Accepted Manuscript Title: Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt Author: Stefano Vitale Mohamed Najib Zaghloul Bilal El Ouaragli Francesco D’Assisi Tramparulo Sabatino Ciarcia PII: DOI: Reference:
S0264-3707(15)00077-0 http://dx.doi.org/doi:10.1016/j.jog.2015.07.002 GEOD 1376
To appear in:
Journal of Geodynamics
Received date: Revised date: Accepted date:
17-12-2014 13-7-2015 14-7-2015
Please cite this article as: Vitale, S., Zaghloul, M.N., Ouaragli, B.E., Tramparulo, F.D.A., Ciarcia, S.,Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt, Journal of Geodynamics (2015), http://dx.doi.org/10.1016/j.jog.2015.07.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
1
Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian
2
Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into
3
the Miocene tectonic evolution of the Central Rif belt
4
Stefano Vitalea, Mohamed Najib Zaghloulb, Bilal El Ouaraglib, Francesco D'Assisi Tramparulo a,
6
Sabatino Ciarciaa
7
a
8
Federico II
9
b
cr
ip t
5
us
Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), Università di Napoli
an
Department of Earth Sciences, F.S.T.-Tangier, University of Abdelmalek Essaadi, Morocco
10
Key words: structural analysis, tectonics, Alpine Chain, Miocene, Western Mediterranean Sea
M
11 12
Abstract
14
In order to better understand the orogenic evolution of the Rif chain in the Eocene-Miocene
15
interval, we provide new structural and kinematic data for the Jebha area, a key-sector of the
16
Central Rif. Here the thrust sheet superposition occurs along the well-known Jebha-Chrafate
17
lineament, widely considered as a major left-lateral transfer fault that enabled the Miocene
18
westward migration of the internal thrust front. Our structural analysis was mainly focused on (i)
19
the internal deformation of stacked nappes and (ii) the kinematics of the main thrust faults. Five
20
main deformation stages were recognized for the Eocene-Miocene tectonic evolution of this area.
21
The first orogenic pulse (D1), which occurred in the Eocene-Oligocene interval, was responsible for
22
the tectonic stacking of the Ghomaride Nappes. Subsequently between the late Aquitanian and the
23
late Burdigalian, imbrication (stage D2) occurred for some Internal Dorsale Calcaire thrust sheets
24
within a dominant regional ENE-WSW shortening. At the Rif scale, different displacements of the
25
WSW-migrating thrust front were accommodated by transfer structures including the Jebha-
Ac
ce pt
ed
13
Page 1 of 54
Chrafate fault. The following late Burdigalian-Langhian stage (D3) was defined, on the contrary, by
27
a prevalence of the radial thrust front migration. In the Jebha area the early thrusting (stage D 3a) was
28
characterized by a main SE-vergence. In this phase the External Dorsale Calcaire and the
29
Maghrebian Flysch Basin units were included in the accretionary wedge. Two late D 3 regional
30
deformation phases were probably related to the buttressing effect that followed the collision of the
31
thrust sheet pile against the crustal ramp of the External Rif domain. The first stage (D3b) consisted
32
of an out-of-sequence thrusting recorded in the western sector of the Jebha area with the
33
superposition of the Ghomaride Unit onto the External Dorsale Calcaire Unit, and in the eastern
34
sector with the stacking of the Internal Dorsale Calcaire Unit directly onto the Predorsalian Unit.
35
The second stage (D3c) included a late back-thrusting affecting the whole orogenic chain and
36
deforming all the tectonic contacts. The fourth stage (D4) was characterized by strike-slip faulting
37
and SW-verging folding. This latter mostly affected the successions located to the East of the Jebha
38
village and was partially synchronous with the D 3 stage. It was most probably related to the SW-
39
migration of the internal thrust-front of the Bokkoya Dorsale Calcaire Complex and a renewed
40
activity of the Jebha-Chrafate fault zone. The last tectonic stage (D5) included a radial extension
41
expressed by high and low-angle normal faults.
42
ce pt
ed
M
an
us
cr
ip t
26
1. Introduction
44
The Rif chain is part of a poly-arcuate orogenic belt surrounding the western Mediterranean Sea and
45
embraces the Apennines, the Calabrian Arc, the Maghrebian chains and the western Betic
46
Cordillera (Fig. 1a). These orogens are formed by the superposition of several nappes grouped in
47
three main tectonic complexes (amongst others Kornprobst, 1974; Chalouan, 1986; Bonardi et al.,
48
2001; Michard et al., 2002; 2006; 2007; 2014; Guerrera et al., 2005; Handy et al., 2010; Mazzoli
49
and Martin-Algarra 2011; Vitale and Ciarcia, 2013; Platt et al., 2013): (i) the Internal Units; (ii) the
50
Maghrebian Flysch Basin (MFB) and Ligurian Accretionary Complex (LAC) Units; and (iii) the
51
External Units. The Internal Units consist of Paleozoic continental crust, high-grade metamorphic
Ac
43
Page 2 of 54
and mantle rocks, and a Mesozoic cover characterized by different degrees of metamorphism (e.g.
53
Kornprobst, 1974; Chalouan, 1986; Bonardi et al., 2001; Michard et al., 2006; Rossetti et al., 2010).
54
From the first attempts to find a common origin for the Internal Units (e.g. Haccard et al., 1972;
55
Alvarez et al., 1974), nowadays two different models prevail. The first hypothesis suggests that the
56
Internal Units originated from a common microplate (―Alboran Microplate‖, ―AlKaPeCa‖ or
57
―Mesomediterranean Terrain‖; Andrieux et al., 1971; Michard et al., 2002; Guerrera et al., 2005;
58
Handy et al., 2010) that was detached, in the Jurassic-Cretaceous time, from the European plate to
59
the West and the Apulia-African plate to the East by two oceanic branches (e.g. Michard et al.,
60
2002; Handy et al., 2010): the W-Ligurian/Betic and E-Ligurian/Maghrebian Flysch Oceans,
61
respectively. The second model was first introduced by Boullin (1984) and Knott (1987) and has
62
been reprised in recent years (e.g., Faccenna et al., 2001; Rossetti et al., 2004; Schettino and Turco,
63
2011; Vignaroli et al., 2012). This paleogeography envisages the existence of a single ocean
64
(Ligurian Ocean, Knott, 1987; Ligurian Tethys, Schettino and Turco, 2011), with the Internal Units
65
forming the SE margin of the European plate. However in both models, since the (i) Eocene
66
(Vignaroli et al., 2012 and reference therein) and (ii) Early Miocene (Chalouan et al., 2006; de
67
Capoa et al., 2007, 2013; Zaghloul et al., 2007; Ciarcia et al., 2012), the Ligurian Ocean and
68
Maghrebian Flysch Basin successions, respectively, were deformed and tectonically covered by the
69
Internal Units. The migration of different orogenic arcs was mainly driven by the rollback of the
70
downgoing lithospheres (e.g. Schellart and Lister, 2004; van Hinsbergen et al., 2014 and reference
71
therein) triggering the dispersion of the early Internal domain along the western Mediterranean
72
margins (Alvarez et al., 1974). Today (Fig. 1a), the MFB and LAC Units are sandwiched between
73
the Internal Units on the top and the External Units on the bottom. The latter are formed by
74
sedimentary successions deposited onto the continental margins of the Adria, Africa and Iberia
75
plates (e.g. Chalouan et al., 2008; Mazzoli and Algarra, 2011; Vitale and Ciarcia, 2013).
76
The Betic-Rif orogen is a narrow arcuate thrust belt, with a curvature radius of approximately 100
77
km, characterized, during its tectonic evolution, by a radial displacement that produced a continuous
Ac
ce pt
ed
M
an
us
cr
ip t
52
Page 3 of 54
arc spreading with divergent transport directions and different rotations for adjacent arc sectors, that
79
are well-recorded by paleomagnetic data (e.g. for the Rif chain: Platzman et al., 1993; Lonergan and
80
White, 1997; Saddiqi et al., 1995; Cifelli et al., 2008; Brandt, 2014). In the paleo-arcuate belts,
81
radial displacements are highlighted by the centrifuge pattern of slip vectors reconstructed through
82
field kinematic features (e.g. Platt et al., 1989) or in the current arcuate plate margins by means of
83
seismic data (e.g. Yu et al., 1993). According to Vitale et al. (2014a) the ―Piedmont Glacier‖ model
84
(Hindle and Burkhard, 1999), with divergent displacements in most of the stages of its geodynamic
85
evolution can be assumed for the Rif thrust front migration. Furthermore, the radial spreading was
86
accommodated, especially in the Early-Middle Miocene, by (i) differentiated displacements through
87
some major transfer faults (Jebha-Chrafate and Nekor faults; Leblanc, 1980; Frizon de Lamotte,
88
1985; Benmakhlouf et al., 2012); and (ii) stretching in the thrust front sector, orthogonal to the
89
tectonic transport.
90
The arching of the Rif and Betic Cordillera and the opening and growth of the Alboran Sea and
91
Algero-Provençal basins have been explained with different tectonic models. Several authors (e.g.
92
Lonergan and White, 1997; Rosenbaum and Lister, 2004; Faccenna et al., 2004) consider a
93
subduction rollback and a W-migration of the lithospheric tear, similar to which occurred for other
94
large orogenic arcs (e.g. the southern Apennines and Calabria arcs; Vitale and Ciarcia, 2013 and
95
reference therein), as the mechanism that drove the mountain belt formation, the exhumation of
96
metamorphic rocks and the large extension in the Alboran Domain. However, based on the
97
subduction rollback since ~35 Ma, different tectonic evolution scenarios have been suggested
98
(Chertova et al., 2014; Frasca et al., 2015 and references therein).
99
The first evidence of crustal shortening occurred in the Eocene-Oligocene with the thrust-sheet
100
imbrication of the Ghomaride Complex units (Chalouan et al., 2008 and reference therein). This
101
event was also recorded by metamorphism in the Sebtide Complex (from 48 to 30 Ma).
102
Contemporarily, in the Oligocene (Negro et al., 2008) a MP/LT metamorphism affected some
103
successions located in the external Rif zones (Mesorif, Temsamane Unit, Negro et al., 2007)
Ac
ce pt
ed
M
an
us
cr
ip t
78
Page 4 of 54
probably as result of the tectonic inversion of a partially oceanized basin (Mesorif Suture Zone,
105
Michard et al., 2007) that was previously formed as a consequence of the Neotethys rifting (e.g.
106
Schettino and Turco, 2011). In the Early Miocene the emplacement of the sublithospheric mantle
107
large bodies occurred in the Internal sector of the Betic Cordillera (Ronda peridotites, e.g. Esteban
108
et al. 2011; Mazzoli and Algarra, 2011 and reference therein) and the Rif chain (Beni Bousera
109
peridotites, e.g. Afiri et al., 2011; Rossetti et al., 2013 and reference therein).
110
The Oligo-Miocene thrust front migration was synchronous with a widespread extension in the rear
111
of the accretionary wedge (Alboran Domain) and delamination in the fore-arc region of the Betic–
112
Rif orogen. This event was marked by an intrusion in the upper crustal levels of acidic melts
113
resulting from the crustal anatexis (Rossetti et al., 2013) and fast exhumation of the deep-seated
114
rocks that occurred almost simultaneously over a large region (e.g. Platt and Whitehouse, 1999).
