscle cells, infiltrated monocytes/ macrophages and fibroblasts (Sorescu et al., 2002; Zalba et al., 2007). Aberrant activation of NADPH oxidase in response to neurohormones (angiotensin II, tumor necrosis factor-α, norepinephrine) contributes to cardiac disorders (Fig. 1) (Sorescu and Griendling, 2002). Angiotensin II activates NADPH oxidase via angiotensin-1 receptors and increase NADPH derived-O2dˉ

2. Role of oxidative stress Oxidative stress plays peculiar role in myocardium and vascular deformities in different types of cardiovascular disease such as hypertension, atherosclerosis, ischemic heart disease, congestive heart failure and cardiomyopathy (Dhalla et al., 2000). In normal physiological conditions, rate and magnitude of oxidant formation is balanced with rate of oxidant elimination. Pathogenic outcome of oxidant over production and suppressed antioxidant defense causes disturbance in this equilibrium resulting in oxidative stress, which initiates subcellular changes leading to cardiomyopathy (Touyz, 2004; Venardos et al., 2007). Oxidative stress is due to the production of Reactive oxygen species, which involve free radicals and peroxides/non radical (Genestra, 2007; Paravicini and Touyz, 2008; Birben et al., 2012). Free radicals generation is exponentially involved in development of myocardial and vascular damage (Gey, 1993; Singal et al., 1998; Dhalla et al., 2000). Free radicals are species that contain one and more unpaired electrons (Paravicini and Touyz, 2008). Free radicals include hydroxyl, nitric oxide (NOd) radical, superoxide (O2dˉ), peroxyl, and lipid peroxyl. Some oxidants by themselves are not free radical but can easily generate free radicals. These oxidants marked as peroxides/nonradical are hydrogen peroxide, peroxynitrite, nitrous acid, dinitrogen trioxide, singlet oxygen, ozone, hypochlorous acid and lipid peroxide (Genestra, 2007; Lobo et al., 2010). Reactive oxygen species mediated oxidative stress is an initial cause of cardiovascular injury potentially deteriorating normal cellular function through lipid peroxidation, DNA strand breaking and proteins inactivation (Venardos et al., 2007; Paravicini and Touyz, 2008; Bagatini et al., 2011). Reactive oxygen species generate pressure overload left ventricle hypertrophy and contribute in pathophysiology of multiple diseases including atherosclerosis, hypertension, hypercholesterolemia, heart failure and diabetes (Li et al., 2002; Dikalov et al., 2007; Mazor et al., 2008; Zimmerman and Zucker, 2009). Diabetic patients are more susceptible to cardiovascular complications due to oxidative stress associated with free radical mediated lipid peroxidation (Likidlilid et al., 2010). 2.1. NADPH oxidase mediated oxidative stress In the cardiovascular system, expression of NADPH oxidase, uncoupled nitric oxide synthase, xanthine oxidase, peroxidase, lipoxygenases, cyclooxygenase enzymes, mitochondrial autooxidations and certain heme-containing proteins are obligated for

Fig. 1. Various biomarkers of oxidative stress causing cardiovascular disorders and their inhibition by rosuvastatin. Negative sign indicates inhibition; TNF indicates tumor necrosis factor; AT-II indicates angiotensin II; NADPH indicates nicotinamide adenine dinucleotide phosphate; SOD indicates superoxide dismutase; GSH indicates glutathione; ROS indicates reactive oxygen species; ox-LDL indicates oxidized low-density lipoprotein; LOX-1 indicates ox- LDL receptor; eNOS indicates endothelial nitric oxide synthase; NO indicates nitric oxide; DNA indicates deoxyribonucleic acid.

Fig. 2. Rosuvastatin against endothelial nitric oxide synthase uncoupling mechanism. Doted line indicates inhibition; eNOS indicates endothelial nitric oxide synthase; NO indicates nitric oxide; O2d− indicates superoxide; NOd indicates nitric oxide; ONOOˉ peroxynitrite indicates; BH4 indicates tetrahydrobiopterin; BH2 indicates 7, 8-Dihydrobiopterin; LOX-1 indicates ox- LDL receptor; TNF-α indicates tumor necrosis factor alpha; NADPH indicates nicotinamide adenine dinucleotide phosphate.

