Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt

Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt

Accepted Manuscript Title: Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif,...

11MB Sizes 0 Downloads 24 Views

Accepted Manuscript Title: Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt Author: Stefano Vitale Mohamed Najib Zaghloul Bilal El Ouaragli Francesco D’Assisi Tramparulo Sabatino Ciarcia PII: DOI: Reference:

S0264-3707(15)00077-0 http://dx.doi.org/doi:10.1016/j.jog.2015.07.002 GEOD 1376

To appear in:

Journal of Geodynamics

Received date: Revised date: Accepted date:

17-12-2014 13-7-2015 14-7-2015

Please cite this article as: Vitale, S., Zaghloul, M.N., Ouaragli, B.E., Tramparulo, F.D.A., Ciarcia, S.,Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt, Journal of Geodynamics (2015), http://dx.doi.org/10.1016/j.jog.2015.07.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian

2

Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into

3

the Miocene tectonic evolution of the Central Rif belt

4

Stefano Vitalea, Mohamed Najib Zaghloulb, Bilal El Ouaraglib, Francesco D'Assisi Tramparulo a,

6

Sabatino Ciarciaa

7

a

8

Federico II

9

b

cr

ip t

5

us

Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), Università di Napoli

an

Department of Earth Sciences, F.S.T.-Tangier, University of Abdelmalek Essaadi, Morocco

10

Key words: structural analysis, tectonics, Alpine Chain, Miocene, Western Mediterranean Sea

M

11 12

Abstract

14

In order to better understand the orogenic evolution of the Rif chain in the Eocene-Miocene

15

interval, we provide new structural and kinematic data for the Jebha area, a key-sector of the

16

Central Rif. Here the thrust sheet superposition occurs along the well-known Jebha-Chrafate

17

lineament, widely considered as a major left-lateral transfer fault that enabled the Miocene

18

westward migration of the internal thrust front. Our structural analysis was mainly focused on (i)

19

the internal deformation of stacked nappes and (ii) the kinematics of the main thrust faults. Five

20

main deformation stages were recognized for the Eocene-Miocene tectonic evolution of this area.

21

The first orogenic pulse (D1), which occurred in the Eocene-Oligocene interval, was responsible for

22

the tectonic stacking of the Ghomaride Nappes. Subsequently between the late Aquitanian and the

23

late Burdigalian, imbrication (stage D2) occurred for some Internal Dorsale Calcaire thrust sheets

24

within a dominant regional ENE-WSW shortening. At the Rif scale, different displacements of the

25

WSW-migrating thrust front were accommodated by transfer structures including the Jebha-

Ac

ce pt

ed

13

Page 1 of 54

Chrafate fault. The following late Burdigalian-Langhian stage (D3) was defined, on the contrary, by

27

a prevalence of the radial thrust front migration. In the Jebha area the early thrusting (stage D 3a) was

28

characterized by a main SE-vergence. In this phase the External Dorsale Calcaire and the

29

Maghrebian Flysch Basin units were included in the accretionary wedge. Two late D 3 regional

30

deformation phases were probably related to the buttressing effect that followed the collision of the

31

thrust sheet pile against the crustal ramp of the External Rif domain. The first stage (D3b) consisted

32

of an out-of-sequence thrusting recorded in the western sector of the Jebha area with the

33

superposition of the Ghomaride Unit onto the External Dorsale Calcaire Unit, and in the eastern

34

sector with the stacking of the Internal Dorsale Calcaire Unit directly onto the Predorsalian Unit.

35

The second stage (D3c) included a late back-thrusting affecting the whole orogenic chain and

36

deforming all the tectonic contacts. The fourth stage (D4) was characterized by strike-slip faulting

37

and SW-verging folding. This latter mostly affected the successions located to the East of the Jebha

38

village and was partially synchronous with the D 3 stage. It was most probably related to the SW-

39

migration of the internal thrust-front of the Bokkoya Dorsale Calcaire Complex and a renewed

40

activity of the Jebha-Chrafate fault zone. The last tectonic stage (D5) included a radial extension

41

expressed by high and low-angle normal faults.

42

ce pt

ed

M

an

us

cr

ip t

26

1. Introduction

44

The Rif chain is part of a poly-arcuate orogenic belt surrounding the western Mediterranean Sea and

45

embraces the Apennines, the Calabrian Arc, the Maghrebian chains and the western Betic

46

Cordillera (Fig. 1a). These orogens are formed by the superposition of several nappes grouped in

47

three main tectonic complexes (amongst others Kornprobst, 1974; Chalouan, 1986; Bonardi et al.,

48

2001; Michard et al., 2002; 2006; 2007; 2014; Guerrera et al., 2005; Handy et al., 2010; Mazzoli

49

and Martin-Algarra 2011; Vitale and Ciarcia, 2013; Platt et al., 2013): (i) the Internal Units; (ii) the

50

Maghrebian Flysch Basin (MFB) and Ligurian Accretionary Complex (LAC) Units; and (iii) the

51

External Units. The Internal Units consist of Paleozoic continental crust, high-grade metamorphic

Ac

43

Page 2 of 54

and mantle rocks, and a Mesozoic cover characterized by different degrees of metamorphism (e.g.

53

Kornprobst, 1974; Chalouan, 1986; Bonardi et al., 2001; Michard et al., 2006; Rossetti et al., 2010).

54

From the first attempts to find a common origin for the Internal Units (e.g. Haccard et al., 1972;

55

Alvarez et al., 1974), nowadays two different models prevail. The first hypothesis suggests that the

56

Internal Units originated from a common microplate (―Alboran Microplate‖, ―AlKaPeCa‖ or

57

―Mesomediterranean Terrain‖; Andrieux et al., 1971; Michard et al., 2002; Guerrera et al., 2005;

58

Handy et al., 2010) that was detached, in the Jurassic-Cretaceous time, from the European plate to

59

the West and the Apulia-African plate to the East by two oceanic branches (e.g. Michard et al.,

60

2002; Handy et al., 2010): the W-Ligurian/Betic and E-Ligurian/Maghrebian Flysch Oceans,

61

respectively. The second model was first introduced by Boullin (1984) and Knott (1987) and has

62

been reprised in recent years (e.g., Faccenna et al., 2001; Rossetti et al., 2004; Schettino and Turco,

63

2011; Vignaroli et al., 2012). This paleogeography envisages the existence of a single ocean

64

(Ligurian Ocean, Knott, 1987; Ligurian Tethys, Schettino and Turco, 2011), with the Internal Units

65

forming the SE margin of the European plate. However in both models, since the (i) Eocene

66

(Vignaroli et al., 2012 and reference therein) and (ii) Early Miocene (Chalouan et al., 2006; de

67

Capoa et al., 2007, 2013; Zaghloul et al., 2007; Ciarcia et al., 2012), the Ligurian Ocean and

68

Maghrebian Flysch Basin successions, respectively, were deformed and tectonically covered by the

69

Internal Units. The migration of different orogenic arcs was mainly driven by the rollback of the

70

downgoing lithospheres (e.g. Schellart and Lister, 2004; van Hinsbergen et al., 2014 and reference

71

therein) triggering the dispersion of the early Internal domain along the western Mediterranean

72

margins (Alvarez et al., 1974). Today (Fig. 1a), the MFB and LAC Units are sandwiched between

73

the Internal Units on the top and the External Units on the bottom. The latter are formed by

74

sedimentary successions deposited onto the continental margins of the Adria, Africa and Iberia

75

plates (e.g. Chalouan et al., 2008; Mazzoli and Algarra, 2011; Vitale and Ciarcia, 2013).

76

The Betic-Rif orogen is a narrow arcuate thrust belt, with a curvature radius of approximately 100

77

km, characterized, during its tectonic evolution, by a radial displacement that produced a continuous

Ac

ce pt

ed

M

an

us

cr

ip t

52

Page 3 of 54

arc spreading with divergent transport directions and different rotations for adjacent arc sectors, that

79

are well-recorded by paleomagnetic data (e.g. for the Rif chain: Platzman et al., 1993; Lonergan and

80

White, 1997; Saddiqi et al., 1995; Cifelli et al., 2008; Brandt, 2014). In the paleo-arcuate belts,

81

radial displacements are highlighted by the centrifuge pattern of slip vectors reconstructed through

82

field kinematic features (e.g. Platt et al., 1989) or in the current arcuate plate margins by means of

83

seismic data (e.g. Yu et al., 1993). According to Vitale et al. (2014a) the ―Piedmont Glacier‖ model

84

(Hindle and Burkhard, 1999), with divergent displacements in most of the stages of its geodynamic

85

evolution can be assumed for the Rif thrust front migration. Furthermore, the radial spreading was

86

accommodated, especially in the Early-Middle Miocene, by (i) differentiated displacements through

87

some major transfer faults (Jebha-Chrafate and Nekor faults; Leblanc, 1980; Frizon de Lamotte,

88

1985; Benmakhlouf et al., 2012); and (ii) stretching in the thrust front sector, orthogonal to the

89

tectonic transport.

90

The arching of the Rif and Betic Cordillera and the opening and growth of the Alboran Sea and

91

Algero-Provençal basins have been explained with different tectonic models. Several authors (e.g.

92

Lonergan and White, 1997; Rosenbaum and Lister, 2004; Faccenna et al., 2004) consider a

93

subduction rollback and a W-migration of the lithospheric tear, similar to which occurred for other

94

large orogenic arcs (e.g. the southern Apennines and Calabria arcs; Vitale and Ciarcia, 2013 and

95

reference therein), as the mechanism that drove the mountain belt formation, the exhumation of

96

metamorphic rocks and the large extension in the Alboran Domain. However, based on the

97

subduction rollback since ~35 Ma, different tectonic evolution scenarios have been suggested

98

(Chertova et al., 2014; Frasca et al., 2015 and references therein).

99

The first evidence of crustal shortening occurred in the Eocene-Oligocene with the thrust-sheet

100

imbrication of the Ghomaride Complex units (Chalouan et al., 2008 and reference therein). This

101

event was also recorded by metamorphism in the Sebtide Complex (from 48 to 30 Ma).

102

Contemporarily, in the Oligocene (Negro et al., 2008) a MP/LT metamorphism affected some

103

successions located in the external Rif zones (Mesorif, Temsamane Unit, Negro et al., 2007)

Ac

ce pt

ed

M

an

us

cr

ip t

78

Page 4 of 54

probably as result of the tectonic inversion of a partially oceanized basin (Mesorif Suture Zone,

105

Michard et al., 2007) that was previously formed as a consequence of the Neotethys rifting (e.g.

106

Schettino and Turco, 2011). In the Early Miocene the emplacement of the sublithospheric mantle

107

large bodies occurred in the Internal sector of the Betic Cordillera (Ronda peridotites, e.g. Esteban

108

et al. 2011; Mazzoli and Algarra, 2011 and reference therein) and the Rif chain (Beni Bousera

109

peridotites, e.g. Afiri et al., 2011; Rossetti et al., 2013 and reference therein).

110

The Oligo-Miocene thrust front migration was synchronous with a widespread extension in the rear

111

of the accretionary wedge (Alboran Domain) and delamination in the fore-arc region of the Betic–

112

Rif orogen. This event was marked by an intrusion in the upper crustal levels of acidic melts

113

resulting from the crustal anatexis (Rossetti et al., 2013) and fast exhumation of the deep-seated

114

rocks that occurred almost simultaneously over a large region (e.g. Platt and Whitehouse, 1999).