115
In the Burdigalian-Langhian interval, the Dorsale Calcaire and MFB units were accreted in the
116
tectonic wedge (e.g. de Capoa et al., 2007; Zaghloul et al., 2007; Chalouan et al., 2008; Vitale et al.,
117
2014a, b). From the Langhian to the Tortonian, the orogenic front migrated toward the external
118
zones (Intrarif, Mesorif and Prerif; Zaghloul et al., 2005 and references therein).
119
A large amount of geological data on the Betic-Rif orogen is available (e.g. Vera, 2004; Chalouan
120
et al., 2008; Platt et al., 2013; and references therein). However, unlike the Betic Cordillera, only a
121
few structural studies regarding the kinematics of the thrust sheets forming the Rif Chain have been
122
carried out. The main goal of this paper is, therefore, to provide new structural data through a
123
structural study of a segment of the Central Rif (Jebha area, Fig. 1b). Original data regarding (i)
124
internal deformation and (ii) thrust sheet kinematics, are furnished. The Jebha area is considered by
125
many authors as a key-sector of the Rif chain due to the fact that the Internal Units superpose onto
126
the Maghrebian Flysch Units along a regional contact running from Jebha to Chrafate (Fig. 1b),
127
representing a main left-lateral transfer fault that allowed the westward migration of the Internal
128
Domain (Benmakhlouf et al., 2012 and references therein).
Ac
ce pt
ed
M
an
us
cr
ip t
104
129
Page 5 of 54
2. Geological setting
131
The Rif chain is a thrust sheet pile consisting of the tectonic superposition of Paleozoic continental
132
crust slices and relative Mesozoic-Paleogene covers onto the Mesozoic-Neogene basin to platform
133
successions (e.g. Chalouan et al., 2008). Three main tectonic complexes form the Rif chain: (i) the
134
Internal Units (or ―Alboran Domain‖; García-Dueñas et al., 1992); (ii) the Maghrebian Flysch Units
135
(Guerrera et al., 2005) and (iii) the External Units (Leblanc, 1980; Suter 1980).
136
The Internal Units comprise three tectonic complexes: (i) the Sebtides (Milliard, 1959; Durand
137
Delga and Kornprobst, 1963); (ii) the Ghomarides (Durand-Delga and Kornprobst, 1963; Wildi,
138
1983; Chalouan, 1986; Michard and Chalouan, 1991) and (iii) the Dorsale Calcaire (Fallot, 1937;
139
Mattauer, 1960; Wildi et al., 1977). This latter is subdivided, according to Mesozoic
140
paleogeography, into (a) the Internal and (b) the External Dorsale Calcaire.
141
The Sebtide Complex (Durand-Delga and Kornprobst, 1963; Kornprobst, 1974; Zaghloul, 1994;
142
Saddiqi et al., 1995; Michard et al., 1997, 2006; Rossetti et al., 2010; Afiri et al., 2011) consists of
143
the sub-continental mantle peridotites of the Beni Bousera overlain by HP/HT to MP/HT granulites,
144
gneisses and micaschists (Lower Sebtides), in turn underlying the Permo-Triassic HP/LT to LP/LT
145
metamorphic Federico Units (Upper Sebtides). The Ghomaride Complex tectonically covers the
146
latter units formed by low-grade Eo-Variscan and Variscan metamorphic Paleozoic rocks, passing
147
to a Middle Triassic-Middle Miocene sedimentary cover (Chalouan and Michard, 1990; Chalouan
148
et al., 2008; Zaghloul et al., 2010a, b and references therein).
149
The Dorsale Calcaire Complex is formed by Triassic to Lower Miocene successions (Wildi et al.,
150
1977; Wildi 1979, 1983; Nold et al., 1981; El Kadiri et al., 1992; Lallam et al., 1997; El Kadiri,
151
2002; Zaghloul et al., 2010a; Vitale et al., 2014b). The Internal and External successions consist, at
152
the base, of Triassic-Hettangian carbonates formed in shallow water conditions. In the Sinemurian
153
the External domain passes to basin facies, whereas the internal domain persists as a carbonate
154
platform. This abrupt transition is marked by a synsedimentary extension, a consequence of the
155
Neotethys rifting (El Kadiri et al., 1992; Lallam et al., 1997; Vitale et al., 2014b). The Jurassic-
Ac
ce pt
ed
M
an
us
cr
ip t
130
Page 6 of 54
Paleocene evolution of the Internal Dorsale Calcaire involved several emersion and subsidence
157
stages, culminating in the deposition of black shales. On the contrary, the External Dorsale
158
Calcaire includes a continuous basin condensed succession. Starting from the Late Oligocene up to
159
the Aquitanian, both domains were the location of synorogenic sedimentation (Hlila, 2005;
160
Zaghloul et al., 2005). The sedimentary supply of the Aquitanian turbidites mainly derived from the
161
Mesozoic carbonates of the Internal Dorsale Calcaire and, subordinately, from the Paleozoic
162
basement (Zaghloul et al., 2005).
163
The Upper Oligocene-Aquitanian deposits of the Internal Dorsale Calcaire correspond in age to the
164
Fnideq Fm. (e.g. Feinberg et al., 1990; Zaghloul et al., 2003), that unconformably cover the
165
Ghomaride Units. In the Betic Cordillera, this succession, that is characterized at the base by an
166
abundance of coarse-grained rocks locally interbedded with medium- to fine-grained lithofacies,
167
corresponds to the Ciudad Granada Group (e.g. Martín-Algarra, 1987; Zaghloul et al., 2003;
168
Serrano et al., 2007). The Ghomaride Units are further unconformably covered by the early-middle
169
Burdigalian Sidi Abdesslam Fm. (Chalouan, 1987; Hlila et al., 2008) corresponding to the Viñuela
170
Group in the Betic Cordillera (e.g. Martín-Algarra, 1987; Serrano et al., 2007), formed by
171
siliciclastic-calciclastic turbidites. According to Zaghloul et al. (2003), the sedimentation of these
172
successions occurred in extensional basins formed on the top of the thrust sheet pile.
173
The Dorsale Calcaire Units tectonically cover a nappe stack formed, from top to bottom, by:
174
Predorsalian (Olivier, 1984), Mauretanian (Durand Delga et Fontbote, 1980; Durand Delga, 1972)
175
and Massylian (Didon et al., 1973; Andrieux et Mattauer, 1962; Durand Delga et al., 1960-1962)
176
units, that together form the MFB tectonic complex (Guerrera et al., 1993, 2005). The Predorsalian
177
Unit consists of a slope to basin succession mainly composed of siliciclastic turbidites with several
178
carbonate debris, macro-breccias and olistoliths indicating an inner paleogeographic location in the
179
MFB, close to the Dorsale Calcaire Domain (Olivier, 1984; Guerrera et al., 1993). The
180
Mauretanian and Massylian units comprise some Jurassic-Early Miocene sedimentary successions,
181
presently detached from their basement that was probably made of a thinned continental or partially
Ac
ce pt
ed
M
an
us
cr
ip t
156
Page 7 of 54
oceanized crust (Durand Delga et al., 2000). The Maghrebian Flysch Basin passed toward E/NE to
183
the Ligurian Domain (Bouillin, 1986; Durand Delga et al. 2000; Zaghloul et al., 2002; Guerrera et
184
al., 2005; Vitale et al., 2013a, b).
185
Generally, the MFB nappes are located in front of the Internal Units; however some slices cover the
186
Ghomaride Complex as a result of a back-thrusting stage (e.g. Hlila, 2005; Chalouan et al., 2008).
187
The Mauretanian Units encompass two main successions: the Triassic-Cretaceous Tisirene and
188
Cretaceous-Lower Miocene Ben Ider sequences (Durand-Delga et Mattauer, 1959; Durand Delga et
189
Mattauer, 1960; Andrieux, 1971; Didon et al., 1973; Lespinasse, 1975; Chiocchini et al., 1978;
190
Guerrera, 1981-1982; Zaghloul et al., 2002). Probably these two successions formed a single
191
stratigraphic unit successively detached along a Cretaceous level (Didon et al., 1973; Durand Delga
192
et al., 2000; Zaghloul, 2007). Today the Beni Ider Unit does not crop out in the Central Rif,
193
possibly as a consequence of a large-scale gravity-driven detachment that occurred before the
194
inclusion of Mauretanian successions in the accretionary wedge (Lespinass, 1975; Chalouan et al.,
195
2006).
196
Finally, the External Rif Domain (Intrarif, Mesorif and Prerif Units) consists of some Mesozoic-
197
Miocene platform to basin successions (e.g. Durand-Delga et al. 1960-1962; Suter, 1965; 1980;
198
Andrieux, 1971; Didon et al. 1973), that at places include remnants of ophiolitic rocks and/or
199
subcontinental mantle masses and related metasedimentary covers characterized by low-grade to
200
MP/LT metamorphism (Frizon de Lamotte, 1985; Negro et al., 2007; Michard et al., 2007, 2014).
201
The external tectonic pile is unconformably covered by upper Tortonian-Messinian wedge-top basin
202
deposits (Leblanc 1980, Suter, 1980, Di Staso et al., 2010 and references therein).
Ac
ce pt
ed
M
an
us
cr
ip t
182
203 204
2.1. Jebha area
205
The investigated area (Fig. 2a) is characterized by the tectonic superposition of several thrust sheets.
206
It can be divided into two sectors: (i) the western area including, from top to bottom, the
207
Ghomaride, the External Dorsale Calcaire, the Predorsalian and the Tisirene nappes (Figs. 2a, b,
Page 8 of 54
3a) and (ii) the eastern sector consisting of the Internal Dorsale Calcaire overthrusting the
209
Predorsalian Unit, in turn tectonically overlying the Tisirene Nappe (Figs. 2a, b, 3b). The Internal
210
Dorsale Calcaire succession composed of Jurassic shallow water carbonates covered by Upper
211
Oligocene variegated argillites, marls and calcareous conglomerates followed by Aquitanian
212
calcareous turbidites (Fig. 3b) (Zaghloul et al., 2005). The succession forms an ENE-WSW ridge,
213
crosscut by several high-angle faults (Fig. 2a). Similarly in the western sector the External Dorsale
214
Calcaire succession outlines an ENE-WSW ridge dislocated by a major high-angle fault passing
215
along the Ouringa River (Fig. 2a). The stratigraphic sequence of the External Dorsale Calcaire is
216
composed of Jurassic well-bedded cherty limestones covered by Upper Oligocene variegated
217
argillites, marls and calcareous conglomerates.
an
us
cr
ip t
208
218
3. Structural analysis
220
Figure 4 shows a synoptic table illustrating the inventory of the structures that will be presented and
221
discussed in the following sections, as well as their overprinting relationships and temporal
222
succession.
ed
ce pt
223
M
219
3.1 Dorsale Calcaire Units
225
The earliest tectonic structure, hosted in the Internal Dorsale Calcaire (IDC), is a FP2IDC WSW-
226
verging thrust fault showing a ramp-flat geometry with a displacement of a few tens of meters (Fig.
227
3c). This fault produced a hanging wall ramp-anticline and a footwall syncline and some meso-scale
228
folds in the Jurassic carbonates (Fig. 3d). In the frontal part of the anticline, Upper Oligocene
229
argillites and marls are strongly deformed showing overturned tight folds verging to WSW (Fig.
230
3e). WSW-ENE slickenside striations, calcite fibers and steps occur along the main thrust fault (Fig.