R. Mahalwar, D. Khanna / European Journal of Pharmacology 711 (2013) 57–62

production in vascular smooth muscle cells and fibroblasts (Bendall et al., 2002; Hanna et al., 2002; Adachi et al., 2004; Manrique et al., 2007; Zhang et al., 2007). 2.1.1. Rosuvastatin against NADPH oxidase derived oxidative stress Collections of studies have suggested that rosuvastatin attenuate oxidative stress by suppression of NADPH oxidase enzyme. Resch et al. (2006) demonstrated that clinical rosuvastatin therapy decrease oxidative stress biomarkers along with cholesterol reduction (Resch et al., 2006). Rosuvastatin impairs platelet aggregation by inhibiting NOX2 release, a specific marker of NADPH oxidase activation in hypercholesterolemic patients (Pignatelli et al., 2012). Rosuvastatin decrease cardiac oxidative stress by attenuating myocardial NADPH subunits (gp91(phox), p40(phox), p67(phox) and p22(phox)), and Rac1 resulting in lower production of radicals (Fig. 1) (Tian et al., 2007, Habibi et al., 2007; Schupp et al., 2008; Kang and Mehta, 2009). Rosuvastatin treatment decreased the p22phox subunit of NADPH in aortic wall before nitroglycerin exposure to rats. Further, nitroglycerin increased expression of gp91phox mRNA in two mice strains by in vivo exposure of was completely abolished by rosuvastatin (Otto et al., 2005; Otto et al., 2006). Rosuvastatin reduce the risk of developing hypertension and ocular diseases in rats by reducing NADPH oxidase activity (Sicard et al., 2005; Sicard et al., 2007). Tian et al. (2011) demonstrated that rosuvastatin produces vasoprotective effect in diabetic mice by inhibiting reactive oxygen species production mediated by the elevated expression of Angiotensin 1 receptor-NADPH oxidase (Tian et al., 2011). Rosuvastatin attenuated the Ang II-mediated upregulation of both p40 (phox) and gp91 (phox) subunits of NAPDH oxidase as well as NF-kappa in mice (Kang and Mehta, 2009). Rosuvastatin treatment decrease NADPH oxidasedependent superoxide production in Zucker obese rats (Erdos et al., 2006). Rosuvastatin prevents angiotensin II-induced vascular changes by decreasing NADPH oxidase-derived oxidant excess, restoring NO availability, reversal of COX-1 induction and its prostanoid production, and stimulation of endogenous vascular antioxidant defenses (Colucci et al. 2012). 2.2. Uncoupled endothelial nitric oxide synthase mediated oxidative stress Endothelial nitric oxide synthase (eNOS) maintain equilibrium of redox balance between reactive nitrogen species and reactive oxygen species insistent for the health of cardiac cells (Zhang et al., 2012). Nitric oxide synthase enzyme possesses the unique ability to get ‘Uncoupled’ and produce reactive oxygen species instead of NO, which contributes to increased oxidative stress in myocardium (Roe and Ren, 2012; Zhang et al., 2012). Oxidative stress suppresses NO synthesis by deactivation of eNOS (Liao et al., 1995; Wang et al., 1998; Blair et al., 1999). eNOS, a key enzyme regulate cardiovascular function by producing endothelium-derived relaxing factor/NO (Balakumar et al., 2012). Reactive oxygen species supress NO availability as a result of eNOS uncoupling and play an important role in cardiovascular disorders like hypertension, atherosclerosis, ischemic reperfusion injury, endothelial dysfunction, cardiomyopathy and diabetes mellitus (Faraci and Didion, 2004; Roe and Ren, 2012). Nitric oxide, a gaseous free radical is poorly reacting with most of the biomolecules (Halliwell et al., 1999). The beneficial scavenging action of NO against peroxyl radicals turns to be deleterious when NOd react with other free radicals especially O2dˉ (Fig. 2). Superoxide levels influence the reaction pathways open to nitric oxide by modulating the effect of NO and enzyme superoxide dismutase (SOD) (Pryor and Squadrito, 1995; Tousoulis et al., 2012). NADPH-oxidase derived O2dˉ avidly react with eNOS-