115

In the Burdigalian-Langhian interval, the Dorsale Calcaire and MFB units were accreted in the

116

tectonic wedge (e.g. de Capoa et al., 2007; Zaghloul et al., 2007; Chalouan et al., 2008; Vitale et al.,

117

2014a, b). From the Langhian to the Tortonian, the orogenic front migrated toward the external

118

zones (Intrarif, Mesorif and Prerif; Zaghloul et al., 2005 and references therein).

119

A large amount of geological data on the Betic-Rif orogen is available (e.g. Vera, 2004; Chalouan

120

et al., 2008; Platt et al., 2013; and references therein). However, unlike the Betic Cordillera, only a

121

few structural studies regarding the kinematics of the thrust sheets forming the Rif Chain have been

122

carried out. The main goal of this paper is, therefore, to provide new structural data through a

123

structural study of a segment of the Central Rif (Jebha area, Fig. 1b). Original data regarding (i)

124

internal deformation and (ii) thrust sheet kinematics, are furnished. The Jebha area is considered by

125

many authors as a key-sector of the Rif chain due to the fact that the Internal Units superpose onto

126

the Maghrebian Flysch Units along a regional contact running from Jebha to Chrafate (Fig. 1b),

127

representing a main left-lateral transfer fault that allowed the westward migration of the Internal

128

Domain (Benmakhlouf et al., 2012 and references therein).

Ac

ce pt

ed

M

an

us

cr

ip t

104

129

Page 5 of 54

2. Geological setting

131

The Rif chain is a thrust sheet pile consisting of the tectonic superposition of Paleozoic continental

132

crust slices and relative Mesozoic-Paleogene covers onto the Mesozoic-Neogene basin to platform

133

successions (e.g. Chalouan et al., 2008). Three main tectonic complexes form the Rif chain: (i) the

134

Internal Units (or ―Alboran Domain‖; García-Dueñas et al., 1992); (ii) the Maghrebian Flysch Units

135

(Guerrera et al., 2005) and (iii) the External Units (Leblanc, 1980; Suter 1980).

136

The Internal Units comprise three tectonic complexes: (i) the Sebtides (Milliard, 1959; Durand

137

Delga and Kornprobst, 1963); (ii) the Ghomarides (Durand-Delga and Kornprobst, 1963; Wildi,

138

1983; Chalouan, 1986; Michard and Chalouan, 1991) and (iii) the Dorsale Calcaire (Fallot, 1937;

139

Mattauer, 1960; Wildi et al., 1977). This latter is subdivided, according to Mesozoic

140

paleogeography, into (a) the Internal and (b) the External Dorsale Calcaire.

141

The Sebtide Complex (Durand-Delga and Kornprobst, 1963; Kornprobst, 1974; Zaghloul, 1994;

142

Saddiqi et al., 1995; Michard et al., 1997, 2006; Rossetti et al., 2010; Afiri et al., 2011) consists of

143

the sub-continental mantle peridotites of the Beni Bousera overlain by HP/HT to MP/HT granulites,

144

gneisses and micaschists (Lower Sebtides), in turn underlying the Permo-Triassic HP/LT to LP/LT

145

metamorphic Federico Units (Upper Sebtides). The Ghomaride Complex tectonically covers the

146

latter units formed by low-grade Eo-Variscan and Variscan metamorphic Paleozoic rocks, passing

147

to a Middle Triassic-Middle Miocene sedimentary cover (Chalouan and Michard, 1990; Chalouan

148

et al., 2008; Zaghloul et al., 2010a, b and references therein).

149

The Dorsale Calcaire Complex is formed by Triassic to Lower Miocene successions (Wildi et al.,

150

1977; Wildi 1979, 1983; Nold et al., 1981; El Kadiri et al., 1992; Lallam et al., 1997; El Kadiri,

151

2002; Zaghloul et al., 2010a; Vitale et al., 2014b). The Internal and External successions consist, at

152

the base, of Triassic-Hettangian carbonates formed in shallow water conditions. In the Sinemurian

153

the External domain passes to basin facies, whereas the internal domain persists as a carbonate

154

platform. This abrupt transition is marked by a synsedimentary extension, a consequence of the

155

Neotethys rifting (El Kadiri et al., 1992; Lallam et al., 1997; Vitale et al., 2014b). The Jurassic-

Ac

ce pt

ed

M

an

us

cr

ip t

130

Page 6 of 54

Paleocene evolution of the Internal Dorsale Calcaire involved several emersion and subsidence

157

stages, culminating in the deposition of black shales. On the contrary, the External Dorsale

158

Calcaire includes a continuous basin condensed succession. Starting from the Late Oligocene up to

159

the Aquitanian, both domains were the location of synorogenic sedimentation (Hlila, 2005;

160

Zaghloul et al., 2005). The sedimentary supply of the Aquitanian turbidites mainly derived from the

161

Mesozoic carbonates of the Internal Dorsale Calcaire and, subordinately, from the Paleozoic

162

basement (Zaghloul et al., 2005).

163

The Upper Oligocene-Aquitanian deposits of the Internal Dorsale Calcaire correspond in age to the

164

Fnideq Fm. (e.g. Feinberg et al., 1990; Zaghloul et al., 2003), that unconformably cover the

165

Ghomaride Units. In the Betic Cordillera, this succession, that is characterized at the base by an

166

abundance of coarse-grained rocks locally interbedded with medium- to fine-grained lithofacies,

167

corresponds to the Ciudad Granada Group (e.g. Martín-Algarra, 1987; Zaghloul et al., 2003;

168

Serrano et al., 2007). The Ghomaride Units are further unconformably covered by the early-middle

169

Burdigalian Sidi Abdesslam Fm. (Chalouan, 1987; Hlila et al., 2008) corresponding to the Viñuela

170

Group in the Betic Cordillera (e.g. Martín-Algarra, 1987; Serrano et al., 2007), formed by

171

siliciclastic-calciclastic turbidites. According to Zaghloul et al. (2003), the sedimentation of these

172

successions occurred in extensional basins formed on the top of the thrust sheet pile.

173

The Dorsale Calcaire Units tectonically cover a nappe stack formed, from top to bottom, by:

174

Predorsalian (Olivier, 1984), Mauretanian (Durand Delga et Fontbote, 1980; Durand Delga, 1972)

175

and Massylian (Didon et al., 1973; Andrieux et Mattauer, 1962; Durand Delga et al., 1960-1962)

176

units, that together form the MFB tectonic complex (Guerrera et al., 1993, 2005). The Predorsalian

177

Unit consists of a slope to basin succession mainly composed of siliciclastic turbidites with several

178

carbonate debris, macro-breccias and olistoliths indicating an inner paleogeographic location in the

179

MFB, close to the Dorsale Calcaire Domain (Olivier, 1984; Guerrera et al., 1993). The

180

Mauretanian and Massylian units comprise some Jurassic-Early Miocene sedimentary successions,

181

presently detached from their basement that was probably made of a thinned continental or partially

Ac

ce pt

ed

M

an

us

cr

ip t

156

Page 7 of 54

oceanized crust (Durand Delga et al., 2000). The Maghrebian Flysch Basin passed toward E/NE to

183

the Ligurian Domain (Bouillin, 1986; Durand Delga et al. 2000; Zaghloul et al., 2002; Guerrera et

184

al., 2005; Vitale et al., 2013a, b).

185

Generally, the MFB nappes are located in front of the Internal Units; however some slices cover the

186

Ghomaride Complex as a result of a back-thrusting stage (e.g. Hlila, 2005; Chalouan et al., 2008).

187

The Mauretanian Units encompass two main successions: the Triassic-Cretaceous Tisirene and

188

Cretaceous-Lower Miocene Ben Ider sequences (Durand-Delga et Mattauer, 1959; Durand Delga et

189

Mattauer, 1960; Andrieux, 1971; Didon et al., 1973; Lespinasse, 1975; Chiocchini et al., 1978;

190

Guerrera, 1981-1982; Zaghloul et al., 2002). Probably these two successions formed a single

191

stratigraphic unit successively detached along a Cretaceous level (Didon et al., 1973; Durand Delga

192

et al., 2000; Zaghloul, 2007). Today the Beni Ider Unit does not crop out in the Central Rif,

193

possibly as a consequence of a large-scale gravity-driven detachment that occurred before the

194

inclusion of Mauretanian successions in the accretionary wedge (Lespinass, 1975; Chalouan et al.,

195

2006).

196

Finally, the External Rif Domain (Intrarif, Mesorif and Prerif Units) consists of some Mesozoic-

197

Miocene platform to basin successions (e.g. Durand-Delga et al. 1960-1962; Suter, 1965; 1980;

198

Andrieux, 1971; Didon et al. 1973), that at places include remnants of ophiolitic rocks and/or

199

subcontinental mantle masses and related metasedimentary covers characterized by low-grade to

200

MP/LT metamorphism (Frizon de Lamotte, 1985; Negro et al., 2007; Michard et al., 2007, 2014).

201

The external tectonic pile is unconformably covered by upper Tortonian-Messinian wedge-top basin

202

deposits (Leblanc 1980, Suter, 1980, Di Staso et al., 2010 and references therein).

Ac

ce pt

ed

M

an

us

cr

ip t

182

203 204

2.1. Jebha area

205

The investigated area (Fig. 2a) is characterized by the tectonic superposition of several thrust sheets.

206

It can be divided into two sectors: (i) the western area including, from top to bottom, the

207

Ghomaride, the External Dorsale Calcaire, the Predorsalian and the Tisirene nappes (Figs. 2a, b,

Page 8 of 54

3a) and (ii) the eastern sector consisting of the Internal Dorsale Calcaire overthrusting the

209

Predorsalian Unit, in turn tectonically overlying the Tisirene Nappe (Figs. 2a, b, 3b). The Internal

210

Dorsale Calcaire succession composed of Jurassic shallow water carbonates covered by Upper

211

Oligocene variegated argillites, marls and calcareous conglomerates followed by Aquitanian

212

calcareous turbidites (Fig. 3b) (Zaghloul et al., 2005). The succession forms an ENE-WSW ridge,

213

crosscut by several high-angle faults (Fig. 2a). Similarly in the western sector the External Dorsale

214

Calcaire succession outlines an ENE-WSW ridge dislocated by a major high-angle fault passing

215

along the Ouringa River (Fig. 2a). The stratigraphic sequence of the External Dorsale Calcaire is

216

composed of Jurassic well-bedded cherty limestones covered by Upper Oligocene variegated

217

argillites, marls and calcareous conglomerates.

an

us

cr

ip t

208

218

3. Structural analysis

220

Figure 4 shows a synoptic table illustrating the inventory of the structures that will be presented and

221

discussed in the following sections, as well as their overprinting relationships and temporal

222

succession.

ed

ce pt

223

M

219

3.1 Dorsale Calcaire Units

225

The earliest tectonic structure, hosted in the Internal Dorsale Calcaire (IDC), is a FP2IDC WSW-

226

verging thrust fault showing a ramp-flat geometry with a displacement of a few tens of meters (Fig.

227

3c). This fault produced a hanging wall ramp-anticline and a footwall syncline and some meso-scale

228

folds in the Jurassic carbonates (Fig. 3d). In the frontal part of the anticline, Upper Oligocene

229

argillites and marls are strongly deformed showing overturned tight folds verging to WSW (Fig.

