Pole dominance in the reaction 6Li(16O, d)20Ne

Pole dominance in the reaction 6Li(16O, d)20Ne

Volume 30B, number 3 POLE PHYSICS LETTERS DOMINANCE IN THE REACTION 29 September 1969 6Li(160,d)20Ne M. J A M E E L * Internalional Atomic En...

123KB Sizes 14 Downloads 44 Views

Volume 30B, number 3

POLE

PHYSICS LETTERS

DOMINANCE

IN THE

REACTION

29 September 1969

6Li(160,d)20Ne

M. J A M E E L *

Internalional Atomic Energy Agency, International Centre for Theoretical Physics, Miramare, Trieste, Italy Received 5 August 1969

A simple pole-dominance model is shown to give a satisfactory explanation of the observed angular distribution in the reaction 6Li(160, d) leading to 20Ne in the ground state.

R e c e n t l y , Cheon and Sen Gupta [1] have p r o pose d a double s c a t t e r i n g m o d e l within the f r a m e w o r k of c l u s t e r i n g t h e o r y in o r d e r to explain the o b s e r v e d a n g u l a r d i s t r i b u t i o n [2] in the 6Li(160,d) r e a c t i o n l ead i n g to 20Ne in the ground state. They obtain the b a c k w a r d peak through the p i c k -up of an alpha p a r t i c l e f r o m the 6Li t a r g e t nuc l e u s (a s e c o n d - o r d e r p r o c e s s ) while the f o r w a r d peak is r e p r o d u c e d by c a l c u l a t i n g a f o u r t h - o r d e r F e y n m a n d i a g r a m in plane wave Born approximation. The p u r p o s e of this note is to show that the e x p e r i m e n t a l d i s t r i b u t i o n can be s a t i s f a c t o r i l y u n d e r s t o o d without having to c o n s i d e r f o u r th - o r d e r p r o c e s s e s , p r o v i d e d one does not take the notion of c l u s t e r i n g too s e r i o u s l y . The p r e sent a p p r o a c h is b a s e d on the concept~ of pole d o m i n a n c e of the r e a c t i o n amplitude. We c o n s i d e r the r e a c t i o n

6Li + 160~ d +20Ne

(i)

to proceed principally through the two modes depicted in fig. 1, viz. the virtual exchange of the nuclei 4He and 14N. We assume further that these nuclides are exchanged in their ground s t a t e s , which is a r e a s o n a b l e a s s u m p t i o n , p a r t i c u l a r l y b e c a u s e we a r e only c o n s i d e r i n g the c a s e in which the final 20Ne nucleus is a l s o in the ground state. Since 4He c a r r i e s no spin and 14N has spin one, the c o n t r i b u t i o n of t h e s e two diag r a m s to the r e a c t i o n a m p l i t u d e can be w r i t t e n :~Permanent address: Pakistan Atomic Energy Com,_mission, Karachi, Pakistan. Considerations of singularities in the amplitude were first introdueed in direet nuclear reaction theory by Amado and Shapiro [3].

He20

d

d

Ne 20

Li6

LI6

Fig. 1. The two diagrams whose contribution to the amplitude has been evaluated. as

A(E) P 0 ( c o s 0 )

T:

u-M

S(E) Pl(COSO)

+

(5)

w h e r e M 1 and M 2 a r e the m a s s e s of 4He and 14N r e s p e c t i v e l y , t and u a r e the u su al M a n d e l s t a m m o m e n t u m t r a n s f e r v a r i a b l e s , 0 is the s c a t t e r i n g angle in the c e n t r e - o f - m a s s s y s t e m and the L e g e n d r e p o l y n o m i a l s r e f l e c t the a n g u l a r m o m e n ta c a r r i e d by the exchanged p a r t i c l e s . The e n e r gy-dependent functions A (E) and B(E) a r e r e l a t e d to f o r m f a c t o r s at the v e r t i c l e s but, si n ce they do not involve the s c a t t e r i n g angle, they a r e not i m p o r t a n t f o r the p r e s e n t a n a l y s i s . In fact, at given r e a c t i o n e n e r g y , they can be t r e a t e d a s constant p a r a m e t e r s . F u r t h e r , as the a m p l i t u d e is anyway u n d e t e r m i n e d to an o v e r - a l l n o r m a l i zation f a c t o r , t h e r e is indeed only one a d j u s t a b l e p a r a m e t e r in this model, which we call CE to u n d e r s c o r e its e n e r g y dependence. The a m p l i t u d e (2) can then be r e w r i t t e n a s 1