59

derived NO to form peroxynitrite (Forstermann and Li, 2011; Tousoulis et al., 2012). Peroxynitrite is a potent and versatile nitrogen species that can attack a wide range of biological targets (Pryor and Squadrito, 1995). Peroxynitrite increase O2dˉ and decrease NO production by eNOS uncoupling and is able to oxidize the cofactor tetrahydrobiopterin, which is potent inhibitor of NOSdependent O2dˉ (Kuzkaya et al., 2003; Forstermann and Li, 2011). Deficiency of tetrahydrobiopterin produces eNOS uncoupling, which is associated with increased O2dˉ and decreased NO production (Fig. 2) (Kuzkaya et al., 2003; Li and Förstermann, 2009; Forstermann and Li, 2011). Peroxynitrite is protonated to form peroxynitrous acid, which can yield nitrogen dioxide and a hydroxyl radical (Pryor and Squadrito, 1995). In the vessel wall, peroxynitrite and peroxynitrous acid contribute to lipid peroxidation and membrane damage (O′Donnell and Freeman, 2001). TNF-α contributes in oxidative stress by increasing the concentration of O2dˉ along with peroxynitrite in the cytosol and hydrogen peroxide in mitochondria (Fig. 2) (Mariappan et al., 2012). Atherosclerosis is characterized by reduced large artery distensibility, paralleled by an increased peroxynitrite formation and nitration of tyrosine (3-NT) in proteins (Pirro et al., 2007). Oxidized low-density lipoprotein (ox-LDL) interacting with lectin-like ox-LDL receptors (LOX-1) are the major stimulus for cardiomyocytes growth (Pignatelli et al., 2012). Oxidized low-density lipoprotein-induce upregulation of LOX-1 and downregulation of eNOS.(Fig. 2) LOX-1 receptor play a critical role in atherosclerosis and endothelial dysfunction both of which are associated with diminished expression of constitutive eNOS (Morawietz, 2007).

2.2.1. Rosuvastatin against endothelial nitric oxide synthase uncoupling NO donor, L-arginine, folic acid, statins, angiotensin converting enzyme inhibitors, tetrehydrobiopterin and its precursor sepiapterin and NO synthase transcription enhancers maintain vascular homeostasis by upregulating and concomitantly maintaining eNOS activity thereby restoring NO (Li and Förstermann, 2009). Rosuvastatin restores eNOS, increase the production of NO, and decrease O2dˉ and 3-NT production. Further, it decreases expression of NADPH subunits (p47-phox, p67-phox, p22-phox), 8-hydroxy-2′-deoxyguanosine, caspase-3 and Bcl-2, which prevent oxidative stress and apoptosis induced in human umbilical vein endothelial cells by diabetes (Piconi et al., 2008). Aortic pulse wave velocity, a reliable measure of aortic stiffness and 3-NT, a marker of peroxynitrite-mediated oxidative stress in hypercholesterolemic patients are significantly reduced by short term rosuvastatin therapy (Pirro et al., 2007). Rosuvastatin increases vascular endothelial NO production and attenuates myocardial necrosis following ischemia and reperfusion in mice (Jone et al., 2002). Rosuvastatin improves endothelial function by inhibiting HMG-CoA reductase and increased systemic NO bioavailability in congestive heart failure rats. (Schäfer et al., 2005) Rosuvastatin dose-dependently upregulate eNOS expression and protect mice from cerebral ischemia (Laufs et al., 2002). Rosuvastatin improve nicotine-induced vascular endothelial abnormalities by activating eNOS and PPARγ signaling pathways. Further additional antioxidant and lipid lowering effects of rosuvastatin prevents vascular endothelial abnormalities (Kathuria et al., 2013). Rosuvastatin mediate anti-oxidant and antiinflammatory effects by reducing interleukin-6, TNF-α, triglycerides, total cholesterol, low density lipoprotein and increasing the high density lipoprotein levels (Gómez-García et al., 2007). Rosuvastatin attenuate expression of TNF-α and p38 MAPK showing favorable response on cardiac remodeling and cardiac function after acute myocardial infarction (Xu et al., 2010). Rosuvastatin attenuates angiotensin-II-mediated cardiomyocytes growth by