230

3e). WSW-ENE slickenside striations, calcite fibers and steps occur along the main thrust fault (Fig.

231

3f) as well as the secondary faults (Fig. 3g) and lateral ramps (FP 2IDC, Fig. 4f),. The Upper

232

Oligocene rocks, located in the footwall of the main thrust, frequently host WSW-dipping C'-type

233

shear bands (Passchier and Trouw, 1996) and antithetic shear bands characterized by higher dip

Ac

224

Page 9 of 54

angles (Fig. 5a-c). Such structures occur in marls, argillites and calcareous conglomerates, from a

235

small to large-scale (Fig. 5a-c). The C'-type structures frequently show slickenside features such as

236

calcite fibers and steps indicating a dominant WSW vergence (Fig. 5b). Occasionally S-C structures

237

(Lister and Snoke, 1984) are present, crosscut by C'-type shear bands (Fig. 5d). Rare overturned

238

folds occur indicating the same WSW tectonic vergence (Fig. 5e). The tectonic stack is deformed

239

by a large scale F3IDC fold characterized by an ENE-WSW axis, producing a tilting of a part of the

240

cropping out succession (Fig. 2b). Furthermore, the whole structure is dislocated by successive NE-

241

SW (FP4IDC, Fig. 5f) and WNW-ESE strike-slip faults associated with a brittle-ductile deformation

242

in the fault rocks such as S-C structures with steep C-planes (Fig. 5g) and finally by high angle

243

normal faults (FP5IDC, Fig. 6b, c), generally the result of the reactivation of preexisting fault planes

244

or newly-formed low-angle normal faults (FP5IDC, Figs. 5f and 6a).

245

Poles to bedding (Fig. 7a) are scattered forming a main cluster providing a mean plane of 087/33

246

(dip-direction/dip). The main sub-horizontal FP2IDC fault generally shows a reverse kinematics (Fig.

247

7b) indicating an E-W shortening direction. C'-type shear bands in the Upper Oligocene rocks

248

highlight a mean WSW orogenic transport (Fig. 7c) as well as FP 4IDC oblique and strike-slip faults

249

(Fig. 7d, e), whereas the FP5IDC normal faults (Fig. 7f) furnish a radial extension (Fig. 7g).

250

In the western sector (Fig. 2a), the succession of the External Dorsale Calcaire is deformed by two

251

coaxial fold sets (Fig. 4). The early set is characterized by isoclinal to tight F1EDC folds (Fig. 6d-f)

252

generally showing high-angle axial planes, successively deformed by open to close F2EDC folds with

253

more or less sub-horizontal axial planes (Fig. 6e, f). The interference pattern is of type 3 of

254

Ramsay’s classification (Ramsay, 1967). Poles to bedding (Fig. 7h) are scattered with a main

255

cluster providing a mean plane of 309/54. F1EDC folds show fold axes ranging from NNE-SSW to E-

256

W (Fig. 7i) and sub-horizontal to highly SE-dipping axial planes (Fig. 7j). F2EDC folds show fold

257

axes mainly NE-SW directed (Fig. 7k), and sub-horizontal axial planes (Fig. 7l).

258

The tectonic contact between the Ghomaride Unit and Upper Oligocene rocks (EDC) is defined by

259

a high angle fault plane dipping both to the SW and NE in the lower and upper part of the outcrop,

Ac

ce pt

ed

M

an

us

cr

ip t

234

Page 10 of 54

260

respectively (Fig. 6g). Several S-C structures occur close to the tectonic contact as well as

261

secondary faults (Fig. 6g, h). In contrast, the thrust fault between the External Dorsale Calcaire and

262

the Predorsalian is well-exposed along the Ouringa River, showing a flat-lying plane in the lower

263

part (Fig. 2a, b).

ip t

264

3.2 Aquitanian turbidites

266

The Aquitanian turbidites (AT) (Fig. 6a) are characterized by FP 1IDC (AT) synsedimentary normal

267

faults (Fig. 8a, b) often forming conjugate systems, with dominant millimeter to centimeter sized

268

displacements. At some points, sedimentary clay dykes occur along the normal fault planes (Fig.

269

8b). Early extensional structures are often tilted (Fig. 8a, b). The majority of normal faults indicate

270

an ENE-WSW extension direction. The successive shortening stage was recorded as rare open F 2

271

IDC (AT)

272

thrusts (Fig. 8c) and tight to close early F3-early IDC (AT) folds (Fig. 8e-g), frequently with chevron

273

geometry (Fig. 8e), superpose onto the previous structures. Veins and conjugate normal faults occur

274

in the outer arc of the F3-early IDC (AT) tight folds (Fig. 8g). Folds are mainly localized close to the

275

main thrust fault separating this succession from the underlying Predorsalian Unit (Figs. 2a, 8e).

276

Consequently, the succession located close to the Jebha promontory is low-deformed (Fig. 2b),

277

whereas southward it is highly folded. A well-cemented calcareous fault breccia (Fig. 8d), with a

278

thickness of approximately 4 m, associated to the FP 3-early

279

Aquitanian turbidites on top and the Predorsalian Unit on bottom (Fig. 2b), occurs. However, in

280

some points, the fault rock is less than 1 m thick (Fig. 8e) or completely absent (Fig. 9b). A further

281

deformation, characterized by a NNW-SSE shortening, was expressed by NNW-verging late back-

282

thrust faults with associated F3-late IDC (AT) drag folds (Fig. 8h). More frequently the FP3-late IDC (AT)

283

thrust faults are sub-horizontal verging to the NW with associated recumbent chevron folds (Fig.

284

9a). At places, the tectonic contact between the Aquitanian turbidites and the Predorsalian Unit is

285

completely overturned (Fig. 8e), and the previous F3-early

an

us

cr

265

IDC (AT)

pre-buckle

IDC (AT)

Ac

ce pt

ed

M

(Fig. 4) associated to WSW-verging ramp-flat thrust faults. PBT3-early

IDC (AT)

thrust fault juxtaposing the

folds presently show the axial

Page 11 of 54

planes dipping to SE (Fig. 8e-g). In other points, the main thrust between the Aquitanian turbidites

287

and the Predorsalian Unit is characterized by a hanging-wall ramp superposing onto chaotic

288

footwall rocks, successively folded by the F3-late IDC (AT) folds (Fig. 9b).

289

Poles to bedding form a girdle around a NNW-SSE vertical cyclograph (Fig. 7m) with a theoretical

290

fold axis () of 063/09. Synsedimentary FP1IDC (AT) faults (Fig. 7n, o), restoring the bedding to the

291

horizontal, indicate an ENE-WSW extension (Fig. 7p). F3 IDC (AT) fold axes are almost horizontal

292

showing a mean ENE-WSW direction (Fig. 7q), and poles to axial planes form a NNW-SSE girdle

293

(Fig. 7r).

us

cr

ip t

286

294

3.3 Predorsalian Unit

296

The Predorsalian succession (PD) is characterized by a deformation consisting in isoclinal to close

297

F1PD folds (Fig. 9c, d), generally verging to the SE, deformed by F2 PD close folds verging to the NW

298

(Fig. 9c). Normally, these two fold sets are coaxial or form a slight angle, producing interference

299

patterns of type 3 (Fig. 9c) or intermediate between type 2 and type 3 of Ramsay’s classification

300

(Ramsay, 1967). FP1PD thrust faults mainly verge to the SE with associated drag folds (Fig. 9d).

301

Normally, the argillites host conjugate extensional shear bands (ESB 1PD) with related calcite fibers

302

indicating a NE-SW extension direction (Fig. 9f). The Predorsalian succession includes also large

303

lenses of cherty calcareous conglomerates often showing clast indentation, an effect of pressure-

304

solution mechanisms (Fig. 9e). At places, a third fold set (F3PD), mainly verging to the SW, is

305

present, giving the outcrop a chaotic appearance (Fig. 9g).

306

Poles to bedding (Fig. 10a) are scattered with a main cluster providing a mean plane of 002/38. F1PD

307

fold axes range from gently to moderately plunging, displaying a direction ranging between E-W

308

and NE-SW (Fig. 10b). Poles to the F1PD axial planes indicate sub-horizontal to moderately dipping

309

planes (Fig. 10c). The F2PD fold axes are sub-horizontal to moderately plunging with directions

310

ranging between E-W and NE-SW (Fig. 10d). In contrast, the F2PD axial planes are generally sub-

311

horizontal or moderately dipping (Fig. 10e). Conjugate extensional shear bands furnish a NE-SW

Ac

ce pt

ed

M

an

295

Page 12 of 54

312

extension direction (Fig. 10f). Finally, the F3PD fold axes are mostly gently dipping with a mean

313

NW-SE direction (Fig. 10g), whereas the axial planes dip to the W and NE (Fig. 10h).

314

3.4 Tisirene Unit

316

The Tisirene Unit (TI) is affected by an early deformation, particularly localized in some less

317

competent layers, such as the argillites. Here, frequently unrooted isoclinal (F 1TI) folds are present

318

(Fig. 11d). Other early structures are the FP 1TI thrust faults with a ramp-flat geometry verging to the

319

SE (Fig. 11a, b). They are subsequently folded by the F2TI close to open folds, generally verging to

320

the NW (Fig. 11a, c). With an intensity increasing to the East, another fold set (F 3TI) is present in

321

the Tisirene Unit. These folds are from isoclinal to open indicating a SW vergence, often several

322

hundred meters large and overturned to the SW (Fig. 11e). Finally, lower-angle SE-dipping normal

323

faults crosscut the F3TI folds (Fig. 11f). Poles to bedding are scattered (Fig. 10i), with a main cluster

324

providing a mean plane orientation of 137/63. A1TI fold axes are vertical to gently plunging,

325

showing a dominant NE-SW direction (Fig. 10j). Poles to the AP 1TI axial planes show a broadly

326

NW-SE girdle distribution (Fig. 10k). The A2TI fold axes are mostly sub-horizontal with an ENE-

327

WSW direction (Fig. 10l). Poles to the AP 2TI axial planes show a main cluster indicating a 125/29

328

mean plane (Fig. 10m). The A3TI fold axes range from sub-horizontal to gently plunging with a

329

NNW-SSE direction (Fig. 10n). Finally, the AP 3TI poles show steep axial planes mainly dipping to

330

ENE (Fig. 10o).

cr

us

an

M

ed

ce pt

Ac

331

ip t

315

332

4. Discussion

333

The structural analysis provided in this study highlights a polyphase deformation affecting all the

334

analyzed tectonic units. According to several authors (between others Olivier, 1984; Chalouan,

335

1986; Platt and Vissers, 1989; Ouzani Touhami, 1994; Serrano et al., 2007; Chalouan et al., 2008)

336

the oldest orogenic stage (D1, Fig. 4) involved the stacking of the Ghomaride Nappes between the

337

Eocene and Late Oligocene. The subsequent phase (D2, Fig. 4) was recorded in the Internal Dorsale Page 13 of 54

Calcaire succession as a main thrust fault verging to the WSW. This structure includes hanging-

339

wall and footwall meso- and macro-scale folds, minor thrust faults, pervasive C’-type shear bands

340

and not rare S-C structures. The age of this shortening stage (D2) is confined between the late

341

Aquitanian (youngest foredeep age of the Internal Dorsale Calcaire) and the late Burdigalian

342

(foredeep age of the External Dorsale Calcaire; Zaghloul et al., 2007). In general, in the foredeep

343

basins, formed in front of the arcuate orogens, the extension occurs both parallel and orthogonal to

344

the thrust front (e.g. Tavani et al., 2015). In the Internal Dorsale Calcaire the clastic foredeep

345

sedimentation synchronously occurred with a dominant WSW-ENE extension parallel to the

346

orogenic front (Fig. 4).