231
3f) as well as the secondary faults (Fig. 3g) and lateral ramps (FP 2IDC, Fig. 4f),. The Upper
232
Oligocene rocks, located in the footwall of the main thrust, frequently host WSW-dipping C'-type
233
shear bands (Passchier and Trouw, 1996) and antithetic shear bands characterized by higher dip
Ac
224
Page 9 of 54
angles (Fig. 5a-c). Such structures occur in marls, argillites and calcareous conglomerates, from a
235
small to large-scale (Fig. 5a-c). The C'-type structures frequently show slickenside features such as
236
calcite fibers and steps indicating a dominant WSW vergence (Fig. 5b). Occasionally S-C structures
237
(Lister and Snoke, 1984) are present, crosscut by C'-type shear bands (Fig. 5d). Rare overturned
238
folds occur indicating the same WSW tectonic vergence (Fig. 5e). The tectonic stack is deformed
239
by a large scale F3IDC fold characterized by an ENE-WSW axis, producing a tilting of a part of the
240
cropping out succession (Fig. 2b). Furthermore, the whole structure is dislocated by successive NE-
241
SW (FP4IDC, Fig. 5f) and WNW-ESE strike-slip faults associated with a brittle-ductile deformation
242
in the fault rocks such as S-C structures with steep C-planes (Fig. 5g) and finally by high angle
243
normal faults (FP5IDC, Fig. 6b, c), generally the result of the reactivation of preexisting fault planes
244
or newly-formed low-angle normal faults (FP5IDC, Figs. 5f and 6a).
245
Poles to bedding (Fig. 7a) are scattered forming a main cluster providing a mean plane of 087/33
246
(dip-direction/dip). The main sub-horizontal FP2IDC fault generally shows a reverse kinematics (Fig.
247
7b) indicating an E-W shortening direction. C'-type shear bands in the Upper Oligocene rocks
248
highlight a mean WSW orogenic transport (Fig. 7c) as well as FP 4IDC oblique and strike-slip faults
249
(Fig. 7d, e), whereas the FP5IDC normal faults (Fig. 7f) furnish a radial extension (Fig. 7g).
250
In the western sector (Fig. 2a), the succession of the External Dorsale Calcaire is deformed by two
251
coaxial fold sets (Fig. 4). The early set is characterized by isoclinal to tight F1EDC folds (Fig. 6d-f)
252
generally showing high-angle axial planes, successively deformed by open to close F2EDC folds with
253
more or less sub-horizontal axial planes (Fig. 6e, f). The interference pattern is of type 3 of
254
Ramsay’s classification (Ramsay, 1967). Poles to bedding (Fig. 7h) are scattered with a main
255
cluster providing a mean plane of 309/54. F1EDC folds show fold axes ranging from NNE-SSW to E-
256
W (Fig. 7i) and sub-horizontal to highly SE-dipping axial planes (Fig. 7j). F2EDC folds show fold
257
axes mainly NE-SW directed (Fig. 7k), and sub-horizontal axial planes (Fig. 7l).
258
The tectonic contact between the Ghomaride Unit and Upper Oligocene rocks (EDC) is defined by
259
a high angle fault plane dipping both to the SW and NE in the lower and upper part of the outcrop,
Ac
ce pt
ed
M
an
us
cr
ip t
234
Page 10 of 54
260
respectively (Fig. 6g). Several S-C structures occur close to the tectonic contact as well as
261
secondary faults (Fig. 6g, h). In contrast, the thrust fault between the External Dorsale Calcaire and
262
the Predorsalian is well-exposed along the Ouringa River, showing a flat-lying plane in the lower
263
part (Fig. 2a, b).
ip t
264
3.2 Aquitanian turbidites
266
The Aquitanian turbidites (AT) (Fig. 6a) are characterized by FP 1IDC (AT) synsedimentary normal
267
faults (Fig. 8a, b) often forming conjugate systems, with dominant millimeter to centimeter sized
268
displacements. At some points, sedimentary clay dykes occur along the normal fault planes (Fig.
269
8b). Early extensional structures are often tilted (Fig. 8a, b). The majority of normal faults indicate
270
an ENE-WSW extension direction. The successive shortening stage was recorded as rare open F 2
271
IDC (AT)
272
thrusts (Fig. 8c) and tight to close early F3-early IDC (AT) folds (Fig. 8e-g), frequently with chevron
273
geometry (Fig. 8e), superpose onto the previous structures. Veins and conjugate normal faults occur
274
in the outer arc of the F3-early IDC (AT) tight folds (Fig. 8g). Folds are mainly localized close to the
275
main thrust fault separating this succession from the underlying Predorsalian Unit (Figs. 2a, 8e).
276
Consequently, the succession located close to the Jebha promontory is low-deformed (Fig. 2b),
277
whereas southward it is highly folded. A well-cemented calcareous fault breccia (Fig. 8d), with a
278
thickness of approximately 4 m, associated to the FP 3-early
279
Aquitanian turbidites on top and the Predorsalian Unit on bottom (Fig. 2b), occurs. However, in
280
some points, the fault rock is less than 1 m thick (Fig. 8e) or completely absent (Fig. 9b). A further
281
deformation, characterized by a NNW-SSE shortening, was expressed by NNW-verging late back-
282
thrust faults with associated F3-late IDC (AT) drag folds (Fig. 8h). More frequently the FP3-late IDC (AT)
283
thrust faults are sub-horizontal verging to the NW with associated recumbent chevron folds (Fig.
284
9a). At places, the tectonic contact between the Aquitanian turbidites and the Predorsalian Unit is
285
completely overturned (Fig. 8e), and the previous F3-early
an
us
cr
265
IDC (AT)
pre-buckle
IDC (AT)
Ac
ce pt
ed
M
(Fig. 4) associated to WSW-verging ramp-flat thrust faults. PBT3-early
IDC (AT)
thrust fault juxtaposing the
folds presently show the axial
Page 11 of 54
planes dipping to SE (Fig. 8e-g). In other points, the main thrust between the Aquitanian turbidites
287
and the Predorsalian Unit is characterized by a hanging-wall ramp superposing onto chaotic
288
footwall rocks, successively folded by the F3-late IDC (AT) folds (Fig. 9b).
289
Poles to bedding form a girdle around a NNW-SSE vertical cyclograph (Fig. 7m) with a theoretical
290
fold axis () of 063/09. Synsedimentary FP1IDC (AT) faults (Fig. 7n, o), restoring the bedding to the
291
horizontal, indicate an ENE-WSW extension (Fig. 7p). F3 IDC (AT) fold axes are almost horizontal
292
showing a mean ENE-WSW direction (Fig. 7q), and poles to axial planes form a NNW-SSE girdle
293
(Fig. 7r).
us
cr
ip t
286
294
3.3 Predorsalian Unit
296
The Predorsalian succession (PD) is characterized by a deformation consisting in isoclinal to close
297
F1PD folds (Fig. 9c, d), generally verging to the SE, deformed by F2 PD close folds verging to the NW
298
(Fig. 9c). Normally, these two fold sets are coaxial or form a slight angle, producing interference
299
patterns of type 3 (Fig. 9c) or intermediate between type 2 and type 3 of Ramsay’s classification
300
(Ramsay, 1967). FP1PD thrust faults mainly verge to the SE with associated drag folds (Fig. 9d).
301
Normally, the argillites host conjugate extensional shear bands (ESB 1PD) with related calcite fibers
302
indicating a NE-SW extension direction (Fig. 9f). The Predorsalian succession includes also large
303
lenses of cherty calcareous conglomerates often showing clast indentation, an effect of pressure-
304
solution mechanisms (Fig. 9e). At places, a third fold set (F3PD), mainly verging to the SW, is
305
present, giving the outcrop a chaotic appearance (Fig. 9g).
306
Poles to bedding (Fig. 10a) are scattered with a main cluster providing a mean plane of 002/38. F1PD
307
fold axes range from gently to moderately plunging, displaying a direction ranging between E-W
308
and NE-SW (Fig. 10b). Poles to the F1PD axial planes indicate sub-horizontal to moderately dipping
309
planes (Fig. 10c). The F2PD fold axes are sub-horizontal to moderately plunging with directions
310
ranging between E-W and NE-SW (Fig. 10d). In contrast, the F2PD axial planes are generally sub-
311
horizontal or moderately dipping (Fig. 10e). Conjugate extensional shear bands furnish a NE-SW
Ac
ce pt
ed
M
an
295
Page 12 of 54
312
extension direction (Fig. 10f). Finally, the F3PD fold axes are mostly gently dipping with a mean
313
NW-SE direction (Fig. 10g), whereas the axial planes dip to the W and NE (Fig. 10h).
314
3.4 Tisirene Unit
316
The Tisirene Unit (TI) is affected by an early deformation, particularly localized in some less
317
competent layers, such as the argillites. Here, frequently unrooted isoclinal (F 1TI) folds are present
318
(Fig. 11d). Other early structures are the FP 1TI thrust faults with a ramp-flat geometry verging to the
319
SE (Fig. 11a, b). They are subsequently folded by the F2TI close to open folds, generally verging to
320
the NW (Fig. 11a, c). With an intensity increasing to the East, another fold set (F 3TI) is present in
321
the Tisirene Unit. These folds are from isoclinal to open indicating a SW vergence, often several
322
hundred meters large and overturned to the SW (Fig. 11e). Finally, lower-angle SE-dipping normal
323
faults crosscut the F3TI folds (Fig. 11f). Poles to bedding are scattered (Fig. 10i), with a main cluster
324
providing a mean plane orientation of 137/63. A1TI fold axes are vertical to gently plunging,
325
showing a dominant NE-SW direction (Fig. 10j). Poles to the AP 1TI axial planes show a broadly
326
NW-SE girdle distribution (Fig. 10k). The A2TI fold axes are mostly sub-horizontal with an ENE-
327
WSW direction (Fig. 10l). Poles to the AP 2TI axial planes show a main cluster indicating a 125/29
328
mean plane (Fig. 10m). The A3TI fold axes range from sub-horizontal to gently plunging with a
329
NNW-SSE direction (Fig. 10n). Finally, the AP 3TI poles show steep axial planes mainly dipping to
330
ENE (Fig. 10o).
cr
us
an
M
ed
ce pt
Ac
331
ip t
315
332
4. Discussion
333
The structural analysis provided in this study highlights a polyphase deformation affecting all the
334
analyzed tectonic units. According to several authors (between others Olivier, 1984; Chalouan,
335
1986; Platt and Vissers, 1989; Ouzani Touhami, 1994; Serrano et al., 2007; Chalouan et al., 2008)
336
the oldest orogenic stage (D1, Fig. 4) involved the stacking of the Ghomaride Nappes between the
337
Eocene and Late Oligocene. The subsequent phase (D2, Fig. 4) was recorded in the Internal Dorsale Page 13 of 54
Calcaire succession as a main thrust fault verging to the WSW. This structure includes hanging-
339
wall and footwall meso- and macro-scale folds, minor thrust faults, pervasive C’-type shear bands
340
and not rare S-C structures. The age of this shortening stage (D2) is confined between the late
341
Aquitanian (youngest foredeep age of the Internal Dorsale Calcaire) and the late Burdigalian
342
(foredeep age of the External Dorsale Calcaire; Zaghloul et al., 2007). In general, in the foredeep
343
basins, formed in front of the arcuate orogens, the extension occurs both parallel and orthogonal to
344
the thrust front (e.g. Tavani et al., 2015). In the Internal Dorsale Calcaire the clastic foredeep
345
sedimentation synchronously occurred with a dominant WSW-ENE extension parallel to the
346
orogenic front (Fig. 4).