60

R. Mahalwar, D. Khanna / European Journal of Pharmacology 711 (2013) 57–62

inhibiting LOX-1 and angiotensin-1 receptor expression (Pignatelli et al., 2012). 2.3. Reduced antioxidant enzymatic defense mediated oxidative stress Venardos et al. (2007) demonstrated that the production of reactive oxygen species is controlled through endogenous free radical scavenger enzymes i.e. superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase and thioredoxin reductase systems (Venardos et al., 2007). SOD decomposes O2dˉ anions into hydrogen peroxide and then enzyme catalase catalyze the decomposition of hydrogen peroxide into water and oxygen (Fig. 3). In vascular walls, SOD prevents the oxidation of biological molecules by limiting the increase concentration of O2dˉ radicals (Fang et al., 1998; Didion et al., 2002; Faraci and Didion, 2004). SOD1 (Cu-Zn-SOD), SOD2 (Mn-SOD) and SOD3 (extracellular (EC)–SOD) predominant isoforms of SOD are present within the cytosol and nucleus in the mitochondrial matrix (Faraci and Didion, 2004; Didion et al., 2002). Increased intracellular SOD1 protects the heart from ischemiareperfusion injury (Fukushima et al., 2006). Overexpression of SOD1 attenuates both apoptosis and the inflammatory response during ischemia-reperfusion injury by significantly reducing O2dˉ and TNF-α (Tanaka et al., 2004). In clinical research, the coronary artery diseases were found to be associated with decrease level of EC-SOD (Maksimenko and Vavaev, 2012). A variety of antioxidant enzymes involving superoxide dismutase, glutathione reductase, glutathione peroxidase and catalase are equipped in mammalian cell that represent the network of defenses against oxidative stress induced tissue damage (Fig. 3) (Blokhina et al., 2003; Zinkevich and Gutterman, 2011). Reactive oxygen species and reactive nitrogen species modify the functions of antioxidant enzymes, they downregulate superoxide dismutase and glutathione peroxidase which is associated with various oxidative conditions and concomitant cellular damage (Fujii and Taniguchi, 1999). Antioxidant defense protein heme oxygenase-1 attenuates the overall production of reactive oxygen species by generating carbon monoxide and potent antioxidant bilirubin (Yet et al., 2001; Lakkisto et al., 2002; Stocker and Perrella, 2006; Wang et al., 2010). Heme oxygenase-1 derived carbon monoxide produce anticipatory effect against hydrogen peroxide induced cardiomyocytes apoptosis and cell death (Lakkisto et al., 2002; Daiber et al., 2010). 2.3.1. Rosuvastatin improve antioxidant defense Rosuvastatin is able to restore the antioxidant defense by improving SOD1 expression thereby providing protection against oxidative stress, which is contributor to post ischemic injury in the

Fig. 3. Rosuvastatin restore antioxidant defense mechanism. Doted line indicates inhibition; O2− indicates superoxide; SOD indicates superoxide dismutase; H2O2 indicates hydrogen peroxide; GPX indicates glutathione peroxidase; GR indicates glutathione reductase; GSH indicates glutathione; GSSG indicates glutathione disulfide.