347

The third stage (D3, Fig. 4) consisted in a prevailing NW-SE shortening (orthogonal to the previous

348

shortening stage D2), with an early in-sequence thrusting (stage D3a) and subsequent late out-of-

349

sequence (stage D3b) and back-thrusting (stage D3c). During this orogenic event, Predorsalian and

350

Tisirene successions were deformed by a similar NW-SE shortening including two superposed

351

phases, recorded by early isoclinal folds (stage D3a) and late open to tight folds and back-thrust

352

faults (stage D3c).

353

In the eastern sector, the out-of-sequence thrusting (stage D3b) was marked by the Internal Dorsale

354

Calcaire tectonically covering the Predorsalian succession by means of a main SE-verging thrust

355

fault. This shortening was recorded in the Aquitanian turbidites by pre-buckle thrusts and folds

356

mainly developed close to the main SE-verging thrust fault. These rocks were further affected by

357

the late NW-verging back-thrust faults (stage D3c, Fig. 4).

358

In contrast to the previous area, in the western sector, the Ghomaride Unit crops out, tectonically

359

overlying the External Dorsale Calcaire succession by an out-of-sequence thrust fault (D3b),

360

successively folded (stage D3c). The External Dorsale Calcaire experienced a NW-SE shortening

361

consisting in two coaxial superposed fold sets: the first is characterized by isoclinal folds (stage D 3a)

362

and the second by open to tight folds with sub-horizontal axial planes (stage D3c). In turn the

Ac

ce pt

ed

M

an

us

cr

ip t

338

Page 14 of 54

External Dorsale Calcaire was piled up onto the Predorsalian Unit by means of an in-sequence

364

thrust fault (stage D3a), successively folded (stage D3c, Fig. 4).

365

In analogy with the whole Rif (e.g. Chalouan et al., 2008; Vitale et al., 2014a, b), stage D3a occurred

366

in the late Burdigalian-Langhian interval. It is worth noting how the Burdigalian foredeep

367

successions of the External Dorsale Calcaire, Predorsalian and Tisirene Units were synchronous

368

with the unconformable deposits of the Sidi-Abdesslam Fm. cropping out in the Rif (Feinberg et al.,

369

1990) and Viñuela Group in the Betic Cordillera (Serrano et al., 2007). Summarizing the

370

Oligocene-Burdigalian sedimentation synchronously occurred both in the foredeep and wedge-top

371

basins, similar to other circurm-Mediterranean chains (e.g. De Celles and Gils, 1996; Vitale and

372

Ciarcia, 2013).

373

A difference in the structural setting results between the western and eastern sectors of the Jebha

374

area (Fig. 2a, b). According to the Meso-Cenozoic paleogeography of this sector of the

375

Mediterranean Sea (e.g. Sanz de Galdeano et al., 2001), the in-sequence thrusting (from the internal

376

domain to the African foreland) envisages the superposition of the Internal onto the External

377

Dorsale Calcaire, in turn onto the Predorsalian Unit; however in the eastern sector, the External

378

Dorsale Calcaire succession lacks and Internal Dorsale Calcaire Unit directly overlays the

379

Predorsalian Unit. It follows that this structure is related to an out-of-sequence thrusting (D3b) that

380

acted before the back-thrust stage (D3c). On the other hand, in the western sector the Ghomaride

381

Unit directly covers the External Dorsale Calcaire Unit, a consequence of the same out-of-sequence

382

stage. Assuming that the NNW-SSE fault, separating these two sectors and passing through the

383

Jebha village (Fig. 2a), is characterized by a normal kinematics, it follows that the eastern sector

384

(hanging wall) can be interpreted as the upper part of western sector (footwall), as illustrated in the

385

Fig. 12.

386

As previously described, the Dorsale Calcaire, Predorsalian and Tisirene units and the main

387

tectonic contacts between them (including the out-of-sequence faults) were deformed by a late NW-

388

verging back-thrusting (stage D3c). In the western sector this deformation also folded the main

Ac

ce pt

ed

M

an

us

cr

ip t

363

Page 15 of 54

tectonic contacts between the Ghomaride and External Dorsale Calcaire, making these structures

390

from moderately dipping to steep. This back-thrusting stage (D3c) is described both in the Betic

391

Cordillera (Balanya, 1991; Sanz de Galdeano, 1997) and the Rif (Kornprobst, 1966; Raoult 1969;

392

Hlila and Sanz de Galdeano, 1995; El Fahssi, 1999; E1 Mrihi, 2005; Hlila et al., 2008), where the

393

main contacts between the Maghrebian Flysch Basin, Dorsale Calcaire and Ghomaride Units are

394

frequently overturned to the E and NE. Furthermore in some sectors of the Internal Rif zones, the

395

MFB Units superpose onto the Ghomaride Units with the interposition of the unconformable

396

deposits of the Fnideq Fm. (Kornprobst, 1966; Raoult 1969; Feinberg et al., 1990; Hlila et al.,

397

2008). We propose that this back-thrusting stage was related to the collision of the accretionary

398

wedge with the crustal ramp bounding the External domain, such as occurred for the corresponding

399

LAC Units in the southern Apennines (e.g. Ciarcia et al., 2012). The buttressing effect produced a

400

renewed stacking characterized by a general NW-vergence. The age of this D3c stage is confined

401

between the late Burdigalian (the age of all the foredeep deposits of the Maghrebian Flysch Basin

402

successions; De Capoa et al., 2013 and bibliography therein) and the early–middle Tortonian, the

403

age of the inclusion of the Intrarif Domain in the Rif chain (e.g. Ait Brahim et al., 2002; Zaghloul et

404

al., 2005 Chalouan et al., 2008; Di Staso et al. 2010 and reference therein).

405

The extension orthogonal to the tectonic transport is well-recorded in the Predorsalian Unit,

406

expressed by conjugate extensional shear bands, such as in other similar sectors of the Rif chain

407

(e.g. Massylian and Predorsalian units in the Chefchaouen area, Vitale et al., 2014a) or in the

408

external domain where a Miocene E-W ductile to brittle stretching is reported in the Temsamane

409

Unit (Negro et al., 2007, 2008).

410

A further deformation stage (D4), consisting in folds verging to the SW, was experienced by the

411

Tisirene and Predorsalian units (Fig. 4). This deformation stage was recorded also in the Internal

412

Dorsale Calcaire succession as FP4IDC strike-slip faults indicating an ENE-WSW shortening,

413

probably related to a reactivation of the Jebha-Chrafate fault zone.

Ac

ce pt

ed

M

an

us

cr

ip t

389

Page 16 of 54

Figure 13a shows the Early Miocene tectonic vergences in the Dorsale Calcaire Complex as

415

resulting from this study and available literature (Platt et al., 2003; Hlila, 2005; Hlila and Sanz De

416

Galdeano, 2008, Benmakhlouf et al., 2012; Platt et al., 2013; Vitale et al., 2014b). They depict a

417

radial pattern with directions ranging between: (i) S/SSE (Jebha-Chrafate area); (ii) SSW/SW

418

(Chrafate-Chefchaouen); (iii) WSW (central sector); (iv) W/WNW (Haouz-Ceuta). In the Jebha

419

area our study outlines: (i) an alternation of the WSW- and SE-vergences with the oldest thrust

420

faults (late Aquitanian-late Burdigalian) indicating a WSW tectonic transport (stage D 2); (ii) late

421

Burdigalian-Serravallian tectonic vergences both to the SE and NW (stage D3); and finally (iii) SW-

422

vergences (stage D4). We propose that the left lateral fault zone of Jebha-Chrafate acted until the

423

late Burdigalian allowing to the internal front thrust to migrate with a main WSW tectonic transport

424

(Fig. 13b). On the contrary, after the late Burdigalian, the radial migration prevailed, triggering a

425

change in the transport direction toward the SE for the MFB Units (Fig. 13b) while the SW-

426

vergence newly occurred as folding in the MFB Units and strike-slip faulting (FP4IDC) in the

427

Internal Units. The latter deformation stage (D4) was probably related to the SW-migration of the

428

westernmost sector of the Al Hoceima arc (Dorsale Calcaire of Bokkoya, Fig. 13a, b) and a

429

reactivation of the Jebha-Chrafate fault zone. It follows that the Jebha area represents the location of

430

the tectonic interference between two migrating orogenic arcs (Fig. 13b), characterized by sub-

431

orthogonal tectonic vergences (SW and SE).

432

Finally, according to Chalouan et al. (1995) the last event (D 5), expressed by high and low-angle

433

normal faults with an approximate radial extension, occurred in the Tortonian time, contemporarily

434

with the corresponding structures in the Betic Cordillera and Alboran Sea.

Ac

ce pt

ed

M

an

us

cr

ip t

414

435 436

5. Oligocene-Miocene tectonic evolution

437

The cartoon of Figure 14 shows the tectonic evolution from the Late Oligocene to Serravallian of

438

this sector of the Central Rif. As previously described, the Oligocene-Early Miocene stage was

439

characterized by a severe extensional tectonics that overprinted the previous (D1) crustal thickening Page 17 of 54

event. This extension, localized in the rear of the chain, was synchronous with the thrust front

441

migration and other events in the Internal domain (Fig. 14a, b) such as arc-parallel strike-slip

442

tectonics and the emplacement of acidic dykes in the upper crustal levels (Rossetti et al., 2013),

443

unconformable sedimentation of the Fnideq Fm. on top of the Ghomaride Nappes and the foredeep

444

sedimentation in the Internal Dorsale Calcaire (Fig. 14a). This latter is characterized by a syn-

445

tectonic sedimentation related to an extension parallel to the thrust front.

446

In the late Aquitanian-late Burdigalian interval the Internal Dorsale Calcaire domain was shortened

447

with a main WSW-tectonic vergence (stage D2), forming some thrust sheets (Fig. 14b). This

448

thrusting stage was dominantly driven by thick-skinned tectonics involving the Paleozoic basement

449

(i.e. Ghomaride Unit). The External Dorsale Calcaire and the internal sector of the internal MFB

450

were deformed since the late Burdigalian (de Capoa et al., 2007, Zaghloul et al., 2007). The

451

accretionary prism was piled up onto the MFB successions with a radial tectonic vergence. In the

452

Jebha area the main tectonic transport was towards the SE (stage D 3a-b, Fig. 14c-g). In this tectonic

453

phase, the MFB successions were incorporated into the orogenic belt by means of frontal accretion

454

(thin-skinned tectonics) in analogy with the corresponding successions in the Betic Cordillera (e.g.

455

Expósito et al., 2012), Sicily and the southern Apennines (e.g. Ciarcia et al., 2012; Vitale et al.,

456

2013a). The D3a accretion was synchronous with an extension parallel to the thrust front, a

457

consequence of the arching and spreading of the tectonic wedge with radial displacements. The

458

foredeep sedimentation in the Predorsalian and Mauretanian domains was coeval with the Viñuela

459

Group deposition, whereas only in the Massylian foredeep (Fig. 14e) the sedimentation ended with

460

the deposition of the supra-Numidian sequence (Besson, 1984; Guerrera et al., 2005; Thomas et al.,

461

2010). In the Langhian time (Fig. 14f), the MFB was completely closed and the allochthonous units

462

superposed onto the External Rif domains (ER).