347
The third stage (D3, Fig. 4) consisted in a prevailing NW-SE shortening (orthogonal to the previous
348
shortening stage D2), with an early in-sequence thrusting (stage D3a) and subsequent late out-of-
349
sequence (stage D3b) and back-thrusting (stage D3c). During this orogenic event, Predorsalian and
350
Tisirene successions were deformed by a similar NW-SE shortening including two superposed
351
phases, recorded by early isoclinal folds (stage D3a) and late open to tight folds and back-thrust
352
faults (stage D3c).
353
In the eastern sector, the out-of-sequence thrusting (stage D3b) was marked by the Internal Dorsale
354
Calcaire tectonically covering the Predorsalian succession by means of a main SE-verging thrust
355
fault. This shortening was recorded in the Aquitanian turbidites by pre-buckle thrusts and folds
356
mainly developed close to the main SE-verging thrust fault. These rocks were further affected by
357
the late NW-verging back-thrust faults (stage D3c, Fig. 4).
358
In contrast to the previous area, in the western sector, the Ghomaride Unit crops out, tectonically
359
overlying the External Dorsale Calcaire succession by an out-of-sequence thrust fault (D3b),
360
successively folded (stage D3c). The External Dorsale Calcaire experienced a NW-SE shortening
361
consisting in two coaxial superposed fold sets: the first is characterized by isoclinal folds (stage D 3a)
362
and the second by open to tight folds with sub-horizontal axial planes (stage D3c). In turn the
Ac
ce pt
ed
M
an
us
cr
ip t
338
Page 14 of 54
External Dorsale Calcaire was piled up onto the Predorsalian Unit by means of an in-sequence
364
thrust fault (stage D3a), successively folded (stage D3c, Fig. 4).
365
In analogy with the whole Rif (e.g. Chalouan et al., 2008; Vitale et al., 2014a, b), stage D3a occurred
366
in the late Burdigalian-Langhian interval. It is worth noting how the Burdigalian foredeep
367
successions of the External Dorsale Calcaire, Predorsalian and Tisirene Units were synchronous
368
with the unconformable deposits of the Sidi-Abdesslam Fm. cropping out in the Rif (Feinberg et al.,
369
1990) and Viñuela Group in the Betic Cordillera (Serrano et al., 2007). Summarizing the
370
Oligocene-Burdigalian sedimentation synchronously occurred both in the foredeep and wedge-top
371
basins, similar to other circurm-Mediterranean chains (e.g. De Celles and Gils, 1996; Vitale and
372
Ciarcia, 2013).
373
A difference in the structural setting results between the western and eastern sectors of the Jebha
374
area (Fig. 2a, b). According to the Meso-Cenozoic paleogeography of this sector of the
375
Mediterranean Sea (e.g. Sanz de Galdeano et al., 2001), the in-sequence thrusting (from the internal
376
domain to the African foreland) envisages the superposition of the Internal onto the External
377
Dorsale Calcaire, in turn onto the Predorsalian Unit; however in the eastern sector, the External
378
Dorsale Calcaire succession lacks and Internal Dorsale Calcaire Unit directly overlays the
379
Predorsalian Unit. It follows that this structure is related to an out-of-sequence thrusting (D3b) that
380
acted before the back-thrust stage (D3c). On the other hand, in the western sector the Ghomaride
381
Unit directly covers the External Dorsale Calcaire Unit, a consequence of the same out-of-sequence
382
stage. Assuming that the NNW-SSE fault, separating these two sectors and passing through the
383
Jebha village (Fig. 2a), is characterized by a normal kinematics, it follows that the eastern sector
384
(hanging wall) can be interpreted as the upper part of western sector (footwall), as illustrated in the
385
Fig. 12.
386
As previously described, the Dorsale Calcaire, Predorsalian and Tisirene units and the main
387
tectonic contacts between them (including the out-of-sequence faults) were deformed by a late NW-
388
verging back-thrusting (stage D3c). In the western sector this deformation also folded the main
Ac
ce pt
ed
M
an
us
cr
ip t
363
Page 15 of 54
tectonic contacts between the Ghomaride and External Dorsale Calcaire, making these structures
390
from moderately dipping to steep. This back-thrusting stage (D3c) is described both in the Betic
391
Cordillera (Balanya, 1991; Sanz de Galdeano, 1997) and the Rif (Kornprobst, 1966; Raoult 1969;
392
Hlila and Sanz de Galdeano, 1995; El Fahssi, 1999; E1 Mrihi, 2005; Hlila et al., 2008), where the
393
main contacts between the Maghrebian Flysch Basin, Dorsale Calcaire and Ghomaride Units are
394
frequently overturned to the E and NE. Furthermore in some sectors of the Internal Rif zones, the
395
MFB Units superpose onto the Ghomaride Units with the interposition of the unconformable
396
deposits of the Fnideq Fm. (Kornprobst, 1966; Raoult 1969; Feinberg et al., 1990; Hlila et al.,
397
2008). We propose that this back-thrusting stage was related to the collision of the accretionary
398
wedge with the crustal ramp bounding the External domain, such as occurred for the corresponding
399
LAC Units in the southern Apennines (e.g. Ciarcia et al., 2012). The buttressing effect produced a
400
renewed stacking characterized by a general NW-vergence. The age of this D3c stage is confined
401
between the late Burdigalian (the age of all the foredeep deposits of the Maghrebian Flysch Basin
402
successions; De Capoa et al., 2013 and bibliography therein) and the early–middle Tortonian, the
403
age of the inclusion of the Intrarif Domain in the Rif chain (e.g. Ait Brahim et al., 2002; Zaghloul et
404
al., 2005 Chalouan et al., 2008; Di Staso et al. 2010 and reference therein).
405
The extension orthogonal to the tectonic transport is well-recorded in the Predorsalian Unit,
406
expressed by conjugate extensional shear bands, such as in other similar sectors of the Rif chain
407
(e.g. Massylian and Predorsalian units in the Chefchaouen area, Vitale et al., 2014a) or in the
408
external domain where a Miocene E-W ductile to brittle stretching is reported in the Temsamane
409
Unit (Negro et al., 2007, 2008).
410
A further deformation stage (D4), consisting in folds verging to the SW, was experienced by the
411
Tisirene and Predorsalian units (Fig. 4). This deformation stage was recorded also in the Internal
412
Dorsale Calcaire succession as FP4IDC strike-slip faults indicating an ENE-WSW shortening,
413
probably related to a reactivation of the Jebha-Chrafate fault zone.
Ac
ce pt
ed
M
an
us
cr
ip t
389
Page 16 of 54
Figure 13a shows the Early Miocene tectonic vergences in the Dorsale Calcaire Complex as
415
resulting from this study and available literature (Platt et al., 2003; Hlila, 2005; Hlila and Sanz De
416
Galdeano, 2008, Benmakhlouf et al., 2012; Platt et al., 2013; Vitale et al., 2014b). They depict a
417
radial pattern with directions ranging between: (i) S/SSE (Jebha-Chrafate area); (ii) SSW/SW
418
(Chrafate-Chefchaouen); (iii) WSW (central sector); (iv) W/WNW (Haouz-Ceuta). In the Jebha
419
area our study outlines: (i) an alternation of the WSW- and SE-vergences with the oldest thrust
420
faults (late Aquitanian-late Burdigalian) indicating a WSW tectonic transport (stage D 2); (ii) late
421
Burdigalian-Serravallian tectonic vergences both to the SE and NW (stage D3); and finally (iii) SW-
422
vergences (stage D4). We propose that the left lateral fault zone of Jebha-Chrafate acted until the
423
late Burdigalian allowing to the internal front thrust to migrate with a main WSW tectonic transport
424
(Fig. 13b). On the contrary, after the late Burdigalian, the radial migration prevailed, triggering a
425
change in the transport direction toward the SE for the MFB Units (Fig. 13b) while the SW-
426
vergence newly occurred as folding in the MFB Units and strike-slip faulting (FP4IDC) in the
427
Internal Units. The latter deformation stage (D4) was probably related to the SW-migration of the
428
westernmost sector of the Al Hoceima arc (Dorsale Calcaire of Bokkoya, Fig. 13a, b) and a
429
reactivation of the Jebha-Chrafate fault zone. It follows that the Jebha area represents the location of
430
the tectonic interference between two migrating orogenic arcs (Fig. 13b), characterized by sub-
431
orthogonal tectonic vergences (SW and SE).
432
Finally, according to Chalouan et al. (1995) the last event (D 5), expressed by high and low-angle
433
normal faults with an approximate radial extension, occurred in the Tortonian time, contemporarily
434
with the corresponding structures in the Betic Cordillera and Alboran Sea.
Ac
ce pt
ed
M
an
us
cr
ip t
414
435 436
5. Oligocene-Miocene tectonic evolution
437
The cartoon of Figure 14 shows the tectonic evolution from the Late Oligocene to Serravallian of
438
this sector of the Central Rif. As previously described, the Oligocene-Early Miocene stage was
439
characterized by a severe extensional tectonics that overprinted the previous (D1) crustal thickening Page 17 of 54
event. This extension, localized in the rear of the chain, was synchronous with the thrust front
441
migration and other events in the Internal domain (Fig. 14a, b) such as arc-parallel strike-slip
442
tectonics and the emplacement of acidic dykes in the upper crustal levels (Rossetti et al., 2013),
443
unconformable sedimentation of the Fnideq Fm. on top of the Ghomaride Nappes and the foredeep
444
sedimentation in the Internal Dorsale Calcaire (Fig. 14a). This latter is characterized by a syn-
445
tectonic sedimentation related to an extension parallel to the thrust front.
446
In the late Aquitanian-late Burdigalian interval the Internal Dorsale Calcaire domain was shortened
447
with a main WSW-tectonic vergence (stage D2), forming some thrust sheets (Fig. 14b). This
448
thrusting stage was dominantly driven by thick-skinned tectonics involving the Paleozoic basement
449
(i.e. Ghomaride Unit). The External Dorsale Calcaire and the internal sector of the internal MFB
450
were deformed since the late Burdigalian (de Capoa et al., 2007, Zaghloul et al., 2007). The
451
accretionary prism was piled up onto the MFB successions with a radial tectonic vergence. In the
452
Jebha area the main tectonic transport was towards the SE (stage D 3a-b, Fig. 14c-g). In this tectonic
453
phase, the MFB successions were incorporated into the orogenic belt by means of frontal accretion
454
(thin-skinned tectonics) in analogy with the corresponding successions in the Betic Cordillera (e.g.
455
Expósito et al., 2012), Sicily and the southern Apennines (e.g. Ciarcia et al., 2012; Vitale et al.,
456
2013a). The D3a accretion was synchronous with an extension parallel to the thrust front, a
457
consequence of the arching and spreading of the tectonic wedge with radial displacements. The
458
foredeep sedimentation in the Predorsalian and Mauretanian domains was coeval with the Viñuela
459
Group deposition, whereas only in the Massylian foredeep (Fig. 14e) the sedimentation ended with
460
the deposition of the supra-Numidian sequence (Besson, 1984; Guerrera et al., 2005; Thomas et al.,
461
2010). In the Langhian time (Fig. 14f), the MFB was completely closed and the allochthonous units
462
superposed onto the External Rif domains (ER).