heart (Verreth et al., 2007). Rosuvastatin enhances the expression of glutathione synthase, glutathione peroxidase, glutathione reductase and glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis. Rosuvastatin significantly increase the total glutathione content of glutathione-depleted HL-60 (human promyelocytic leukemia cells) (Schupp et al., 2008). Grosser et al. (2004) demonstrated that rosuvastatin when added exogenously to the cells, upregulate the antioxidant defense protein heme oxygenase-1 metabolite bilirubin, which virtually abolish NADPH-dependent oxidative stress (Grosser et al., 2004). DNA is the most important target of oxidative attack. The increased level of oxidative DNA damage potentially contributes in development of cardiovascular diseases (Ballinger et al., 2000). Rosuvastatin exert antioxidant effects through the induction of antioxidant enzymes, and by suppressing reactive oxygen species thus preventing DNA damage caused in human promyelocytic cell line HL-60 (Fig. 1) (Schupp et al., 2008).

3. Conclusion Updates on research tremendously aided in showing increased participation of reactive oxygen species and reduced antioxidant enzymatic defense in the pathogenesis of cardiovascular disorders. Rosuvastatin significantly reduces NADPH-dependent production of reactive oxygen species; suppress endothelial nitric oxide synthase (eNOS) uncoupling and upregulate antioxidant defense mechanism. In this review brief perspective on some of the current research carried out in the area for understanding role of reactive oxygen species and antioxidant defense enzymes and their management by rosuvastatin in cardiovascular dysfunctions is highlighted.

Acknowledgment We express our gratefulness to Dr. Pitchai Balakumar for their expertise suggestion and review, gratitude is extended to Dr. Rajendar Singh, Chairman, Shri Om Parkash, Director and Dr. Senthil Kumar, Principal of Rajendra Institute of Technology and Sciences, Sirsa, India, for their inspiration and constant support. References Adachi, T., Pimentel, D.R., Heibeck, T., Hou, X., Lee, Y.J., Jiang, B., Ido, Y., Cohen, R.A., 2004. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 279, 29857–29862. Arora, S., Vaishya, R., Dabla, P.K., Singh, B., 2010. NADPH oxidases in coronary artery disease. Adv. Clin. Chem. 50, 65–86. Bagatini, M.D., Martins, C.C., Battisti, V., Gasparetto, D., da Rosa, C.S., Spanevello, R.M., Ahmed, M., Schmatz, R., Schetinger, M.R., Morsch, V.M., 2011. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessels 26, 55–63. Balakumar, P., Mahadevan, N., 2012. Interplay between statins and PPARs in improving cardiovascular outcomes: a double-edged sword? Br. J. Pharmacol 165, 373–379. Balakumar, P., Kathuria, S., Taneja, G., Kalra, S., Mahadevan, N., 2012. Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins? J. Mol. Cell. Cardiol 52, 83–92. Ballinger, S.W., Patterson, C., Yan, C.N., Doan, R., Burow, D.L., Young, C.G., Yakes, F.M., Van Houten, B., Ballinger, C.A., Freeman, B.A., Runge, M.S., 2000. Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ. Res. 86, 960–966. Bendall, J.K., Cave, A.C., Heymes, C., Gall, N., Shah, A.M., 2002. Pivotal role of a gp91 (phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105, 293–296. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., 2012. Oxidative stress and antioxidant defense. World Allergy Organ J. 5, 09–19. Blair, A., Shaul, P.W., Yuhanna, I.S., Conrad, P.A., Smart, E.J., 1999. Oxidised low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J. Biol. Chem. 274, 32512–32519.