463

Following the frontal accretion, an out-of-sequence deformation (stage D3b) occurred in the

464

analyzed area, with the overthrusting of the Ghomaride and the Internal Dorsale Calcaire onto

465

External Dorsale Calcaire and Predorsalian units, respectively (Fig. 14g). Finally, the following D 2c

Ac

ce pt

ed

M

an

us

cr

ip t

440

Page 18 of 54

stage was characterized by a back-thrusting (Fig. 14h) recorded in the whole Rif (Hlila and Sanz de

467

Galdeano, 1995; Michard et al., 2008; Vitale et al., 2014a, b), with a NW-vergence in the Jebha area

468

affecting most of the thrust sheets. In our reconstruction both out-of-sequence and back-thrusting

469

stages were triggered by the buttressing of the external Rif domain against the Early Miocene thrust

470

sheet wedge.

471

Subsequently or synchronously with the D3 stage, a further shortening occurred in the Jebha area,

472

mainly recorded in the MFB Units as folds verging to the S and SW (Besson, 1984). This

473

deformation (stage D4) was related to the SW-migration of the Internal Units thrust front of the Al

474

Hoceima area.

475

In the Langhian-Serravallian the thrust front migrated toward the External Rif domain (Fig. 14g),

476

previously affected, in the Oligocene, by a MP/LT metamorphism (Temsamane Units; Negro et al.,

477

2008), a consequence of the closure of an intracontinental basin (Mesorif Suture Zone, Michard et

478

al., 2007). The inclusion of the Mesorif units in the tectonic wedge was marked by a stretching

479

orthogonal to the thrust front and a LP/LT metamorphism dated 12.5-15 Ma (Negro et al., 2008).

480

483 484 485 486

ce pt

482

6. Concluding remarks

 The tectonic units cropping out in the Jebha area are characterized by a polyphase deformation with variable shortening directions.  Following the first Eocene-Oligocene crustal thickening (stage D1) involving the Ghomaride

Ac

481

ed

M

an

us

cr

ip t

466

Complex, four other main tectonic stages were recognized: (i) A second stage (D2) expressed by the WSW-verging thrust imbrication of the

487

Internal Dorsale Calcaire that occurred in the late Aquitanian-late Burdigalian

488

interval;

489

(ii) A third stage (D3) characterized by a change in the tectonic shortening (NW-SE) and

490

the inclusion within the accretionary wedge of the External Dorsale Calcaire and the

491

MFB Units by means of early in-sequence (stage D3a) and late out-of-sequence Page 19 of 54

492

(stage D3b) SE-verging thrust faults. The D3 phase ended with a late back-thrusting

493

(stage D3c) verging to the NW;

495 496 497

(iii) A fourth stage (D4) including SW-verging folds, partially synchronous with the D3 stage. (iv) A fifth stage (D5) expressed by a radial extensional deformation and affecting the

ip t

494

whole tectonic pile.

 The D2-Internal thrust front migration occurred with differential displacements allowed by

499

some transfer structures, amongst others the Jebha-Chrafate fault that acted until the late

500

Burdigalian when the radial migration prevailed (stages D 3a-b).

502

us

 The tectonic imbrications of the Internal and MFB Units were mainly driven by thick-

an

501

cr

498

skinned and frontal accretion (thin-skinned) mechanisms, respectively.  The Aquitanian turbidites, covering the Internal Dorsale Calcaire, were deposited in a

504

foredeep basin characterized by a synsedimentary WSW-ENE stretching orthogonal to the

505

thrust front.

ed

M

503

 The out-of-sequence (D3b) and back-thrusting (D3c) stages, affecting the whole Rif chain,

507

were probably related to the collision of the accretionary wedge against the crustal ramp of

508

the External Domain, the latter deformed in the Serravallian-Tortonian interval. The

509

buttressing effect produced the deformation of the main tectonic contacts.

511

 The western and eastern sectors of the analyzed area, can be interpreted as a single thrust

Ac

510

ce pt

506

sheet pile, crosscut by a normal fault that lowered the eastern part.

512

 The superposition of the SE- and SW-verging folds, related to the D3a-b and D4 stages,

513

respectively, could be the result of the interference between the two migrating orogenic arcs

514

of Central Rif and Bokkoya ridge (Fig. 13) characterized by different displacements and

515

separated by the Jebha-Chrafate fault.

516

Page 20 of 54

ACKNOWLEDGMENTS

518

We thank F. Rossetti, an anonymous reviewer and the Editor-in-Chief W. P. Schellart for the

519

extremely useful comments and suggestions that significantly improved this paper.

520

Reference list

521

Aït Brahim, L., Chotin, P., Hinaj, S., Abdelouafi, A., El Adraoui, A., Nakcha, C., Dhont, D.,

522

Charroud, M., Sossey Alaoui, F., Amrhar, M., Bouaza, A., Tabyaoui, H., Chaouni A., 2002.

523

Paleostress evolution in the Moroccan African margin from Triassic to Present. Tectonophysics

524

357, 87-205

525

Afiri, A., Gueydan, F., Pitra, P., Essaifi, A., Precigout, J., 2011. Oligo-Miocene exhumation of the

526

Beni-Bousera peridotite through a lithosphere-scale extensional shear zone. Geodin. Acta 24, 49-60.

527

Alvarez, W., Cocozza, T., Wezel, F.C., 1974. Fragmentation of the Alpine orogenic belt by

528

microplate dispersal. Nature 248, 309-314.

529

Andrieux, J., 1971. La structure du Rif central. Notes Serv. Géol. Maroc 235, 1–155.

530

Andrieux, J., Fontboté, J.M., Mattauer, M., 1971. Sur un modèle explicatif de l’arc de Gibraltar,

531

Earth Planet. Sci. Lett. 12,191–198.

532

Andrieux, J., Mattauer, M., 1962. La nappe du Jbel Chouamat, nouvelle nappe "ultra" du Rif

533

septentrional . C. R. Acad. Sc., t. 255 , p. 2481-2483 .

534

Angelier, J., Mechler, P., 1977. Sur une méthode graphique de recherche des contraintes principales

535

égalment utilisable en tectonique et en seismologie: La méthode des dièdres droits. B. Soc. Geol. Fr.

536

19, 1309-1318.

537

Balanyá, J.C., 1991. Estructura del Dominio de Alborán en la parte Norte del Arco de Gibraltar,

538

Ph.D. thesis, Univ. of Granada, Granada.

Ac

ce pt

ed

M

an

us

cr

ip t

517

Page 21 of 54

Benmakhlouf, M., Galindo-Zaldívar, J., Chalouan, A., Sanz de Galdeano, C., Fedal Ahmamou, M.,

540

López-Garrido, A.C., 2012. Inversion of transfer faults: The Jebha–Chrafate fault (Rif, Morocco). J.

541

Afr. Earth. Sci. 73-74, 33-43.

542

Besson, F. 1984. Etude géologique et structurale des nappes des flysch et des zones externes dans la

543

région de l’oued Rhiss (Rif central, Maroc). PhD thesis, Département de Science de la Terre,

544

Université de Paris sud, 190 pp.

545

Bonardi, G., Cavazza, W., Perrone, V., Rossi, S., 2001. Calabria–Peloritani terrane and northern

546

Ionian Sea, in: Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen: The Apennines and Adjacent

547

Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, pp. 287–306.

548

Boullin, J.P., 1984. Nouvelle interprétation de la liason Apennin-Maghrebides en Calabre:

549

consequences sur la palaéogéographie téthysienne entre Gibraltar et les Alpes. Rev. Geol. Dyn.

550

Geogr. 25, 321–338.

551

Bouillin, J.P., 1986. Le bassin Maghrébin: une ancienne limite entre l’Europe et l’Afrique à l’ouest

552

des Alpes. B. Soc. Geol. Fr. 8, 547–558.

553

Brandt, S., Raith, M.M., Schenk, V., Sengupta, P., Srikantappa, C., Gerdes, A., 2014. Crustal

554

evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical

555

data for felsic orthogneisses and granites Precambrian Research, 246, 91-122.

556

Chertova, M.V., Spakman, W., Geenen, T., Van den Berg, A.P., Van Hinsbergen, D. J.J., 2014.

557

Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab

558

evolution from 3-D numerical modeling. J. Geophys. Res., Solid Earth, 119:5876–5902.

559

Chalouane, A., Benmakhlouf, M., Mouhir, L., Ouazani-Touhami, A., Saji A., Zaghloul, N., 1995.

560

Les étapes tectoniques de structuration alpine du Rif interne (Maroc). In : IVème Colloque

561

international Sobre el enlace fijo del estrecho de Gibraltar, Sevilla, pp: 163-191.

Ac

ce pt

ed

M

an

us

cr

ip t

539

Page 22 of 54

Chalouan, A., 1986. Les nappes ghomarides (Rif septentrional Maroc). Un terrainvarisque dans la

563

chaîne alpine. Ph.D.thesis, Univ. Louis Pasteur, Strasbourg.

564

Chalouan, A. 1987. Les Premiers Stades D'effondrement de la Mer D'Alboran, in: 4ème Colloque

565

des Bassins Sédimentaires Marocains, Tetouan (Maroc), 30 Octobre-1 Novembre 1987.

566

Chalouan, A., Michard, A., 1990. The Ghomarides Nappes, Rif Coastal Range, Morocco: a

567

Variscan chip in the Alpine belt. Tectonics 9, 165–183.

568

Chalouan, A., Galindo-Zaldívar, J., Akil, M., Marín, C., Chabli, A., Ruano, P., Bargach,K., Sanz de

569

Galdeano, C., Benmakhlouf, M., Ahmamou, M., Gourari, L., 2006. Tectonic wedge escape in the

570

southwestern front of the Rif Cordillera (Morocco), in: Moratti, G., Chalouan, A. (Eds.), Tectonics

571

of the Western Mediterraneanand North Africa. Geological Society of London Special Publication,

572

London, pp.101–118.

573

Chalouan, A., Michard, A., El Kadiri, K., Negro, F., Frizon de Lamotte, D., Soto, J.I; Saddiqi, O.

574

2008. The Rif, in Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D. (Eds.) Continental

575

Evolution: The Geology of Morocco‐ Structure, Stratigraphy, and Tectonics of the

576

Africa‐Atlantic‐Mediterranean Triple Junction. Springer, 424p.

577

Chiocchini U., Franchi R., Guerrera F., Rayan W., Vannucci S., 1978. Geologia di alcune

578

successioni torbiditiche cretaceo-terziarie appartenenti ai ―Flysch Maurétaniens‖ e alla ―Nappe

579

Numidienne‖ del Rif settentrionale (Marocco). Stu. Geol. Camerti., IV, 37-66.

580

Ciarcia S., Mazzoli S., Vitale S., Zattin M. 2012. On the tectonic evolution of the Ligurian

581

accretionary complex in southern Italy. Geol. Soc. Am. Bull. 124, 463-483.

582

Cifelli, F., Mattei, M., Porreca, M., 2008. New paleomagnetic data from Oligocene–upper Miocene

583

sediments in the Rif chain (northern Morocco): Insights on the Neogene tectonic evolution of the

584

Gibraltar arc. J. Geophys. Res. 113, doi: 10.1029/2007JB005271.