463
Following the frontal accretion, an out-of-sequence deformation (stage D3b) occurred in the
464
analyzed area, with the overthrusting of the Ghomaride and the Internal Dorsale Calcaire onto
465
External Dorsale Calcaire and Predorsalian units, respectively (Fig. 14g). Finally, the following D 2c
Ac
ce pt
ed
M
an
us
cr
ip t
440
Page 18 of 54
stage was characterized by a back-thrusting (Fig. 14h) recorded in the whole Rif (Hlila and Sanz de
467
Galdeano, 1995; Michard et al., 2008; Vitale et al., 2014a, b), with a NW-vergence in the Jebha area
468
affecting most of the thrust sheets. In our reconstruction both out-of-sequence and back-thrusting
469
stages were triggered by the buttressing of the external Rif domain against the Early Miocene thrust
470
sheet wedge.
471
Subsequently or synchronously with the D3 stage, a further shortening occurred in the Jebha area,
472
mainly recorded in the MFB Units as folds verging to the S and SW (Besson, 1984). This
473
deformation (stage D4) was related to the SW-migration of the Internal Units thrust front of the Al
474
Hoceima area.
475
In the Langhian-Serravallian the thrust front migrated toward the External Rif domain (Fig. 14g),
476
previously affected, in the Oligocene, by a MP/LT metamorphism (Temsamane Units; Negro et al.,
477
2008), a consequence of the closure of an intracontinental basin (Mesorif Suture Zone, Michard et
478
al., 2007). The inclusion of the Mesorif units in the tectonic wedge was marked by a stretching
479
orthogonal to the thrust front and a LP/LT metamorphism dated 12.5-15 Ma (Negro et al., 2008).
480
483 484 485 486
ce pt
482
6. Concluding remarks
The tectonic units cropping out in the Jebha area are characterized by a polyphase deformation with variable shortening directions. Following the first Eocene-Oligocene crustal thickening (stage D1) involving the Ghomaride
Ac
481
ed
M
an
us
cr
ip t
466
Complex, four other main tectonic stages were recognized: (i) A second stage (D2) expressed by the WSW-verging thrust imbrication of the
487
Internal Dorsale Calcaire that occurred in the late Aquitanian-late Burdigalian
488
interval;
489
(ii) A third stage (D3) characterized by a change in the tectonic shortening (NW-SE) and
490
the inclusion within the accretionary wedge of the External Dorsale Calcaire and the
491
MFB Units by means of early in-sequence (stage D3a) and late out-of-sequence Page 19 of 54
492
(stage D3b) SE-verging thrust faults. The D3 phase ended with a late back-thrusting
493
(stage D3c) verging to the NW;
495 496 497
(iii) A fourth stage (D4) including SW-verging folds, partially synchronous with the D3 stage. (iv) A fifth stage (D5) expressed by a radial extensional deformation and affecting the
ip t
494
whole tectonic pile.
The D2-Internal thrust front migration occurred with differential displacements allowed by
499
some transfer structures, amongst others the Jebha-Chrafate fault that acted until the late
500
Burdigalian when the radial migration prevailed (stages D 3a-b).
502
us
The tectonic imbrications of the Internal and MFB Units were mainly driven by thick-
an
501
cr
498
skinned and frontal accretion (thin-skinned) mechanisms, respectively. The Aquitanian turbidites, covering the Internal Dorsale Calcaire, were deposited in a
504
foredeep basin characterized by a synsedimentary WSW-ENE stretching orthogonal to the
505
thrust front.
ed
M
503
The out-of-sequence (D3b) and back-thrusting (D3c) stages, affecting the whole Rif chain,
507
were probably related to the collision of the accretionary wedge against the crustal ramp of
508
the External Domain, the latter deformed in the Serravallian-Tortonian interval. The
509
buttressing effect produced the deformation of the main tectonic contacts.
511
The western and eastern sectors of the analyzed area, can be interpreted as a single thrust
Ac
510
ce pt
506
sheet pile, crosscut by a normal fault that lowered the eastern part.
512
The superposition of the SE- and SW-verging folds, related to the D3a-b and D4 stages,
513
respectively, could be the result of the interference between the two migrating orogenic arcs
514
of Central Rif and Bokkoya ridge (Fig. 13) characterized by different displacements and
515
separated by the Jebha-Chrafate fault.
516
Page 20 of 54
ACKNOWLEDGMENTS
518
We thank F. Rossetti, an anonymous reviewer and the Editor-in-Chief W. P. Schellart for the
519
extremely useful comments and suggestions that significantly improved this paper.
520
Reference list
521
Aït Brahim, L., Chotin, P., Hinaj, S., Abdelouafi, A., El Adraoui, A., Nakcha, C., Dhont, D.,
522
Charroud, M., Sossey Alaoui, F., Amrhar, M., Bouaza, A., Tabyaoui, H., Chaouni A., 2002.
523
Paleostress evolution in the Moroccan African margin from Triassic to Present. Tectonophysics
524
357, 87-205
525
Afiri, A., Gueydan, F., Pitra, P., Essaifi, A., Precigout, J., 2011. Oligo-Miocene exhumation of the
526
Beni-Bousera peridotite through a lithosphere-scale extensional shear zone. Geodin. Acta 24, 49-60.
527
Alvarez, W., Cocozza, T., Wezel, F.C., 1974. Fragmentation of the Alpine orogenic belt by
528
microplate dispersal. Nature 248, 309-314.
529
Andrieux, J., 1971. La structure du Rif central. Notes Serv. Géol. Maroc 235, 1–155.
530
Andrieux, J., Fontboté, J.M., Mattauer, M., 1971. Sur un modèle explicatif de l’arc de Gibraltar,
531
Earth Planet. Sci. Lett. 12,191–198.
532
Andrieux, J., Mattauer, M., 1962. La nappe du Jbel Chouamat, nouvelle nappe "ultra" du Rif
533
septentrional . C. R. Acad. Sc., t. 255 , p. 2481-2483 .
534
Angelier, J., Mechler, P., 1977. Sur une méthode graphique de recherche des contraintes principales
535
égalment utilisable en tectonique et en seismologie: La méthode des dièdres droits. B. Soc. Geol. Fr.
536
19, 1309-1318.
537
Balanyá, J.C., 1991. Estructura del Dominio de Alborán en la parte Norte del Arco de Gibraltar,
538
Ph.D. thesis, Univ. of Granada, Granada.
Ac
ce pt
ed
M
an
us
cr
ip t
517
Page 21 of 54
Benmakhlouf, M., Galindo-Zaldívar, J., Chalouan, A., Sanz de Galdeano, C., Fedal Ahmamou, M.,
540
López-Garrido, A.C., 2012. Inversion of transfer faults: The Jebha–Chrafate fault (Rif, Morocco). J.
541
Afr. Earth. Sci. 73-74, 33-43.
542
Besson, F. 1984. Etude géologique et structurale des nappes des flysch et des zones externes dans la
543
région de l’oued Rhiss (Rif central, Maroc). PhD thesis, Département de Science de la Terre,
544
Université de Paris sud, 190 pp.
545
Bonardi, G., Cavazza, W., Perrone, V., Rossi, S., 2001. Calabria–Peloritani terrane and northern
546
Ionian Sea, in: Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen: The Apennines and Adjacent
547
Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, pp. 287–306.
548
Boullin, J.P., 1984. Nouvelle interprétation de la liason Apennin-Maghrebides en Calabre:
549
consequences sur la palaéogéographie téthysienne entre Gibraltar et les Alpes. Rev. Geol. Dyn.
550
Geogr. 25, 321–338.
551
Bouillin, J.P., 1986. Le bassin Maghrébin: une ancienne limite entre l’Europe et l’Afrique à l’ouest
552
des Alpes. B. Soc. Geol. Fr. 8, 547–558.
553
Brandt, S., Raith, M.M., Schenk, V., Sengupta, P., Srikantappa, C., Gerdes, A., 2014. Crustal
554
evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical
555
data for felsic orthogneisses and granites Precambrian Research, 246, 91-122.
556
Chertova, M.V., Spakman, W., Geenen, T., Van den Berg, A.P., Van Hinsbergen, D. J.J., 2014.
557
Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab
558
evolution from 3-D numerical modeling. J. Geophys. Res., Solid Earth, 119:5876–5902.
559
Chalouane, A., Benmakhlouf, M., Mouhir, L., Ouazani-Touhami, A., Saji A., Zaghloul, N., 1995.
560
Les étapes tectoniques de structuration alpine du Rif interne (Maroc). In : IVème Colloque
561
international Sobre el enlace fijo del estrecho de Gibraltar, Sevilla, pp: 163-191.
Ac
ce pt
ed
M
an
us
cr
ip t
539
Page 22 of 54
Chalouan, A., 1986. Les nappes ghomarides (Rif septentrional Maroc). Un terrainvarisque dans la
563
chaîne alpine. Ph.D.thesis, Univ. Louis Pasteur, Strasbourg.
564
Chalouan, A. 1987. Les Premiers Stades D'effondrement de la Mer D'Alboran, in: 4ème Colloque
565
des Bassins Sédimentaires Marocains, Tetouan (Maroc), 30 Octobre-1 Novembre 1987.
566
Chalouan, A., Michard, A., 1990. The Ghomarides Nappes, Rif Coastal Range, Morocco: a
567
Variscan chip in the Alpine belt. Tectonics 9, 165–183.
568
Chalouan, A., Galindo-Zaldívar, J., Akil, M., Marín, C., Chabli, A., Ruano, P., Bargach,K., Sanz de
569
Galdeano, C., Benmakhlouf, M., Ahmamou, M., Gourari, L., 2006. Tectonic wedge escape in the
570
southwestern front of the Rif Cordillera (Morocco), in: Moratti, G., Chalouan, A. (Eds.), Tectonics
571
of the Western Mediterraneanand North Africa. Geological Society of London Special Publication,
572
London, pp.101–118.
573
Chalouan, A., Michard, A., El Kadiri, K., Negro, F., Frizon de Lamotte, D., Soto, J.I; Saddiqi, O.
574
2008. The Rif, in Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D. (Eds.) Continental
575
Evolution: The Geology of Morocco‐ Structure, Stratigraphy, and Tectonics of the
576
Africa‐Atlantic‐Mediterranean Triple Junction. Springer, 424p.
577
Chiocchini U., Franchi R., Guerrera F., Rayan W., Vannucci S., 1978. Geologia di alcune
578
successioni torbiditiche cretaceo-terziarie appartenenti ai ―Flysch Maurétaniens‖ e alla ―Nappe
579
Numidienne‖ del Rif settentrionale (Marocco). Stu. Geol. Camerti., IV, 37-66.
580
Ciarcia S., Mazzoli S., Vitale S., Zattin M. 2012. On the tectonic evolution of the Ligurian
581
accretionary complex in southern Italy. Geol. Soc. Am. Bull. 124, 463-483.
582
Cifelli, F., Mattei, M., Porreca, M., 2008. New paleomagnetic data from Oligocene–upper Miocene
583
sediments in the Rif chain (northern Morocco): Insights on the Neogene tectonic evolution of the
584
Gibraltar arc. J. Geophys. Res. 113, doi: 10.1029/2007JB005271.
