Accepted Manuscript Prediction of ternary azeotropic refrigerants with a simple method Yanxing Zhao, Maoqiong Gong, Xueqiang Dong, Haiyang Zhang, Hao Guo, Jianfeng Wu PII:
S0378-3812(16)30235-7
DOI:
10.1016/j.fluid.2016.05.010
Reference:
FLUID 11095
To appear in:
Fluid Phase Equilibria
Received Date: 15 December 2015 Revised Date:
19 April 2016
Accepted Date: 2 May 2016
Please cite this article as: Y. Zhao, M. Gong, X. Dong, H. Zhang, H. Guo, J. Wu, Prediction of ternary azeotropic refrigerants with a simple method, Fluid Phase Equilibria (2016), doi: 10.1016/ j.fluid.2016.05.010. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT Prediction of Ternary Azeotropic Refrigerants with a Simple Method Yanxing
Zhaoa,b,
Maoqiong
Gonga,*,
(
[email protected]),
Xueqiang
Donga,*
(
[email protected]), Haiyang Zhanga,b, Hao Guoa, Jianfeng Wua a
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese
b
RI PT
Academy of Sciences, P. O. Box 2711, Beijing 100190, China University of Chinese Academy of Sciences, Beijing 100039, China
* Corresponding authors. el. /fax: +86 10 82543728 (M. Gong), tel. /fax: +86 10 82543736 (X.
AC C
EP
TE D
M AN U
SC
Dong)
ACCEPTED MANUSCRIPT Abstract Refrigeration systems with azeotropic mixtures can achieve lower energy consumption, higher refrigeration capacity and coefficient of performance than both individual fluids and zeotropic refrigerants. In this paper, a simple method for predicting homogenous ternary
RI PT
azeotropic refrigerants was presented. The Peng-Robinson equation of state combined the Van der Waals mixing rule was proved successfully to represent the vapor + liquid equilibrium behavior of binary system and was employed to describe the ternary mixture phase equilibrium property. One hundred and seventy-one ternary systems were tested and eight
SC
azeotropes with six saddle-point azeotropes and two maximum-point azeotropes were found. The Antoine equation was used to correlate the azeotropic pressures and the temperatures,
M AN U
which showed the similar behavior to pure fluids and revealed the reliability of the calculated value. It can be concluded that to form ternary azeotropes in refrigerant mixtures at least two subsystems are azeotropic and if all subsystems are azeotropic, the ternary system is more likely to form ternary azeotrope.
TE D
Keywords
AC C
EP
Ternary azeotropic; Refrigerant; Prediction; Saddle point; Maximum point
ACCEPTED MANUSCRIPT Nomenclature Abbreviations The average absolute deviation
AARD
The average absolute relative deviation
AZ
azeotropic
c 1, c 2
PR EoS parameter
EoS
equation of state
HC
hydrocarbon
HFC
fluorohydrocarbon
MIX
mixture
BAS
binary azeotropic subsystems
PR
Peng-Robinson
R170
ethane
R290
propane
R600
n-butane
R600a
isobutane
R23
triflurormethane
R32
difluoromethane
R116
hexafluoroethane
SC
M AN U
TE D
pentafluoroethane 1, 1, 2, 2-tetrafluoroethane
AC C
R134
EP
R125
RI PT
AAD
R134a
1, 1, 1, 2-tetrafluoroethane
R143a
1, 1, 1-trifluoroethane
R152a
1, 1-difluoroethane
R161
fluoroethane
RE170
methoxyethane
R227ea
1, 1, 1, 2, 3, 3, 3-heptafluoropropane
R236ea
1, 1, 1, 2, 3, 3-hexafluoropropane
R236fa
1, 1, 1, 3, 3, 3-hexafluoropropane
R245fa
1, 1, 1, 3, 3-pentafluoropropane
R1234yf
2, 3, 3, 3-tetrafluoroprop-1-ene
R1270
propylene
RC270
cyclopropane
R13I1
trifluoroiodomethane
R1216
1, 1, 2, 3, 3, 3-hexafluoro-1-propene
RK
Redlich-Kwong
TOTA
type of ternary azeotropy
VDW
Van der Waals
VLE
vapor liquid equilibrium
Z
zeotropic
SC
trans-1, 3, 3, 3-tetrafluoropropene
M AN U
R1234ze(E)
RI PT
ACCEPTED MANUSCRIPT
Symbols
Antoine equation parameter
a
attractive parameter in the EoS
am
attractive parameter of the mixture
aij
cross parameter of an EoS
am'
the partial derivative of am with respect to xi
B
Antoine equation parameter
b
co-volume in the EoS
C
co-volume of the mixture
the partial derivative of bm with respect to xi
AC C
bm'
EP
bm
TE D
A
Antoine equation parameter
Kij
binary interaction parameter between components i and j
L
liquid phase
N
number of components
p
pressure, MPa
R
universal gas constant, J·mol-1·K-1
s
entropy, J·mol-1·K-1
T
temperature, K
ACCEPTED MANUSCRIPT x
liquid phase composition
y
vapor phase composition
Z
compressibility factor
Greek letters
µ
RI PT
chemical potential
Subscripts i, j
component index
m
mixture
vapor phase
L
liquid phase
AC C
EP
TE D
M AN U
V
SC
Superscripts
ACCEPTED MANUSCRIPT 1. Introduction Since the halogenated refrigerants are restrictedly used in the vapor compression refrigeration system for its high ozone depleting potential, it is necessary to look for long-term alternatives to satisfy the objectives of international protocols. However, the single
RI PT
refrigerants including fluorohydrocarbons, hydrocarbons and other natural refrigerants have all kind of drawbacks such as inflammability (HCs), incompatibility with the mineral lubricating oils (HFCs), toxicity (ammonia), etc. These limitations shifted the focus on the mixed refrigerant alternatives, which are obtained as a mixture of two or more components.