Ac

ce pt

ed

M

an

us

cr

ip t

562

Page 23 of 54

De Capoa, P., Di Staso, A., Perrone, V., Zaghloul, M.N., 2007. The age of the foredeep

586

sedimentation in the Betic–Rifian Mauretanian units: a major constraint for the reconstruction of the

587

evolution of the Gibraltar Arc. C. R. Geosci. 339, 161–170.

588

De Capoa, P., D’Errico, M., Di Staso, A., Perrone, V., Somma, R., Zaghloul, M.N., 2013.

589

Biostratigraphic constraints for the paleogeographic and tectonic evolution of the Alpine Central-

590

Western Mediterranean orogenic belt (Betic, Maghrebian and Apenninic chains). Rend. Online Soc.

591

Geol. It, 25, 43-63.

592

De Celles, P.G., Giles, K.A., 1996. Foreland basin systems. Basin Research 8, 105–123.

593

Didon, J., Durand-Delga, M., Kornprobst, J., 1973. Homologies géologiques entre les deux rives du

594

détroit de Gibraltar. B. Soc. Geol. Fr. 15, 79–105.

595

Di Staso, A., Perrone, V., Perrotta, S., Zaghloul, M.N., Durand-Delga, M., 2010. Stratigraphy, age

596

and petrography of the Beni Issef successions (External Rif; Morocco): insights for the evolution of

597

the Maghrebian Chain. C.R. Acad. Sci. 342, 718–730.

598

Durand Delga, M., Mattauer, M., 1959. Existence dans le Rif (Maroc) d'une nappe supérieure à

599

matériel "Numidien" (Nappe du J. Sougna). C. R. Somm. Soc. géol. France, 8, 225-227.

600

Durand Delga, M., Mattauer, M., 1960. Sur l'origine ultra-rifaine de certaines nappes du Rif

601

septentrional. C. R. Somm. Soc. géol. France, p. 22.

602

Durand-Delga, M., Hottinger, M., Marçais, J., Mattyauer, M., Milliard, Y., Suter, G., 1960-1962.

603

Actual data about the Rif structure. M. Soc. Geol. Fr., 1, 399-422.

604

Durand-Delga, M., Kornprobst, J., 1963. Esquisse géologique de la région de Ceuta (Maroc). B.

605

Soc. Geol. Fr. 5, 1049–1057.

Ac

ce pt

ed

M

an

us

cr

ip t

585

Page 24 of 54

Durand Delga, M., 1972. La courbure de Gibraltar, extrémïté occidentale des chaines alpines, unit

607

l'Europe et l'Afrique. Ecologae Géol. Helv., vol. 65/2, p. 267-278.

608

Durand Delga, M., Fontbote, J.M., 1980. Le cadre structurale de la Méditerranée occidentale: In:

609

Géologie des chaînes alpines issues de la Téthys. 26ème Congr. Géol. Fr. Mém. B.R.G.M. p. 15,

610

67-85.

611

Durand-Delga, M., Rossi, P., Olivier, P., Puglisi, D., 2000. Situation structurale et nature

612

ophiolitique de roches basiques jurassiques associées aux flyschs Maghrébens du Rif (Maroc) et de

613

Sicile (Italie). C.R. Acad. Sci. 331, 29–38.

614

El Fahssi, A. 1999. Tectonique alpine, néotectonique et etude des formations marines quaternaires

615

de la rive sud du détroit de Gibraltar entre Tanger et Sebta (Rif Maroc). Thesis Diplôme Etudes

616

Supérieures, Université Mohammed V, Rabat.

617

El Kadiri, K., Linares, A., Oloriz, F., 1992. La Dorsale calcaire rifaine (Maroc septentrional):

618

Evolution stratigraphique et géodynamique durant le Jurassique-Crétacé. Notes et Mémoires de

619

Service Géologique du Maroc, 336, 217–265.

620

El Kadiri, K., 2002. Jurassic ferruginous hardgrounds of the ―Dorsale Calcaire‖ and the Jbel

621

Moussa Group (internal Rif Morocco) stratigraphical context and paleoceanographic consequences

622

of mineralization processes. Geol. Romana 36, 33–70.

623

El Mrihi, A. 2005. Structure et cindmatique de mise en place des nappes de flyschs maurdtaniens

624

(Rif externe nord occidental): elaboration d'un modéle. Ph.D.thesis, Université de Tetouan,

625

Tetouan.

626

Esteban, J.J., Cuevas, J., Tubía, J., Sergeev, S., Larionov, A., 2011. A revised Aquitanian age for

627

the emplacement of the Ronda Peridotites (Betic Cordilleras, southern Spain). Geological

628

Magazine, 148, 183-187.

Ac

ce pt

ed

M

an

us

cr

ip t

606

Page 25 of 54

Expósito, I., Balanyá, J.C., Crespo-Blanc, A., Díaz-Azpiroz, M., Luján, M., 2012.Overthrust shear

630

folding and contrasting deformation styles in a multipledecollement setting, Gibraltar Arc external

631

wedge. Tectonophysics 576–577,86–98.

632

Faccenna, C., Becker, T.W., Lucente, F.P., Jolivet, L., Rossetti, F., 2001. History of subduction and

633

back-arc extension in the Central Mediterranean. Geophys. J. Int. 145, 809–820.

634

Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., and Rossetti, F., 2004. Lateral slab

635

deformation and the origin of the western Mediterranean arcs. Tectonics 23, TC1012:

636

doi:10.1029/2002TC001488.

637

Fallot, P., 1937. Essai sur la géologie du Rif septentrional. Notes. Mém. Serv. Géol. Maroc 40, 548.

638

Feinberg, H., Maate, A., Bouhdadi, S., Durand-Delga, M., Maate, M., Magne, J., Olivier, Ph., 1990.

639

Significations des depots de l’Oligocene superieur-Miocene inferieur du Rif interne (Maroc) dans

640

l’evolution geodynamique de l’arc de Gibraltar. C. R. Acad. Sci. 310, 1487–1495.

641

Frasca, G., Gueydan, F., Brun, J.P., 2015. Structural record of Lower Miocene westward motion of

642

the

643

10.1016/j.tecto.2015.05.017

644

Frizon de Lamotte, D., 1985. La structure du Rif oriental (Maroc), rôle de la tectonique

645

longitudinale et importance des fluides. Ph.D.thesis, Univ. Paris VI, Paris.

646

García-Dueñas, V., Balanyá, J.C., Martínez-Martínez, J.M., 1992. Miocene extensional

647

detachments in the outcropping basement of the Northern Alboran Basin (Betics) and their Tectonic

648

Implications. Geo-Mar. Lett. 12, 88-95.

649

Guerrera F., 1981-1982. Successions turbiditiques dans les Flyschs maurétanien et numidien. Rev.

650

Géol. Dynamique. Géogr. Phys., V.23, n.2, p. 465-580.

in

the

Western

ce pt

Domain

Betics,

Spain.

Tectonophysics,

doi:

Ac

Alboran

ed

M

an

us

cr

ip t

629

Page 26 of 54

Guerrera, F., Martín-Algarra, A., Perrone, V., 1993. Late Oligocene-Miocene syn / late orogenic

652

successions in Western and central Mediterranean chains form the Betic Cordillera to the southern

653

Apennines. Terra Nova 5, 525-544.

654

Guerrera, F., Martin-Martin, M., Perrone, V., Tramontana, M., 2005. Tectono-sedimentary

655

evolution of the southern branch of western thetys (Maghrebian Flysch Basin and Lucanian Ocean)

656

on the basis of the stratigraphic record. Terra Nova 17, 358-367.

657

Haccard, D., Lorenz, C., Grandjacquet, C., 1972. Essai sur l'evolution tectonogenetique de la liaison

658

Alpes-Apennines (de la Ligurie a la Calabre). Mem. Soc. Geol. It. 11, 309-341.

659

Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E., Bernoulli, D., Hlila, R., 2010. Reconciling

660

plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading

661

and subduction in the Alps. Earth-Sci. Rev. 102, 121-158.

662

Hindle, D., Burkhard, M., 1999. Strain, displacement and rotation associated with the formation of

663

curvature in fold belts: the example of the Jura Arc. J. Struct. Geol. 21, 1089–1101.

664

Hlila, R., 2005. Evolution tectono-sédimentaire tertiaire au front ouest du domaine d’Alboran

665

(Ghomarides et Dorsale Calcaire). Ph.D.thesis, Univ. de Tetouan, Tetouan.

666

Hlila, R., Sanz de Galdeano, C., 1995. Structure de la chaîne du Haouz (Rif interne, Maroc):

667

Interprétation et aspects chronologiques. C. R. Acad. Sci. 318, 1261-1266.

668

Hlila, R., Chalouan, A., El Kadiri, K., Sanz de Galdeano, C., Martín-Pérez, J.A., Serrano, F., López

669

Garrido, A.C., Maaté, A., Guerra-Merchán, A., 2008. New stratigraphic data of the Oligo-Miocene

670

transgressive cover of the Ghomaride units (Northern Internal Rif, Morocco): Implications on

671

Tectono-Sedimentary evolution. Rev. Soc. Geol. Esp. 21, 59-71.

672

Knott, S.D., 1987. The Liguride Complex of southern Italy — a Cretaceous to Paleogene

673

accretionary wedge. Tectonophysics 142, 217–226.

Ac

ce pt

ed

M

an

us

cr

ip t

651

Page 27 of 54

Kornprobst, J., 1966. A propos des peridotites du Massif des Beni-Bouchera (Rif Septentrional,

675

Maroc). Bull. Soc. Franc. Miner. Crist, 89, 399.

676

Kornprobst, J., 1974. Notes et Mémoires du Service Géologique, Maroc 251, 256.

677

Lallam, S., Sahnoun, E., El Hatimi, N., Hervouet, Y., De Leon, J.T., 1997. Mise en évidence de la

678

dynamique de la marge téthysienne de 1’Hettangien à l’Aalénien dans la Dorsale Calcaire (Tetouan,

679

Rif, Maroc). C. R. Acad. Sci. Paris 324 (II), 923–930.

680

Leblanc, D., 1980. L'accident du Nekor et la structure du Rif oriental (Maroc). Rev. Geol. Dyn.

681

Geogr. 22, 267–277.

682

Lespinasse P., 1975. Géologie des zones externes et des Flyschs entre Chaouen et Zoumi (Centre de

683

la chaîne rifaine du Maroc) Thèse Doc. d’Etat ès-Sciences Univ. Paris, 248 p.

684

Lister, G.S., Snoke, A.W., 1984. S-C mylonites. Journal of Structural Geology 6, 617-638.

685

Lonergan, L., White, N., 1997. Origin of the Betic-Rif mountain belt. Tectonics, 16, 504-522.

686

Martín-Algarra, A., 1987. Evolución geológica alpina del contacto entre las Zonas Internas y las

687

Zonas Externas de la Cordillera Bética. Ph.D.thesis, Universidad de Granada, Granada.

688

Mattauer, M., 1960. Nouvelles données sur la « Dorsale calcaire » du Rif. C. R. Acad. Sci. 250,

689

374–376.

690

Mazzoli, S., Martín-Algarra, A., 2011. Deformation partitioning during transpressional of a ―mantle

691

extrusion wedge‖: The Ronda peridotites, western Betic cordillera, Spain. J. Geol. Soc. London

692

168, 373–382.