R. Mahalwar, D. Khanna / European Journal of Pharmacology 711 (2013) 57–62

Blokhina, O., Virolainen, E., Fagerstedt, K.V., 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194. Colucci, R., Fornai, M., Duranti, E., Antonioli, L., Rugani, I., Aydinoglu, F., Ippolito, C., Segnani, C., Bernardini, N., Taddei, S., Blandizzi, C., Virdis, A., 2012. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NaD(P)H oxidase and cyclooxygenase-1. Br. J. Pharmacol , http://dx.doi.org/10.1111/ j.1476-5381.2012.02106.x. Daiber, A., Münzel, T., Gori, T., 2010. Organic nitrates and nitrate tolerance–state of the art and future developments. Adv. Pharmacol. 60, 177–227. Davignon, J., 2004. The cardioprotective effects of statins. Curr. Atheroscler. Rep 6, 27–35. Dhalla, N.S., Temsah, R.M., Netticadan, T., 2000. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18, 655–673. Didion, S.P., Ryan, M.J., Didion, L.A., Fegan, P.E., Sigmund, C.D., Faraci, F.M., 2002. Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ. Res. 91, 938–944. Dikalov, S., Griendling, K.K., Harrison, D.G., 2007. Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49, 717–727. Erdos, B., Snipes, J.A., Tulbert, C.D., Katakam, P., Miller, A.W., Busija, D.W., 2006. Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD(P)H oxidase-dependent superoxide production. Am. J. Physiol. Heart Circ. Physiol. 290, 1264–1270. Fang, X., Weintraub, N.L., Rios, C.D., Chappell, D.A., Zwacka, R.M., Engelhardt, J.F., Oberley, L.W., Yan, T., Heistad, D.D., Spector, A.A., 1998. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells. Circ. Res. 82, 1289–1297. Faraci, F.M., Didion, S.P., 2004. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler. Thromb. Vasc. Biol. 24, 1367–1373. Forstermann, U., Li, H., 2011. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br. J. Pharmacol. 164, 213–223. Fujii, J., Taniguchi, N., 1999. Downregulation of superoxide dismutases and glutathione peroxidase by reactive oxygen and nitrogen species. Free Radic. Res 31, 301–308. Fukushima, S., Coppen, S.R., Varela-Carver, A., Brindley, G., Yamahara, K., Sarathchandra, P., Yacoub, M.H., Suzuki, K., 2006. Enhanced efficiency of superoxide dismutase-induced cardioprotection by retrograde intracoronary administration. Cardiovasc. Res. 69, 459–465. Genestra, M., 2007. Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell. Signal. 19, 1807–1819. Gey, K.F., 1993. Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease. Br. Med. Bull. 49, 679–699. Gómez-García, A., Martínez Torres, G., Ortega-Pierres, L.E., Rodríguez-Ayala, E., Alvarez-Aguilar, C., 2007. Rosuvastatin and metformin decrease inflammation and oxidative stress in patients with hypertension and dyslipidemia. Rev. Esp. Cardiol. 60, 1242–1249. Grosser, N., Erdmann, K., Hemmerle, A., Berndt, G., Hinkelmann, U., Smith, G., Schroder, H., 2004. Rosuvastatin upregulates the antioxidant defense protein hemeoxygenease-1. Biochem. Biophys. Res. Commun. 325, 871–876. Habibi, J., Whaley-Connell, A., Qazi, M.A., Hayden, MR., Cooper, S.A., Tramontano, A., Thyfault, J., Stump, C., Ferrario, C., Muniyappa, R., Sowers, J.R., 2007. Rosuvastatin a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, decreases cardiac oxidative stress and remodeling in Ren2 transgenic rats. Endocrinology 148, 2181–2188. Halliwell, B., Zhao, K., Whiteman, M., 1999. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic. Res. 31, 651–669. Hanna, I.R., Taniyama, Y., Szöcs, K., Rocic, P., Griendling, K.K., 2002. NAD(P)H oxidase- derived reactive oxygen species as mediators of angiotensin II signaling. Antioxidant Redox Signal 4, 899–914. Jone, S.P., Gibson, M.F., Rimmer 3rd, D.M., Gibson, T.M., Sharp, B.R., Lefer, D.J., 2002. Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor. J. Am. Coll. Cardiol. 40, 1172–1178. Kang, B.Y., Mehta, J.L., 2009. Rosuvastatin attenuates Ang II-mediated cardiomyocytes hypertrophy via inhibition of LOX-1. J. Cardiovasc. Pharmacol. Ther. 14, 283–291. Kapur, N.K., Musunuru, K., 2008. Clinical efficacy and safety of statins in managing Cardiovascular risk. Vasc. Health Risk. Manag 4, 341–353. Kathuria, S., Mahadevan, N., Balakumar, P., 2013. Possible involvement of PPARγassociated eNOS signaling activation in rosuvastatin-mediated prevention of nicotine-induced experimental vascular endothelial abnormalities. Mol. Cell Biochem. 374, 61–72. Kuzkaya, N., Weissmann, N., Harrison, D.G., Dikalov, S., 2003. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J. Biol. Chem. 278, 22546–22554. Lahera, V., Goicoechea, M., de Vinuesa, S.G., Miana, M., de las Heras, N., Cachofeiro, V., Luño, J., 2007. Endothelial dysfunction, oxidative stress and inflammation in atherosclerosis: beneficial effects of statins. Curr. Med. Chem. 14, 243–248. Lakkisto, P., Palojoki, E., Bäcklund, T., Saraste, A., Tikkanen, I., Voipio-Pulkki, L.M., Pulkki, K., 2002. Expression of heme oxygenase-1 in response to myocardial infarction in rats. J. Mol. Cell. Cardiol. 34, 1357–1365. Laufs, U., Gertz, K., Dirnagl, U., Bohm, M., Nickenig, G., Endres, M., 2002. Rosuvastatin, HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res. 942, 23–30.