Ac
ce pt
ed
M
an
us
cr
ip t
562
Page 23 of 54
De Capoa, P., Di Staso, A., Perrone, V., Zaghloul, M.N., 2007. The age of the foredeep
586
sedimentation in the Betic–Rifian Mauretanian units: a major constraint for the reconstruction of the
587
evolution of the Gibraltar Arc. C. R. Geosci. 339, 161–170.
588
De Capoa, P., D’Errico, M., Di Staso, A., Perrone, V., Somma, R., Zaghloul, M.N., 2013.
589
Biostratigraphic constraints for the paleogeographic and tectonic evolution of the Alpine Central-
590
Western Mediterranean orogenic belt (Betic, Maghrebian and Apenninic chains). Rend. Online Soc.
591
Geol. It, 25, 43-63.
592
De Celles, P.G., Giles, K.A., 1996. Foreland basin systems. Basin Research 8, 105–123.
593
Didon, J., Durand-Delga, M., Kornprobst, J., 1973. Homologies géologiques entre les deux rives du
594
détroit de Gibraltar. B. Soc. Geol. Fr. 15, 79–105.
595
Di Staso, A., Perrone, V., Perrotta, S., Zaghloul, M.N., Durand-Delga, M., 2010. Stratigraphy, age
596
and petrography of the Beni Issef successions (External Rif; Morocco): insights for the evolution of
597
the Maghrebian Chain. C.R. Acad. Sci. 342, 718–730.
598
Durand Delga, M., Mattauer, M., 1959. Existence dans le Rif (Maroc) d'une nappe supérieure à
599
matériel "Numidien" (Nappe du J. Sougna). C. R. Somm. Soc. géol. France, 8, 225-227.
600
Durand Delga, M., Mattauer, M., 1960. Sur l'origine ultra-rifaine de certaines nappes du Rif
601
septentrional. C. R. Somm. Soc. géol. France, p. 22.
602
Durand-Delga, M., Hottinger, M., Marçais, J., Mattyauer, M., Milliard, Y., Suter, G., 1960-1962.
603
Actual data about the Rif structure. M. Soc. Geol. Fr., 1, 399-422.
604
Durand-Delga, M., Kornprobst, J., 1963. Esquisse géologique de la région de Ceuta (Maroc). B.
605
Soc. Geol. Fr. 5, 1049–1057.
Ac
ce pt
ed
M
an
us
cr
ip t
585
Page 24 of 54
Durand Delga, M., 1972. La courbure de Gibraltar, extrémïté occidentale des chaines alpines, unit
607
l'Europe et l'Afrique. Ecologae Géol. Helv., vol. 65/2, p. 267-278.
608
Durand Delga, M., Fontbote, J.M., 1980. Le cadre structurale de la Méditerranée occidentale: In:
609
Géologie des chaînes alpines issues de la Téthys. 26ème Congr. Géol. Fr. Mém. B.R.G.M. p. 15,
610
67-85.
611
Durand-Delga, M., Rossi, P., Olivier, P., Puglisi, D., 2000. Situation structurale et nature
612
ophiolitique de roches basiques jurassiques associées aux flyschs Maghrébens du Rif (Maroc) et de
613
Sicile (Italie). C.R. Acad. Sci. 331, 29–38.
614
El Fahssi, A. 1999. Tectonique alpine, néotectonique et etude des formations marines quaternaires
615
de la rive sud du détroit de Gibraltar entre Tanger et Sebta (Rif Maroc). Thesis Diplôme Etudes
616
Supérieures, Université Mohammed V, Rabat.
617
El Kadiri, K., Linares, A., Oloriz, F., 1992. La Dorsale calcaire rifaine (Maroc septentrional):
618
Evolution stratigraphique et géodynamique durant le Jurassique-Crétacé. Notes et Mémoires de
619
Service Géologique du Maroc, 336, 217–265.
620
El Kadiri, K., 2002. Jurassic ferruginous hardgrounds of the ―Dorsale Calcaire‖ and the Jbel
621
Moussa Group (internal Rif Morocco) stratigraphical context and paleoceanographic consequences
622
of mineralization processes. Geol. Romana 36, 33–70.
623
El Mrihi, A. 2005. Structure et cindmatique de mise en place des nappes de flyschs maurdtaniens
624
(Rif externe nord occidental): elaboration d'un modéle. Ph.D.thesis, Université de Tetouan,
625
Tetouan.
626
Esteban, J.J., Cuevas, J., Tubía, J., Sergeev, S., Larionov, A., 2011. A revised Aquitanian age for
627
the emplacement of the Ronda Peridotites (Betic Cordilleras, southern Spain). Geological
628
Magazine, 148, 183-187.
Ac
ce pt
ed
M
an
us
cr
ip t
606
Page 25 of 54
Expósito, I., Balanyá, J.C., Crespo-Blanc, A., Díaz-Azpiroz, M., Luján, M., 2012.Overthrust shear
630
folding and contrasting deformation styles in a multipledecollement setting, Gibraltar Arc external
631
wedge. Tectonophysics 576–577,86–98.
632
Faccenna, C., Becker, T.W., Lucente, F.P., Jolivet, L., Rossetti, F., 2001. History of subduction and
633
back-arc extension in the Central Mediterranean. Geophys. J. Int. 145, 809–820.
634
Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., and Rossetti, F., 2004. Lateral slab
635
deformation and the origin of the western Mediterranean arcs. Tectonics 23, TC1012:
636
doi:10.1029/2002TC001488.
637
Fallot, P., 1937. Essai sur la géologie du Rif septentrional. Notes. Mém. Serv. Géol. Maroc 40, 548.
638
Feinberg, H., Maate, A., Bouhdadi, S., Durand-Delga, M., Maate, M., Magne, J., Olivier, Ph., 1990.
639
Significations des depots de l’Oligocene superieur-Miocene inferieur du Rif interne (Maroc) dans
640
l’evolution geodynamique de l’arc de Gibraltar. C. R. Acad. Sci. 310, 1487–1495.
641
Frasca, G., Gueydan, F., Brun, J.P., 2015. Structural record of Lower Miocene westward motion of
642
the
643
10.1016/j.tecto.2015.05.017
644
Frizon de Lamotte, D., 1985. La structure du Rif oriental (Maroc), rôle de la tectonique
645
longitudinale et importance des fluides. Ph.D.thesis, Univ. Paris VI, Paris.
646
García-Dueñas, V., Balanyá, J.C., Martínez-Martínez, J.M., 1992. Miocene extensional
647
detachments in the outcropping basement of the Northern Alboran Basin (Betics) and their Tectonic
648
Implications. Geo-Mar. Lett. 12, 88-95.
649
Guerrera F., 1981-1982. Successions turbiditiques dans les Flyschs maurétanien et numidien. Rev.
650
Géol. Dynamique. Géogr. Phys., V.23, n.2, p. 465-580.
in
the
Western
ce pt
Domain
Betics,
Spain.
Tectonophysics,
doi:
Ac
Alboran
ed
M
an
us
cr
ip t
629
Page 26 of 54
Guerrera, F., Martín-Algarra, A., Perrone, V., 1993. Late Oligocene-Miocene syn / late orogenic
652
successions in Western and central Mediterranean chains form the Betic Cordillera to the southern
653
Apennines. Terra Nova 5, 525-544.
654
Guerrera, F., Martin-Martin, M., Perrone, V., Tramontana, M., 2005. Tectono-sedimentary
655
evolution of the southern branch of western thetys (Maghrebian Flysch Basin and Lucanian Ocean)
656
on the basis of the stratigraphic record. Terra Nova 17, 358-367.
657
Haccard, D., Lorenz, C., Grandjacquet, C., 1972. Essai sur l'evolution tectonogenetique de la liaison
658
Alpes-Apennines (de la Ligurie a la Calabre). Mem. Soc. Geol. It. 11, 309-341.
659
Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E., Bernoulli, D., Hlila, R., 2010. Reconciling
660
plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading
661
and subduction in the Alps. Earth-Sci. Rev. 102, 121-158.
662
Hindle, D., Burkhard, M., 1999. Strain, displacement and rotation associated with the formation of
663
curvature in fold belts: the example of the Jura Arc. J. Struct. Geol. 21, 1089–1101.
664
Hlila, R., 2005. Evolution tectono-sédimentaire tertiaire au front ouest du domaine d’Alboran
665
(Ghomarides et Dorsale Calcaire). Ph.D.thesis, Univ. de Tetouan, Tetouan.
666
Hlila, R., Sanz de Galdeano, C., 1995. Structure de la chaîne du Haouz (Rif interne, Maroc):
667
Interprétation et aspects chronologiques. C. R. Acad. Sci. 318, 1261-1266.
668
Hlila, R., Chalouan, A., El Kadiri, K., Sanz de Galdeano, C., Martín-Pérez, J.A., Serrano, F., López
669
Garrido, A.C., Maaté, A., Guerra-Merchán, A., 2008. New stratigraphic data of the Oligo-Miocene
670
transgressive cover of the Ghomaride units (Northern Internal Rif, Morocco): Implications on
671
Tectono-Sedimentary evolution. Rev. Soc. Geol. Esp. 21, 59-71.
672
Knott, S.D., 1987. The Liguride Complex of southern Italy — a Cretaceous to Paleogene
673
accretionary wedge. Tectonophysics 142, 217–226.
Ac
ce pt
ed
M
an
us
cr
ip t
651
Page 27 of 54
Kornprobst, J., 1966. A propos des peridotites du Massif des Beni-Bouchera (Rif Septentrional,
675
Maroc). Bull. Soc. Franc. Miner. Crist, 89, 399.
676
Kornprobst, J., 1974. Notes et Mémoires du Service Géologique, Maroc 251, 256.
677
Lallam, S., Sahnoun, E., El Hatimi, N., Hervouet, Y., De Leon, J.T., 1997. Mise en évidence de la
678
dynamique de la marge téthysienne de 1’Hettangien à l’Aalénien dans la Dorsale Calcaire (Tetouan,
679
Rif, Maroc). C. R. Acad. Sci. Paris 324 (II), 923–930.
680
Leblanc, D., 1980. L'accident du Nekor et la structure du Rif oriental (Maroc). Rev. Geol. Dyn.
681
Geogr. 22, 267–277.
682
Lespinasse P., 1975. Géologie des zones externes et des Flyschs entre Chaouen et Zoumi (Centre de
683
la chaîne rifaine du Maroc) Thèse Doc. d’Etat ès-Sciences Univ. Paris, 248 p.
684
Lister, G.S., Snoke, A.W., 1984. S-C mylonites. Journal of Structural Geology 6, 617-638.
685
Lonergan, L., White, N., 1997. Origin of the Betic-Rif mountain belt. Tectonics, 16, 504-522.
686
Martín-Algarra, A., 1987. Evolución geológica alpina del contacto entre las Zonas Internas y las
687
Zonas Externas de la Cordillera Bética. Ph.D.thesis, Universidad de Granada, Granada.
688
Mattauer, M., 1960. Nouvelles données sur la « Dorsale calcaire » du Rif. C. R. Acad. Sci. 250,
689
374–376.
690
Mazzoli, S., Martín-Algarra, A., 2011. Deformation partitioning during transpressional of a ―mantle
691
extrusion wedge‖: The Ronda peridotites, western Betic cordillera, Spain. J. Geol. Soc. London
692
168, 373–382.