693

Michard, A., Chalouan, A., 1991. The Ghomarides nappes, Rif Coastal range, Morocco: An African

694

terrane in the West Mediterranean Alpine belt. Bull. Geol. Soc. Grec. 25, 117-129.

Ac

ce pt

ed

M

an

us

cr

ip t

674

Page 28 of 54

Michard, A., Goffé, B., Bouybaouene, M., Saddiqi, O., 1997. Late Hercynian-Mesozoic thinning in

696

the Alboran domain: metamorphic data from northern Rif, Morocco. Terra Nova 9, 1-8.

697

Michard, A., Chalouan, A., Feinberg, H., Goffé, B., Montigny, R., 2002. How does the Alpine belt

698

end between Spain and Morocco? B. Soc. Geol. Fr.173, 3–15.

699

Michard, A., Negro, F., Saddiqi, O., Bouybaouene, M.L., Chalouan, A., Montigny, R., Goffé, B.,

700

2006. Pressure-temperature-time constraints on the Maghrebide mountain building: evidence from

701

the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. C. R.

702

Acad. Sci. 338, 92-114.

703

Michard, A., Frizon de Lamotte, D., Negro, F., Saddiqi, O., 2007. Serpentinite slivers and

704

metamorphism in the External Maghrebides: arguments for an intracontinental suture in the African

705

paleomargin (Morocco, Algeria), Rev. Soc. Geol. España 20, 173–185.

706

Michard, A., Mokhtari, A., Chalouan, A., Saddiqi, O., Rossi, P., Rjimati, E.C., 2014. New ophiolite

707

slivers in the External Rif belt, and tentative restoration of a dual Tethyan suture in the western

708

Maghrebides. B. Soc. Geol. Fr. 185, 313-328.

709

Milliard, Y., 1959. Les massifs métamorphiques et ultrabasiques de la zone paléo-zoïque interne du

710

Rif. Notes Mem. Serv. Géol. Maroc 18, 125–160.

711

Negro, F., Agard, P., Goffé, B. Saddiqi, O., 2007. Tectonic and metamorphic evolution of the

712

Temsamane units, External Rif (northern Morocco). Implications for the evolution of the Rif and

713

the Betic-Rif arc. J. Geol. Soc. London 164, 829-842.

714

Negro, F., de Sigoyer, J., Goffe, B., Saddiqi, O. and Villa, I.M., 2008. Tectonic evolution of the

715

Betic-Rif arc: new constraints from (40)Ar⁄(39)Ar dating on white micas in the Temsamane units

716

(External Rif, northern Morocco). Lithos 106, 93–109.

Ac

ce pt

ed

M

an

us

cr

ip t

695

Page 29 of 54

Nold, M., Uttinger, J., Wildi, W., 1981. Géologie de la Dorsale Calcaire ente Tétouan et Assifane

718

(Rif Interne, Maroc). Notes et Mémoires Service Géologique du Maroc 300, 233.

719

Olivier, P., 1984. Évolution de la limite entre Zones Internes et Zones Externes dans l’Arc de

720

Gibraltar (Maroc-Espagne). Ph.D.thesis , Université Paul Sabatier, Toulouse.

721

Ouazani-Touhami, A.,1994.L’évolution géodynamique alpine des nappes ghomarides (Rif interne

722

septentrional, Maroc). Thèse de 3ème Cycle, Université Med. V. Rabat (Maroc), 1 126

723

Passchier, C. W., Trouw, R.A.J., 1996. Microtectonics. Springer-Verlag, Berlin.

724

Platt, J.P., Vissers, R.L.M., 1989. Extensional collapse of thickened continental litho-sphere: a

725

working hypothesis for the Alboran Sea and Gibraltar arc. Geology 17,540–543.

726

Platt, J.P., Whitehouse, M., 1999. Early Miocene high-temperature metamorphism and rapid

727

exhumation in the Betic Cordillera (Spain): evidence from U-Pb zircon ages. Earth and Planetary

728

Science Letters, 171, 591-605.

729

Platt, J.P., Allerton, S., Kirker, A., Mandeville, C., Mayfield, A., Platzman, E.S., Rimi, A., 2003.

730

The ultimate arc: differential displacement, oroclinal bending, and vertical axis rotation in the

731

external Betic-Rif arc. Tectonics 22:1017

732

Platt, J.P., Behr, W.M, Johanesen, K., Williams, J.R., 2013. The Betic-Rif Arc and Its Orogenic

733

Hinterland: A Review. Annu. Rev. Earth Planet. Sci. 41, 313–57.

734

Platzman, E.S., Platt, J.P., Olivier, P., 1993. Paleomagnetic rotations and fault kinematics in the Rif

735

arc of Morocco. J. Geol. Soc. London 150, 707-718.

736

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill Book Company, New York.

737

Raoult, J.F., 1969. La série de Tengout: unité externe de la dorsale kabyle annonçant le Flysch de

738

Penthièvre (Nord du Constantinois, Algérie). Bull. Serv. Géol. Fr. 7, XI.

Ac

ce pt

ed

M

an

us

cr

ip t

717

Page 30 of 54

Reiter, F., Acs, P., 1996-2003. TectonicsFP. Software for structural geology. Innsbruck University,

740

Austria. http://go.to/TectonicsFP.

741

Rosenbaum,G., Lister, G.S., 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian

742

Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23, TC1013.

743

Rossetti, F., Goffé, B., Monié, P., Faccenna, C., Vignaroli, G., 2004. Alpine orogenic P–T–t-

744

deformation history of the Catena Costiera area and surrounding regions (Calabria Arc, southern

745

Italy): the nappe edifice of north Calabria revised with insights on the Tyrrhenian–Apennine system

746

formation. Tectonics 23, TC6011.

747

Rossetti, F., Theye, T., Lucci, F., Bouybaouène, M., Dini, A., Gerdes, A., Phillips, D., Cozzupoli,

748

D., 2010. Timing and modes of granitic magmatism in the core of the Alborán Domain, Rif chain,

749

northern Morocco: implications for the Alpine evolution of the western Mediterranean. Tectonics

750

29:TC2017

751

Rossetti, R., Dini, A., Lucci F., Bouybaouenne, M., Faccenna C. 2013. Early Miocene strike-slip

752

tectonics and granite emplacement in the Alboran Domain (Rif Chain, Morocco): significance for

753

the geodynamic evolution of Western Mediterranean. Tectonophysics 608, 774–791.

754

Saddiqi, O., Feinberg, H., Elazzab, D., Michard, A., 1995. Paléomagnètisme des Pèridotites des

755

Beni Boussera (Rif interne, Maroc): Consèquences pour l’évolution Miocene de l’Arc de Gibraltar.

756

C.R. Acad. Sci. 321, 361-368.

757

Sanz de Galdeano, C., 1997. La Zona Interna Bético-Rifeña (Antecedentes, unidades tectónicas,

758

correlaciones y bosquejo de reconstrucción paleogeográfica). Monográfica Tierras del Sur. Univ. de

759

Granada, Granada.

Ac

ce pt

ed

M

an

us

cr

ip t

739

Page 31 of 54

Sanz de Galdeano, C., Andreo, B., García-Tortosa, F.J., López-Garrido, A.C., 2001. The Triassic

761

palaeogeographic transition between the Alpujarride and Malaguide complexes. Betic-Rif Internal

762

Zone (S Spain, N Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 167, 157-173.

763

Schettino, A., Turco, E., 2011. Tectonic history of the western Tethys since the late Triassic. Geol.

764

Soc. Am. Bull. 123, 89–105.

765

Serrano, F., Guerra-Merchán, A., El Kadiri, K., Sanz de Galdeano, C., López-Garrido,A., Martín-

766

Martín, C., Hlila, M.R., 2007. Tectono-sedimentary setting of theOligocene–early Miocene deposits

767

on the Betic–Rifian Internal Zone (Spain andMorocco). Geobios-Lyon 40, 191–205.

768

Schellart, W.P., Lister, G.S., 2004. Tectonic models for the formation of arc‐shaped convergent

769

zones and backarc basins, in Orogenic Curvature: Integrating Paleomagnetic and Structural

770

Analyses, edited by A. J. Sussman, and A. B. Weil, Geological Soc. Am. Special Paper, 383, 237–

771

258.

772

Suter, G., 1965. La région du Moyen Ouerrha (Rif, Maroc): étude préliminaire sur la tectonique et

773

la stratigraphie. Notes et Mémoires du Service géologique du Maroc, 24, 7–17.

774

Suter, G., 1980. Carte structurale de la chaîne rifaine au 1:500,000. Notes et Mémoires du Service

775

géologique du Maroc 245p.

776

Tavani, S., Storti, F., Lacombe, O., Corradetti, A., Muñoz, J.A., Mazzoli, S., 2015. A review of

777

deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for

778

the state of stress in the frontal regions of thrust wedges. Earth-Science Reviews, 141, 82–104.

779

Thomas, M.F.H., Bodin, S., Redfern, J., Irving, D.H.B., 2010. A constrained African craton source

780

for the Cenozoic Numidian Flysch: implications for the palaeogeography of the western

781

Mediterranean basin. Earth Sci. Rev. 101, 1–3.

Ac

ce pt

ed

M

an

us

cr

ip t

760

Page 32 of 54

Van Hinsbergen, D. J. J., Vissers, R. L. M., Spakman, W., 2014. Origin and consequences of

783

western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33, 393-419.

784

Vera, J.A., 2004. Geología de España. Sociedad Geológica de España-Instituto Geológico y Minero

785

de España, Madrid, 884 p.

786

Vignaroli, G., Minelli L., Rossetti, F., Balestrieri, M.L., Faccenna, C., 2012. Miocene thrusting in

787

the eastern Sila Massif: Implication for the evolution of the Calabria-Peloritani orogenic wedge

788

(southern Italy). Tectonophysics 538–540, 105–119.

789

Vitale, S., Ciarcia, S., 2013. Tectono-stratigraphic and kinematic evolution of the southern

790

Apennines/Calabria–Peloritani Terrane system (Italy). Tectonophysics 583, 164-182.

791

Vitale, S., Ciarcia, S., Tramparulo, F.D.A., 2013a. Deformation and stratigraphic evolution of the

792

Ligurian Accretionary Complex in the southern Apennines (Italy). J. Geodyn. 66, 120-133.

793

Vitale S., Fedele L., Tramparulo F., Ciarcia S., Mazzoli S., Novellino A. 2013b. Structural and

794

petrological analyses of the Frido Unit (southern Italy): new insights into the early tectonic

795

evolution of the southern Apennines-Calabrian Arc system. Lithos 168-169, 219-235.

796

Vitale S., Zaghloul M.N., Tramparulo F.D.A., El Ouaragli B., Ciarcia, S. 2014a. From Jurassic

797

extension to Miocene shortening: an example of polyphasic deformation in the External Dorsale

798

Calcaire Unit (Chefchaouen, Morocco). Tectonophysics, 633,63-76.

799

Vitale S., Zaghloul M.N., Tramparulo F.D.A., El Ouaragli B. 2014b. Deformation characterization

800

of a regional thrust zone in the northern Rif (Chefchaouen, Morocco). J. Geodyn. 77, 22-38.

801

Wildi, W. 1979: Evolution de la plate-forme carbonatée de type austro-alpin de la Dorsale calcaire

802

(Rif interne, Maroc septentrional) au Mésozoïque. Bull Soc. Géol. France (7), 21/1, 49-56.