T-u-M

C E " cos 0

2+

t-M 2

(3)

The explicit e x p r e s s i o n s f o r l and u a r e given below f o r the sake of c o m p l e t e n e s s :

155

Volume 30B, n u m b e r 3

PHYSICS

/)2

u = (rn a - m d )2 -

p ,2

2pp'

DI 2

YR a l~l c

marn d (P~29+P'2 + 2pp' ~2

LETTERS

29 September 1969

(4) c o s 0)

3O0

c o s 0)

mamd

(5) w h e r e mR, rob, m c a n d rn d a r e t h e m a s s e s , r e s p e c t i v e l y , of 1 6 0 , 6 L i , d a n d 20Ne; p a n d p ' a r e g i v e n i n t e r m s of t h e c e n t r e - o f - m a s s energy E a n d t h e Q - v a l u e of t h e r e a c t i o n a s p2 = 2 m a rnb . m a + rn b ,

p , 2 _ 2 m c rnd rnc + rn d

(E+Q) .

Finally, the reaction cross-section in arbitrary units by the expression

cr(E,O ) = N E ITI 2

(6)

is given (7)

w h e r e N E is a suitable chosen normalization factor which would, in general, vary with energy. T h e c a l c u l a t i o n s h a v e b e e n c a r r i e d out a t E -= 20 M e V , w h i c h i s t h e c e n t r e - o f - m a s s energy of t h e e x p e r i m e n t . T h e a n g u l a r d i s t r i b u t i o n i s f o u n d to b e q u i t e i n s e n s i t i v e to t h e v a l u e of t h e p a r a m e t e r C E s o l o n g a s it i s not c l o s e to z e r o . This agrees with our expectation, as the vertex f u n c t i o n s s h o u l d not a f f e c t t h e a n g u l a r d i s t r i b u t i o n t o o s t r o n g l y . T h e c u r v e s h o w n in fig. 2 h a s b e e n d r a w n w i t h C E ~ 3.5, a v a l u e c h o s e n s o that the experimental points are spread more or less uniformly about the predicted curve. The a g r e e m e n t of t h e o r y w i t h e x p e r i m e n t i s r a t h e r s t r i k i n g i n v i e w of t h e s i m p l i c i t y of t h e m o d e l c h o s e n f o r t h e p r e s e n t c a l c u l a t i o n s . It m a y a l s o be noted that both the theoretical curve and the experimental distribution exhibit similar a s y m m e t r y about 90 ° , although the m i n i m u m of the curve is s o m e w h a t displaced from the lowest dip in the observations. W e can therefore conclude that the pole-dominance model (without any rescattering corrections) gives a very satisfactory explanation of the angular distribution observed in the 6Li(160, d)20Ne reaction.

156

I00

|

30

6o

90 0c.a.a.

12o

15o

in d e g r e e s

Fig. 2. C o m p a r i s o n of the predictions of the p r e s e n t work (solid curve) with the e x p e r i m e n t a l data for the r e a c t i o n 6Li(160, d)20Ne at 20 MeV leading to the ground state. I w o u l d l i k e to a c k n o w l e d g e a n i n t e r e s t i n g d i s c u s s i o n w i t h D r . I1-T. C h e o n . It i s a l s o a p l e a s u r e to t h a n k P r o f e s s o r s A b d u s S a l a m a n d P. Budini as well as the International Atomic Energy Agency for hospitality at the International Centre for Theoretical Physics, Trieste.

References 1. I1-T. Chcon and H. M. Sen Gupta, Phys. L e t t e r s 29B • (1969) 268 and IC]?P, T r i e s t e , p r e p r i n t l C / 6 9 / 1 8 (1969) Nucl. Phys., to be published 2. D. W. Heikkinen and W. Feldman, Nucl. Phys. Al13 (1968) 57. 3. R.D. Amado, Phys. L e t t e r s 2 (1959) 399. I.S. Shapiro, Nucl. Phys. 28 (1961) 244.