693
Michard, A., Chalouan, A., 1991. The Ghomarides nappes, Rif Coastal range, Morocco: An African
694
terrane in the West Mediterranean Alpine belt. Bull. Geol. Soc. Grec. 25, 117-129.
Ac
ce pt
ed
M
an
us
cr
ip t
674
Page 28 of 54
Michard, A., Goffé, B., Bouybaouene, M., Saddiqi, O., 1997. Late Hercynian-Mesozoic thinning in
696
the Alboran domain: metamorphic data from northern Rif, Morocco. Terra Nova 9, 1-8.
697
Michard, A., Chalouan, A., Feinberg, H., Goffé, B., Montigny, R., 2002. How does the Alpine belt
698
end between Spain and Morocco? B. Soc. Geol. Fr.173, 3–15.
699
Michard, A., Negro, F., Saddiqi, O., Bouybaouene, M.L., Chalouan, A., Montigny, R., Goffé, B.,
700
2006. Pressure-temperature-time constraints on the Maghrebide mountain building: evidence from
701
the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. C. R.
702
Acad. Sci. 338, 92-114.
703
Michard, A., Frizon de Lamotte, D., Negro, F., Saddiqi, O., 2007. Serpentinite slivers and
704
metamorphism in the External Maghrebides: arguments for an intracontinental suture in the African
705
paleomargin (Morocco, Algeria), Rev. Soc. Geol. España 20, 173–185.
706
Michard, A., Mokhtari, A., Chalouan, A., Saddiqi, O., Rossi, P., Rjimati, E.C., 2014. New ophiolite
707
slivers in the External Rif belt, and tentative restoration of a dual Tethyan suture in the western
708
Maghrebides. B. Soc. Geol. Fr. 185, 313-328.
709
Milliard, Y., 1959. Les massifs métamorphiques et ultrabasiques de la zone paléo-zoïque interne du
710
Rif. Notes Mem. Serv. Géol. Maroc 18, 125–160.
711
Negro, F., Agard, P., Goffé, B. Saddiqi, O., 2007. Tectonic and metamorphic evolution of the
712
Temsamane units, External Rif (northern Morocco). Implications for the evolution of the Rif and
713
the Betic-Rif arc. J. Geol. Soc. London 164, 829-842.
714
Negro, F., de Sigoyer, J., Goffe, B., Saddiqi, O. and Villa, I.M., 2008. Tectonic evolution of the
715
Betic-Rif arc: new constraints from (40)Ar⁄(39)Ar dating on white micas in the Temsamane units
716
(External Rif, northern Morocco). Lithos 106, 93–109.
Ac
ce pt
ed
M
an
us
cr
ip t
695
Page 29 of 54
Nold, M., Uttinger, J., Wildi, W., 1981. Géologie de la Dorsale Calcaire ente Tétouan et Assifane
718
(Rif Interne, Maroc). Notes et Mémoires Service Géologique du Maroc 300, 233.
719
Olivier, P., 1984. Évolution de la limite entre Zones Internes et Zones Externes dans l’Arc de
720
Gibraltar (Maroc-Espagne). Ph.D.thesis , Université Paul Sabatier, Toulouse.
721
Ouazani-Touhami, A.,1994.L’évolution géodynamique alpine des nappes ghomarides (Rif interne
722
septentrional, Maroc). Thèse de 3ème Cycle, Université Med. V. Rabat (Maroc), 1 126
723
Passchier, C. W., Trouw, R.A.J., 1996. Microtectonics. Springer-Verlag, Berlin.
724
Platt, J.P., Vissers, R.L.M., 1989. Extensional collapse of thickened continental litho-sphere: a
725
working hypothesis for the Alboran Sea and Gibraltar arc. Geology 17,540–543.
726
Platt, J.P., Whitehouse, M., 1999. Early Miocene high-temperature metamorphism and rapid
727
exhumation in the Betic Cordillera (Spain): evidence from U-Pb zircon ages. Earth and Planetary
728
Science Letters, 171, 591-605.
729
Platt, J.P., Allerton, S., Kirker, A., Mandeville, C., Mayfield, A., Platzman, E.S., Rimi, A., 2003.
730
The ultimate arc: differential displacement, oroclinal bending, and vertical axis rotation in the
731
external Betic-Rif arc. Tectonics 22:1017
732
Platt, J.P., Behr, W.M, Johanesen, K., Williams, J.R., 2013. The Betic-Rif Arc and Its Orogenic
733
Hinterland: A Review. Annu. Rev. Earth Planet. Sci. 41, 313–57.
734
Platzman, E.S., Platt, J.P., Olivier, P., 1993. Paleomagnetic rotations and fault kinematics in the Rif
735
arc of Morocco. J. Geol. Soc. London 150, 707-718.
736
Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill Book Company, New York.
737
Raoult, J.F., 1969. La série de Tengout: unité externe de la dorsale kabyle annonçant le Flysch de
738
Penthièvre (Nord du Constantinois, Algérie). Bull. Serv. Géol. Fr. 7, XI.
Ac
ce pt
ed
M
an
us
cr
ip t
717
Page 30 of 54
Reiter, F., Acs, P., 1996-2003. TectonicsFP. Software for structural geology. Innsbruck University,
740
Austria. http://go.to/TectonicsFP.
741
Rosenbaum,G., Lister, G.S., 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian
742
Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23, TC1013.
743
Rossetti, F., Goffé, B., Monié, P., Faccenna, C., Vignaroli, G., 2004. Alpine orogenic P–T–t-
744
deformation history of the Catena Costiera area and surrounding regions (Calabria Arc, southern
745
Italy): the nappe edifice of north Calabria revised with insights on the Tyrrhenian–Apennine system
746
formation. Tectonics 23, TC6011.
747
Rossetti, F., Theye, T., Lucci, F., Bouybaouène, M., Dini, A., Gerdes, A., Phillips, D., Cozzupoli,
748
D., 2010. Timing and modes of granitic magmatism in the core of the Alborán Domain, Rif chain,
749
northern Morocco: implications for the Alpine evolution of the western Mediterranean. Tectonics
750
29:TC2017
751
Rossetti, R., Dini, A., Lucci F., Bouybaouenne, M., Faccenna C. 2013. Early Miocene strike-slip
752
tectonics and granite emplacement in the Alboran Domain (Rif Chain, Morocco): significance for
753
the geodynamic evolution of Western Mediterranean. Tectonophysics 608, 774–791.
754
Saddiqi, O., Feinberg, H., Elazzab, D., Michard, A., 1995. Paléomagnètisme des Pèridotites des
755
Beni Boussera (Rif interne, Maroc): Consèquences pour l’évolution Miocene de l’Arc de Gibraltar.
756
C.R. Acad. Sci. 321, 361-368.
757
Sanz de Galdeano, C., 1997. La Zona Interna Bético-Rifeña (Antecedentes, unidades tectónicas,
758
correlaciones y bosquejo de reconstrucción paleogeográfica). Monográfica Tierras del Sur. Univ. de
759
Granada, Granada.
Ac
ce pt
ed
M
an
us
cr
ip t
739
Page 31 of 54
Sanz de Galdeano, C., Andreo, B., García-Tortosa, F.J., López-Garrido, A.C., 2001. The Triassic
761
palaeogeographic transition between the Alpujarride and Malaguide complexes. Betic-Rif Internal
762
Zone (S Spain, N Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 167, 157-173.
763
Schettino, A., Turco, E., 2011. Tectonic history of the western Tethys since the late Triassic. Geol.
764
Soc. Am. Bull. 123, 89–105.
765
Serrano, F., Guerra-Merchán, A., El Kadiri, K., Sanz de Galdeano, C., López-Garrido,A., Martín-
766
Martín, C., Hlila, M.R., 2007. Tectono-sedimentary setting of theOligocene–early Miocene deposits
767
on the Betic–Rifian Internal Zone (Spain andMorocco). Geobios-Lyon 40, 191–205.
768
Schellart, W.P., Lister, G.S., 2004. Tectonic models for the formation of arc‐shaped convergent
769
zones and backarc basins, in Orogenic Curvature: Integrating Paleomagnetic and Structural
770
Analyses, edited by A. J. Sussman, and A. B. Weil, Geological Soc. Am. Special Paper, 383, 237–
771
258.
772
Suter, G., 1965. La région du Moyen Ouerrha (Rif, Maroc): étude préliminaire sur la tectonique et
773
la stratigraphie. Notes et Mémoires du Service géologique du Maroc, 24, 7–17.
774
Suter, G., 1980. Carte structurale de la chaîne rifaine au 1:500,000. Notes et Mémoires du Service
775
géologique du Maroc 245p.
776
Tavani, S., Storti, F., Lacombe, O., Corradetti, A., Muñoz, J.A., Mazzoli, S., 2015. A review of
777
deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for
778
the state of stress in the frontal regions of thrust wedges. Earth-Science Reviews, 141, 82–104.
779
Thomas, M.F.H., Bodin, S., Redfern, J., Irving, D.H.B., 2010. A constrained African craton source
780
for the Cenozoic Numidian Flysch: implications for the palaeogeography of the western
781
Mediterranean basin. Earth Sci. Rev. 101, 1–3.
Ac
ce pt
ed
M
an
us
cr
ip t
760
Page 32 of 54
Van Hinsbergen, D. J. J., Vissers, R. L. M., Spakman, W., 2014. Origin and consequences of
783
western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33, 393-419.
784
Vera, J.A., 2004. Geología de España. Sociedad Geológica de España-Instituto Geológico y Minero
785
de España, Madrid, 884 p.
786
Vignaroli, G., Minelli L., Rossetti, F., Balestrieri, M.L., Faccenna, C., 2012. Miocene thrusting in
787
the eastern Sila Massif: Implication for the evolution of the Calabria-Peloritani orogenic wedge
788
(southern Italy). Tectonophysics 538–540, 105–119.
789
Vitale, S., Ciarcia, S., 2013. Tectono-stratigraphic and kinematic evolution of the southern
790
Apennines/Calabria–Peloritani Terrane system (Italy). Tectonophysics 583, 164-182.
791
Vitale, S., Ciarcia, S., Tramparulo, F.D.A., 2013a. Deformation and stratigraphic evolution of the
792
Ligurian Accretionary Complex in the southern Apennines (Italy). J. Geodyn. 66, 120-133.
793
Vitale S., Fedele L., Tramparulo F., Ciarcia S., Mazzoli S., Novellino A. 2013b. Structural and
794
petrological analyses of the Frido Unit (southern Italy): new insights into the early tectonic
795
evolution of the southern Apennines-Calabrian Arc system. Lithos 168-169, 219-235.
796
Vitale S., Zaghloul M.N., Tramparulo F.D.A., El Ouaragli B., Ciarcia, S. 2014a. From Jurassic
797
extension to Miocene shortening: an example of polyphasic deformation in the External Dorsale
798
Calcaire Unit (Chefchaouen, Morocco). Tectonophysics, 633,63-76.
799
Vitale S., Zaghloul M.N., Tramparulo F.D.A., El Ouaragli B. 2014b. Deformation characterization
800
of a regional thrust zone in the northern Rif (Chefchaouen, Morocco). J. Geodyn. 77, 22-38.
801
Wildi, W. 1979: Evolution de la plate-forme carbonatée de type austro-alpin de la Dorsale calcaire
802
(Rif interne, Maroc septentrional) au Mésozoïque. Bull Soc. Géol. France (7), 21/1, 49-56.