Ac

ce pt

ed

M

an

us

cr

ip t

782

Page 33 of 54

Wildi, W., 1983. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): structure, stratigraphie et

804

évolution du Trias au Miocène. Rev. Géol. Dyn. Géogr. 24, 201–297.

805

Wildi, W., Nold, M., Uttinger, J., 1977. La Dorsale Calcaire entre Tetouan et Assifane (Rif interne,

806

Maroc). Eclogae Geol. Helv. 70, 371–415.

807

Yu, G., Wesnousky, S.G., Ekstrom, G. 1993. Slip partitioning along major convergent plate

808

boundaries. Pure Appl. Geophys. 142, 183–210.

809

Zaghloul, M.N., 1994. Les Unites Federico septentrionales (Rif interne, Maroc): Inventaire des

810

deformations et leur contexte geodynamique dans la chaıne Betico-Rifaine. MSc Thesis,

811

Mohammed V University, Rabat.

812

Zaghloul, M.N., Gigliuto, L.G., Pugliesi, D., Ouazani-Tuhami, A. Belkaid, A., 2003. The Upper

813

Oligocene-Lower Burdigalian Ghomaride cover: a petro-sedimentary record an early subsident

814

stage related to the Alboran Sea rifting (northern Internal Rif, Morocco). Geol. Carpath. 54, 93-105.

815

Zaghloul, M.N., Di Staso, A., El Moutchou, B., Gigliuto, L.G., Puglisi, D., 2005. Sedimentology,

816

provenance and biostratigraphy of the Upper Oligocene-Lower Miocene terrigenous deposits of the

817

internal «Dorsale Calcaire» (Rif, Morocco): palaeogeographic and geodynamic implications. Boll.

818

Soc. Geol. It. 124, 437-454.

819

Zaghloul M.N., Di Staso A., de Capoa P., Perrone V., 2007. Occurrence of upper Burdigalian

820

silexite beds within the Beni Ider Flysch Fm. in the Ksar-es-Seghir area (Maghrebian Flysch Basin,

821

northern Rif, Morocco): correlations and geodynamic implications, Boll. Soc. Geol. It. 126, 223-

822

239.

823

Zaghloul, M.N., Staso, A.D., Hlila, R., Perrone, V., Perrotta, S., 2010a. The Oued Dayr formation:

824

First evidence of a new Miocene late-orogenic cycle on the Ghomaride Complex (Internal domains

825

of the Rifian Maghrebian Chain, Morocco). Geodin. Acta 23, 185–194.

Ac

ce pt

ed

M

an

us

cr

ip t

803

Page 34 of 54

826

Zaghloul, M.N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., Tucker, M., Aiello,

827

M., Ventimiglia, C., 2010b. Depositional systems, composition and geochemistry of Triassic rifted-

828

continental margin redbeds of the Internal Rif Chain, Morocco. Sedimentology 57, 312–350.

829

Figures

ip t

830 831

Fig.1. (a) tectonic scheme of the Alpine chains in the western Mediterranean Sea (after Vitale and

833

Ciarcia, 2013, modified). (b) Simplified geological map of the Rif chain (after Zaghloul et al., 2007,

834

modified).

us

cr

832

836

an

835

Fig. 2. (a) Geological map and (b) cross sections of the Jebha area.

M

837

Fig. 3. Panoramic views of (a) western and (b) eastern sectors of analyzed area. (c) View of western

839

Jebha promontory showing a ramp-flat thrust.(d) Folds in Jurassic limestones.(e) Frontal view of

840

the hanging wall ramp anticline with steep to overturned strata and folds in Upper Oligocene well-

841

bedded argillites and marls. (f) Slickenside fibers and steps indicating a W-vergence on the main

842

thrust fault plane. (g) Secondary fault plane with E-W striations.

ce pt

Ac

843

ed

838

844

Fig. 4. Synoptic table showing the main deformation structures for each tectonic unit presented in

845

the structural analysis section. Overprinting relationships, temporal succession and correlation with

846

the tectonic evolution are also provided. F: fold; FP: fault plane; PBT: pre-buckle thrust; ESB:

847

extensional shear bands.

848 849

Fig. 5. Upper Oligocene rocks (Mars Dar Bay): C’-type shear bands in (a) variegated argillites and

850

marls, (b) matrix supported conglomerate and (c) clast-supported calcareous conglomerates; (d) W-

Page 35 of 54

851

verging folds; (e) S-C structures indicating a W vergence. (f) Western side of Mars Dar Bay

852

showing FP1-3-4IDC faults; (g) top-view of S-C structures in the fault core of the dextral fault FP 3IDC.

853

Fig. 6. (a) Panoramic view of eastern Jebha promontory showing Jurassic carbonates upward

855

passing, by means of a tectonic contact, to Upper Oligocene marls and Aquitanian turbidites. (b)

856

FP2IDC fault cut by a late normal FP5IDC fault. (c) Panoramic view of the eastern Jebha promontory

857

showing high-angle FP5IDC normal faults crosscutting low-angle FP2IDC faults. The External Dorsale

858

Calcaire Unit: (d) F1EDC isoclinal folds in Upper Oligocene argillites; (e) F2 EDC chevron open to

859

close folds in Jurassic cherty limestones; (f) Interference pattern between F 1EDC and F2EDC folds of

860

type 3 in Jurassic cherty limestones. (g) Out-of-sequence thrust between the Ghomaride Unit and

861

Upper Oligocene conglomerates, marls and argillites of the External Dorsale Calcaire, deformed

862

and tilted by the successive back-thrusting stage; (h) Zoom view of S-C structures in the hanging

863

wall (Ouringa River).

ed

864

M

an

us

cr

ip t

854

Fig. 7. Orientation projections and contour plots (lower hemisphere, equal-area net) for (a-f) the

866

Internal Dorsale Calcaire Unit (Jurassic-Upper Oligocene rocks), (g-l) the External Dorsale

867

Calcaire (Jurassic-Upper Oligocene rocks) and (m-q) Internal Dorsale Calcaire Unit (Aquitanian

868

turbidites). PBT plots (Angelier and Mechler, 1977; Reiter and Acs, 1996–2003): (e) P (069/18) R

869

= 57%, B (198/77) R = 77%, T (336/11) R = 41%; (g) P (334/77) R = 81%, B (137/19) R = 72%, T

870

(229/04) R = 67%; (p) P (138/88) R = 85%, B (331/00) R = 53%, T (241/01) R = 47%. S0: bedding;

871

A: fold axis; AP: axial plane; ESB: extensional shear band; FP: fault plane.

Ac

ce pt

865

872 873

Fig. 8. Aquitanian turbidites. (a-b) Syn-sedimentary FP1AT normal faults (to the East of the Jebha

874

village). (c) pre-buckle thrust affecting an arenaceous layer embedded in the pelitic interstrata (to

875

the East of the Jebha village). (d) Fault breccia associated to the thrust separating Aquitanian

876

turbidites and the Predorsalian Unit (to the East of the Jebha village). (e) F2AT chevron folds Page 36 of 54

associated to the SE-verging FT2AT thrust; deformed and tilted by the successive NW-verging FT3 AT

878

thrust and related F3 AT fold (N16 road). (f) F2AT tight to isoclinal folds associated to the SE-verging

879

FT2AT thrust subsequently tilted (N16 road). (g) F2 AT tight fold in Aquitanian turbidites showing

880

early pre-buckle thrust, normal faults and veins in the outer arc (N16 road). (h) NW-verging reverse

881

faults with related F3AT folds (N16 road).

ip t

877

882

Fig. 9. (a) Decametric chevron F3PD fold (in the upper-left corner of the picture) in Aquitanian

884

turbidites associated to a NW-verging sub-horizontal PF3PD back-thrust (N16 road). (b) SE-verging

885

FP2AT thrust fault between the Aquitanian turbidites and the Predorsalian Unit. The hanging wall

886

ramp is folded by the successive deformation stage. Predorsalian Unit (N16 road). (c) Interference

887

pattern intermediate between types 2 and 3 between F1PD isoclinal and F2PD open folds (N16 road).

888

(d) SE-verging thrust fault with associated F1PD (N16 road). (e) Cherty calcareous conglomerate

889

showing clast indentation by means of pressure solution mechanisms (to the East of the Jebha

890

village). (f) Conjugate extensional shear planes (Ouringa River). (g) F3PD folds (N16 road).

ed

M

an

us

cr

883

891

Fig. 10. Orientation projections and contour plots (lower hemisphere, equal-area net) for (a-h) the

893

Predorsalian Unit and (i-o) the Tisirene Unit. S0: bedding; A: fold axis; AP: axial plane; ESB:

894

extensional shear band.

Ac

895

ce pt

892

896

Fig.11. Tisirene Unit (N16 road). (a) Panoramic view showing an early thrust fault (FP1TI) deformed

897

by FP2TI NW-verging folds. (b) Zoom view of FP1TI hanging wall cutoffs. (c) F2TI NW-verging

898

chevron fold. (d) Early F1TI isoclinal folds in argillites. (e) Macro-scale recumbent F3TI. (f) F1TI fold

899

dislocated by late FP4TI normal faults.

900 901

Fig.12. Schematic cross-section of the Jebha area.

902

Page 37 of 54

903

Fig. 13. (a) Map of Early Miocene tectonic vergences in the Dorsale Calcaire (Northern Rif), from:

904

this study, Platt et al., 2003; Hlila, 2005; Hlila and Sanz De Galdeano, 2008, Benmakhlouf et al.,

905

2012; Platt et al., 2013; Vitale et al., 2014b. (b) The ―Piedmont Glacier‖ model for the Miocene Rif

906

belt evolution.

ip t

907

Fig. 14. Cartoon showing the Late Oligocene-Serravallian tectonic evolution of the analyzed area

909

(not to scale). GHO: Ghomaride; IDC: Internal Dorsale Calcaire; EDC: External Dorsale Calcaire;

910

PD: Predorsalian; TIS: Tisirene; MAS: Massylian. ER: External Rif.

us

cr

908

911

an

912

New structural data from the Jebha area, a key-sector of the Central Rif, are provided

914

In the Early Miocene the Jebha-Chrafate fault allowed the WSW-migration of the Internal Units

915

Since the late Burdigalian the radial thrust front spreading prevailed

916

Out-of-sequence and back-thrust faults characterized the Middle Miocene evolution

ed

M

913

Ac

ce pt

917

Page 38 of 54

ed pt ce Ac Page 39 of 54

Page 40 of 54

Ac ed

pt

ce an

M

us

cr

ip t

Page 41 of 54

Ac ed

pt

ce an

M

us

cr

ip t

Page 42 of 54

ed

pt

Ac ce an

M

us

cr

ip t

Page 43 of 54

ed

pt

ce

Ac M

an

cr

us

ip t

Page 44 of 54

ep te

Ac c d

M

an

cr

us

i

Page 45 of 54

ed

ce pt

Ac M an

cr

us

ip t

Page 46 of 54

pt e

ce

Ac d

M

an

cr

us

i

Page 47 of 54

d

te

ep

Ac c M an

cr

us

ip t

u an M ed pt ce Ac

Page 48 of 54

Page 49 of 54

d

ep te

Ac c M

an

cr

us

ip t

Page 50 of 54

ed

pt

Ac ce us

an

M cr

ip

t

M ed pt ce Ac Page 51 of 54

ce Ac

Page 52 of 54

ce Ac

Page 53 of 54

ce Ac

Page 54 of 54