61

Li, H., Förstermann, U., 2009. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr. Pharm. Des 15, 3133–3145. Li, J.M., Gall, N.P., Grieve, D.J., Chen, M., Shah, A.M., 2002. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40, 477–484. Liao, J.K., Laufs, U., 2005. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45, 89–118. Liao, J.K, Shin, W.S., Lee, W.Y., Clark, S.L., 1995. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J. Biol. Chem. 270, 319–324. Likidlilid, A., Patchanans, N., Peerapatdit, T., Sriratanasathavorn, C., 2010. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J. Med. Assoc. Thai. 93, 682–693. Lobo, V., Patil, A., Phatak, A., Chandra, N., 2010. Free radicals, antioxidants and Functional foods: Impact on human health. Pharmacogn. Rev 4, 118–126. Maksimenko, A.V., Vavaev, A.V., 2012. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzymes antioxidants: The next stage of pharmacological counterwork to the oxidative stress. Heart Int. 7, e3, http://dx.doi.org/10.4081/hi.2012.e3. Manrique, C., Lastra, G., Habibi, J., Wei, Y., Morris, E.M., Stump, C.S., Sowers, J.R., 2007. Methods of evaluation of cardiovascular renin angiotensin aldosterone activation and oxidative stress. Methods Mol. Med 139, 163–179. Mariappan, N., Elks, C.M., Haque, M., Francis, J., 2012. Interaction of TNF with angiotensin II contributes to mitochondrial oxidative stress and cardiac damage in rats. PLoS One 7, e46568, http://dx.doi.org/10.1371/journal.pone.0046568. Mazor, R., Shurtz-Swirski, R., Farah, R., Kristal, B., Shapiro, G., Dorlechter, F., CohenMazor, M., Meilin, E., Tamara, S., Sela, S., 2008. Primed polymorphonuclear leukocytes constitute a possible link between inflammation and oxidative stress in hyperlipidemic patients. Atherosclerosis 197, 937–943. Morawietz, H., 2007. LOX-1 and atherosclerosis: proof of concept of LOX-1 knockout mice. Circ. Res 100, 1534–1536. Niesner, R., Narang, P., Spiecker, H., Andresen, V., Gericke, K.H., Gunzer, M., 2008. Selective detection of NADPH oxidase in polymorphonuclear cells by means of NAD(P)H-based fluorescence lifetime imaging. J. Biophys. 2008, 602639, http: //dx.doi.org/10.1155/2008/602639. O′Donnell, V.B., Freeman, B.A., 2001. Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. Circ. Res. 88, 12–21. Otto, A., Fontaine, D., Fontaine, J., Berkenboom, G., 2005. Rosuvastatin treatment protects against nitrate-induced oxidative stress. J. Cardiovasc. Pharmacol. 46, 177–184. Otto, A., Fontaine, J., Tschirhart, E., Fontaine, D., Berkenboom, G., 2006. Rosuvastatin treatment protects against nitrate-induced oxidative stress in eNOS knockout mice: implication of the NAD(P)H oxidase pathway. Br. J. Pharmacol. 148, 544–552. Paravicini, T.M., Touyz, R.M., 2008. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2, 170–180. Piconi, L., Corgnali, M., Da Ros, R., Assaloni, R., Piliego, T., Ceriello, A., 2008. The protective effect of rosuvastatin in human umbilical endothelial cells exposed to constant or intermittent high glucose. J. Diabetes Complications 22, 38–45. Pignatelli, P., Carnevale, R., Di Santo, S., Bartimoccia, S., Nocella, C., Vicario, T., Loffredo, L., Angelico, F., Violi, F., 2012. Rosuvastatin reduces platelet recruitment by inhibiting NADPH oxidase activation. Biochem. Pharmacol. 84, 1635–1642. Pirro, M., Schillaci, G., Mannarino, M.R., Savarese, G., Vaudo, G., Siepi, D., Paltriccia, R., Mannarino, E., 2007. Effect of rosuvastatin on 3-nitrotyrosine and aortic stiffness in hypercholesterolemia. Nutr. Metab. Cardiovasc. Dis. 17, 436–441. Pryor, W.A., Squadrito, G.L., 1995. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, 699–722. Resch, U., Tatzber, F., Budinsky, A., Sinzinger, H., 2006. Reduction of oxidative stress and modulation of autoantibodies against modified low-density lipoprotein after rosuvastatin therapy. Br. J. Clin. Pharmacol. 61, 262–274. Roe, N.D., Ren, J., 2012. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vascul. Pharmacol 57, 168–172. Rosenson, R.S., 2003. Rosuvastatin: a new inhibitor of HMG-CoA reductase for the treatment of dyslipidemia. Expert Rev. Cardiovasc. Ther. 1, 495–505. Sadowitz, B., Seymour, K., Costanza, M.J., Gahtan, V., 2010. Basic science review section: statin therapy—Part II: clinical considerations for cardiovascular disease. Vasc. Endovascular Surg. 44, 421–433. Schäfer, A., Fraccarollo, D., Eigenthaler, M., Tas, P., Firnschild, A., Frantz, S., Ertl, G., Bauersachs, J., 2005. Rosuvastatin reduces platelet activation in heart failure: role of NO bioavailability. Arterioscler. Thromb. Vasc. Biol. 25, 1071–1077. Schupp, N., Schmid, U., Heidland, A., Stopper, H., 2008. Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis 199, 278–287. Sicard, P., Lauzier, B., Oudot, A., Busseuil, D., Collin, B., Duvillard, L., Moreau, D., Vergely, C., Rochette, L., 2005. A treatment with rosuvastatin induced a reduction of arterial pressure and a decrease of oxidative stress in spontaneously hypertensive rats. Arch. Mal. Coeur. Vaiss. 98, 804–808. Sicard, P., Acar, N., Gregoire, S., Lauzier, B., Bron, A.M., Creuzot-Garcher, C., Bretillon, L., Vergely, C., Rochette, L., 2007. Influence of rosuvastatin on the NAD(P)H oxidase activity in the retina and electroretinographic response of spontaneously hypertensive rats. Br. J. Pharmacol. 151, 979–986. Singal, P.K., Khaper, N., Palace, V., Kumar, D., 1998. The role of oxidative stress in the genesis of heart disease. Cardiovasc. Res. 40, 426–432.