Ac
ce pt
ed
M
an
us
cr
ip t
782
Page 33 of 54
Wildi, W., 1983. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): structure, stratigraphie et
804
évolution du Trias au Miocène. Rev. Géol. Dyn. Géogr. 24, 201–297.
805
Wildi, W., Nold, M., Uttinger, J., 1977. La Dorsale Calcaire entre Tetouan et Assifane (Rif interne,
806
Maroc). Eclogae Geol. Helv. 70, 371–415.
807
Yu, G., Wesnousky, S.G., Ekstrom, G. 1993. Slip partitioning along major convergent plate
808
boundaries. Pure Appl. Geophys. 142, 183–210.
809
Zaghloul, M.N., 1994. Les Unites Federico septentrionales (Rif interne, Maroc): Inventaire des
810
deformations et leur contexte geodynamique dans la chaıne Betico-Rifaine. MSc Thesis,
811
Mohammed V University, Rabat.
812
Zaghloul, M.N., Gigliuto, L.G., Pugliesi, D., Ouazani-Tuhami, A. Belkaid, A., 2003. The Upper
813
Oligocene-Lower Burdigalian Ghomaride cover: a petro-sedimentary record an early subsident
814
stage related to the Alboran Sea rifting (northern Internal Rif, Morocco). Geol. Carpath. 54, 93-105.
815
Zaghloul, M.N., Di Staso, A., El Moutchou, B., Gigliuto, L.G., Puglisi, D., 2005. Sedimentology,
816
provenance and biostratigraphy of the Upper Oligocene-Lower Miocene terrigenous deposits of the
817
internal «Dorsale Calcaire» (Rif, Morocco): palaeogeographic and geodynamic implications. Boll.
818
Soc. Geol. It. 124, 437-454.
819
Zaghloul M.N., Di Staso A., de Capoa P., Perrone V., 2007. Occurrence of upper Burdigalian
820
silexite beds within the Beni Ider Flysch Fm. in the Ksar-es-Seghir area (Maghrebian Flysch Basin,
821
northern Rif, Morocco): correlations and geodynamic implications, Boll. Soc. Geol. It. 126, 223-
822
239.
823
Zaghloul, M.N., Staso, A.D., Hlila, R., Perrone, V., Perrotta, S., 2010a. The Oued Dayr formation:
824
First evidence of a new Miocene late-orogenic cycle on the Ghomaride Complex (Internal domains
825
of the Rifian Maghrebian Chain, Morocco). Geodin. Acta 23, 185–194.
Ac
ce pt
ed
M
an
us
cr
ip t
803
Page 34 of 54
826
Zaghloul, M.N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., Tucker, M., Aiello,
827
M., Ventimiglia, C., 2010b. Depositional systems, composition and geochemistry of Triassic rifted-
828
continental margin redbeds of the Internal Rif Chain, Morocco. Sedimentology 57, 312–350.
829
Figures
ip t
830 831
Fig.1. (a) tectonic scheme of the Alpine chains in the western Mediterranean Sea (after Vitale and
833
Ciarcia, 2013, modified). (b) Simplified geological map of the Rif chain (after Zaghloul et al., 2007,
834
modified).
us
cr
832
836
an
835
Fig. 2. (a) Geological map and (b) cross sections of the Jebha area.
M
837
Fig. 3. Panoramic views of (a) western and (b) eastern sectors of analyzed area. (c) View of western
839
Jebha promontory showing a ramp-flat thrust.(d) Folds in Jurassic limestones.(e) Frontal view of
840
the hanging wall ramp anticline with steep to overturned strata and folds in Upper Oligocene well-
841
bedded argillites and marls. (f) Slickenside fibers and steps indicating a W-vergence on the main
842
thrust fault plane. (g) Secondary fault plane with E-W striations.
ce pt
Ac
843
ed
838
844
Fig. 4. Synoptic table showing the main deformation structures for each tectonic unit presented in
845
the structural analysis section. Overprinting relationships, temporal succession and correlation with
846
the tectonic evolution are also provided. F: fold; FP: fault plane; PBT: pre-buckle thrust; ESB:
847
extensional shear bands.
848 849
Fig. 5. Upper Oligocene rocks (Mars Dar Bay): C’-type shear bands in (a) variegated argillites and
850
marls, (b) matrix supported conglomerate and (c) clast-supported calcareous conglomerates; (d) W-
Page 35 of 54
851
verging folds; (e) S-C structures indicating a W vergence. (f) Western side of Mars Dar Bay
852
showing FP1-3-4IDC faults; (g) top-view of S-C structures in the fault core of the dextral fault FP 3IDC.
853
Fig. 6. (a) Panoramic view of eastern Jebha promontory showing Jurassic carbonates upward
855
passing, by means of a tectonic contact, to Upper Oligocene marls and Aquitanian turbidites. (b)
856
FP2IDC fault cut by a late normal FP5IDC fault. (c) Panoramic view of the eastern Jebha promontory
857
showing high-angle FP5IDC normal faults crosscutting low-angle FP2IDC faults. The External Dorsale
858
Calcaire Unit: (d) F1EDC isoclinal folds in Upper Oligocene argillites; (e) F2 EDC chevron open to
859
close folds in Jurassic cherty limestones; (f) Interference pattern between F 1EDC and F2EDC folds of
860
type 3 in Jurassic cherty limestones. (g) Out-of-sequence thrust between the Ghomaride Unit and
861
Upper Oligocene conglomerates, marls and argillites of the External Dorsale Calcaire, deformed
862
and tilted by the successive back-thrusting stage; (h) Zoom view of S-C structures in the hanging
863
wall (Ouringa River).
ed
864
M
an
us
cr
ip t
854
Fig. 7. Orientation projections and contour plots (lower hemisphere, equal-area net) for (a-f) the
866
Internal Dorsale Calcaire Unit (Jurassic-Upper Oligocene rocks), (g-l) the External Dorsale
867
Calcaire (Jurassic-Upper Oligocene rocks) and (m-q) Internal Dorsale Calcaire Unit (Aquitanian
868
turbidites). PBT plots (Angelier and Mechler, 1977; Reiter and Acs, 1996–2003): (e) P (069/18) R
869
= 57%, B (198/77) R = 77%, T (336/11) R = 41%; (g) P (334/77) R = 81%, B (137/19) R = 72%, T
870
(229/04) R = 67%; (p) P (138/88) R = 85%, B (331/00) R = 53%, T (241/01) R = 47%. S0: bedding;
871
A: fold axis; AP: axial plane; ESB: extensional shear band; FP: fault plane.
Ac
ce pt
865
872 873
Fig. 8. Aquitanian turbidites. (a-b) Syn-sedimentary FP1AT normal faults (to the East of the Jebha
874
village). (c) pre-buckle thrust affecting an arenaceous layer embedded in the pelitic interstrata (to
875
the East of the Jebha village). (d) Fault breccia associated to the thrust separating Aquitanian
876
turbidites and the Predorsalian Unit (to the East of the Jebha village). (e) F2AT chevron folds Page 36 of 54
associated to the SE-verging FT2AT thrust; deformed and tilted by the successive NW-verging FT3 AT
878
thrust and related F3 AT fold (N16 road). (f) F2AT tight to isoclinal folds associated to the SE-verging
879
FT2AT thrust subsequently tilted (N16 road). (g) F2 AT tight fold in Aquitanian turbidites showing
880
early pre-buckle thrust, normal faults and veins in the outer arc (N16 road). (h) NW-verging reverse
881
faults with related F3AT folds (N16 road).
ip t
877
882
Fig. 9. (a) Decametric chevron F3PD fold (in the upper-left corner of the picture) in Aquitanian
884
turbidites associated to a NW-verging sub-horizontal PF3PD back-thrust (N16 road). (b) SE-verging
885
FP2AT thrust fault between the Aquitanian turbidites and the Predorsalian Unit. The hanging wall
886
ramp is folded by the successive deformation stage. Predorsalian Unit (N16 road). (c) Interference
887
pattern intermediate between types 2 and 3 between F1PD isoclinal and F2PD open folds (N16 road).
888
(d) SE-verging thrust fault with associated F1PD (N16 road). (e) Cherty calcareous conglomerate
889
showing clast indentation by means of pressure solution mechanisms (to the East of the Jebha
890
village). (f) Conjugate extensional shear planes (Ouringa River). (g) F3PD folds (N16 road).
ed
M
an
us
cr
883
891
Fig. 10. Orientation projections and contour plots (lower hemisphere, equal-area net) for (a-h) the
893
Predorsalian Unit and (i-o) the Tisirene Unit. S0: bedding; A: fold axis; AP: axial plane; ESB:
894
extensional shear band.
Ac
895
ce pt
892
896
Fig.11. Tisirene Unit (N16 road). (a) Panoramic view showing an early thrust fault (FP1TI) deformed
897
by FP2TI NW-verging folds. (b) Zoom view of FP1TI hanging wall cutoffs. (c) F2TI NW-verging
898
chevron fold. (d) Early F1TI isoclinal folds in argillites. (e) Macro-scale recumbent F3TI. (f) F1TI fold
899
dislocated by late FP4TI normal faults.
900 901
Fig.12. Schematic cross-section of the Jebha area.
902
Page 37 of 54
903
Fig. 13. (a) Map of Early Miocene tectonic vergences in the Dorsale Calcaire (Northern Rif), from:
904
this study, Platt et al., 2003; Hlila, 2005; Hlila and Sanz De Galdeano, 2008, Benmakhlouf et al.,
905
2012; Platt et al., 2013; Vitale et al., 2014b. (b) The ―Piedmont Glacier‖ model for the Miocene Rif
906
belt evolution.
ip t
907
Fig. 14. Cartoon showing the Late Oligocene-Serravallian tectonic evolution of the analyzed area
909
(not to scale). GHO: Ghomaride; IDC: Internal Dorsale Calcaire; EDC: External Dorsale Calcaire;
910
PD: Predorsalian; TIS: Tisirene; MAS: Massylian. ER: External Rif.
us
cr
908
911
an
912
New structural data from the Jebha area, a key-sector of the Central Rif, are provided
914
In the Early Miocene the Jebha-Chrafate fault allowed the WSW-migration of the Internal Units
915
Since the late Burdigalian the radial thrust front spreading prevailed
916
Out-of-sequence and back-thrust faults characterized the Middle Miocene evolution
ed
M
913
Ac
ce pt
917
Page 38 of 54
ed pt ce Ac Page 39 of 54
Page 40 of 54
Ac ed
pt
ce an
M
us
cr
ip t
Page 41 of 54
Ac ed
pt
ce an
M
us
cr
ip t
Page 42 of 54
ed
pt
Ac ce an
M
us
cr
ip t
Page 43 of 54
ed
pt
ce
Ac M
an
cr
us
ip t
Page 44 of 54
ep te
Ac c d
M
an
cr
us
i
Page 45 of 54
ed
ce pt
Ac M an
cr
us
ip t
Page 46 of 54
pt e
ce
Ac d
M
an
cr
us
i
Page 47 of 54
d
te
ep
Ac c M an
cr
us
ip t
u an M ed pt ce Ac
Page 48 of 54
Page 49 of 54
d
ep te
Ac c M
an
cr
us
ip t
Page 50 of 54
ed
pt
Ac ce us
an
M cr
ip
t
M ed pt ce Ac Page 51 of 54
ce Ac
Page 52 of 54
ce Ac
Page 53 of 54
ce Ac
Page 54 of 54