62

R. Mahalwar, D. Khanna / European Journal of Pharmacology 711 (2013) 57–62

Sorescu, D., Griendling, K.K., 2002. Reactive oxygen species, mitochondria, and NAD (P)H oxidases in the development and progression of heart failure. Congest. Heart Fail. 8, 132–140. Sorescu, D., Weiss, D., Lasseque, B., Clempus, R.E., Szöcs, K., Sorescu, G.P., Valppu, L., Quinn, M.T., Lambeth, J.D., Veqa, J.D., Taylor, W.R., Griending, K.K., 2002. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105, 1429–1435. Stocker, R., Perrella, M.A., 2006. Heme oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation 114, 2178–2189. Stoll, L.L., McCormick, M.L., Denning, G.M., Weintraub, N.L., 2004. Antioxidant effects of statins. Drugs Today (Barc) 40, 975–990. Takemoto, M., Liao, J.K., 2001. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler. Thromb. Vasc. Biol. 21, 1712–1719. Tanaka, M., Mokhtari, G.K., Terry, R.D., Balsam, L.B., Lee, K.H., Kofidis, T., Tsao, P.S., Robbins, R.C., 2004. Overexpression of human copper/zinc superoxide dismutase (SOD1) suppresses ischemia-reperfusion injury and subsequent development of graft coronary artery disease in murine cardiac grafts. Circulation 110, 200–206. Tian, X.Y., Wong, W.T., Xu, A., Chen, Z.Y., Lu, Y., Liu, L.M., Lee, V.W., Lau, C.W., Yao, X., Huang, Y, 2011. Rosuvastatin improves endothelial function in db/db mice: role of angiotensin II type 1 receptors and oxidative stress. Br. J. Pharmacol. 164, 598–606. Tousoulis, D., Papageorgiou, N., Briasoulis, A., Androulakis, E., Charakida, M., Tsiamis, E., Stefanadis, C., 2012. Conflicting effects of nitric oxide and oxidative stress in chronic heart failure: potential therapeutic strategies. Heart Fail. Rev. 17, 65–79. Touyz, R.M., 2004. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44, 248–252. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J., 2007. Free physiological functions and human disease. Int. J. Biochem. Cell. Biol. 39, 44–84. Venardos, K.M., Perkins, A., Headrick, J., Kaye, D.M., 2007. Myocardial ischemiareperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem. 14, 1539–1549. Verreth, W., De Keyzer, D., Davey, P.C., Geeraert, B., Mertens, A., Herregods, M.C., Smith, G., Desjardins, F., Balligand, J.L., Holvoet, P., 2007. Rosuvastatin restores

superoxide dismutase expression and inhibits accumulation of oxidized LDL in the aortic arch of obese dyslipidemic mice. Br. J. Pharmacol. 151, 347–355. Wang, G., Hamid, T., Keith, R.J., Zhou, G., Partridge, C.R., Xiang, X., Kingery, J.R., Lewis, R.K., Li, Q., Rokosh, D.G., Ford, R., Spinale, F.G., Riggs, D.W., Srivastava, S., Bhatnagar, A., Bolli, R., Prabhu, S.D., 2010. Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 121, 1912–1925. Wang, H.D., Pagano, P.J., Du, Y., Cayatte, A.J., Quinn, M.T., Brecher, P., Cohen, R.A., 1998. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ. Res. 82, 810–818. Xu, Y., Tang, T., Ding, Y., Yao, R., Xie, J., Liao, M., Xiao, H., Chen, Y., Yu, X., Fu, M., Liao, Y., Zhao, G., Cheng, X., 2010. Improved cardiac performance by rosuvastatin is associated with attenuations in both myocardial tumor necrosis factor-alpha and p38 MAP kinase activity in rats after myocardial infarction. Am. J. Med. Sci. 340, 121–127. Yet, S.F., Tian, R., Layne, M.D., Wang, Z.Y., Maemura, K., Solovyeva, M., Ith, B., Melo, L.G., Zhang, L., Ingwall, J.S., Dzau, V.J., Lee, M.E., Perrella, M.A., 2001. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ. Res. 89, 168–173. Zalba, G., Fortuño, A., Orbe, J., San José, G., Moreno, M.U., Belzunce, M., Rodriguez, J.A., Beloqui, O., Páramo, J.A., Díez, J., 2007. Phagocytic NADPH oxidase- dependent superoxide production stimulates matrix metalloproteinase-9: implications for human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 587–593. Zhang, G.X., Lu, X.M., Kimura, S., Nishiyama, A., 2007. Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc. Res. 76, 204–212. Zhang, Y., Tocchetti, C.G., Krieg, T., Moens, A.L., 2012. Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic. Biol. Med. 53, 1531–1540. Zhou, Q., Liao, J.K., Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr. Pharm. Des. 15, pp. 467–478. Zimmerman, M.C., Zucker, I.H., 2009. Mitochondrial dysfunction and mitochondrial- produced reactive oxygen species: new targets for neurogenic hypertension? Hypertension 53, 112–114. Zinkevich, N.S., Gutterman, D.D., 2011. ROS-induced ROS release in vascular biology: redox-redox signaling. Am. J. Physiol. Heart Circ. Physiol 301, 647–653.