SC
Both zeotropic and azeotropic mixtures have been investigated. Due to the mass transfer resistance in nucleate boiling and high temperature glide, heat transfer coefficients of
M AN U
zeotropic mixtures are normally lower than the single refrigerants and the azeotropic mixtures[1]. Further, refrigeration systems with azeotropic mixtures can achieve lower energy consumption, higher refrigeration capacity and coefficient of performance than that with both individual and zeotropic refrigerants[2-7]. Besides, zeotropic refrigerant mixtures have a fractionation problem caused by a leak in the system, while azeotropic mixtures can
TE D
overcome this difficulty[8].
The phase equilibrium properties of the mixed refrigerants can be decided by experimental or theoretical methods. Accurate phase equilibrium data can be obtained
EP
experimentally but it is too time consuming, especially for azeotropes. To solve this problem, many prediction methods have been developed. Wang and Whiting [9] designed a algorithm
AC C
for azeotropic prediction by treating vapor liquid equilibrium for the azeotropic point of a mixture as similar to that for a pure compound. Their algorithm was useful for rapid detection of azeotropes and did not search in regions where vapor and liquid compositions are not identical, with which the problem of spurious roots was avoided. Harding [10] described a homotopy method which, together with an arc length continuation, gave an efficient and robust scheme for computing azeotropes in multicomponent mixtures. Artemenko and Mazur[11] developed an approach for the prediction of azeotrope formation in a mixture that does not require vapor liquid equilibrium calculations. The method employs neural networks and global phase diagram methodologies to correlate azeotropic data for binary mixtures based only on critical properties and acentric factor of the individual components in
ACCEPTED MANUSCRIPT refrigerant mixtures. Fedali et al.[12] predicted the azeotropic behavior of the mixtures using the mole fractions instead of pressure. Hu and Chen et al.[13] estimated the vapor–liquid equilibria properties of several HFC binary refrigerant mixtures with a corresponding equation. The equation only needed the vapor pressures, critical constants and dipole
RI PT
moments of pure components, without any adjustable parameters or interaction coefficients. Hou and Duan et al.[14] developed the group contribution model to describe the vapor-liquid equilibria of the refrigerant mixtures and a ternary system was accurately predicted. Barley et al.[15] studied the ternary mixture (R32+R125+R143a) with Wilson activity coefficient
SC
model combined RK equation of state and predicted a saddle point azeotrope based on the binary experimental data. Aslam and Sunol[16] proposed a method establishing the pressure
M AN U
dependency of azeotropic composition allowing prediction of bifurcation pressure where refrigerant azeotropes may appear or disappear, with which the ternary azeotropic system proposed by Barley et al was successfully predicted.
Most of those approaches are difficult to operate because of complicated mathematical computation, although they were proved successful to predict azeotropic behavior. In this
TE D
paper, a simple method originally proposed by Dong et al.[17, 18] was extended to predict ternary systems. Based on the MATLAB procedure, one hundred and seventy-one interested ternary systems were investigated.
2.1. Azeotropy
EP
2. Method description
AC C
In order to develop a method for finding all azeotropes of a mixture, it is essential to first determine the thermodynamic conditions for azeotropy. Homogeneous azeotropes occur in a boiling mixture of one liquid phase when the composition of the vapor phase is the same as the composition of the liquid phase. The thermodynamic condition was mentioned by Malesiński[19].
The Gibbs-Duhem relation gives
sdT − vdp + ∑ ni d µi = 0 .
(1)
i
The symbol s refers to the molar entropy, and v refers to the molar volume. The symbol µ refers to the chemical potential with the subscript i refers to the component i. For a ternary
ACCEPTED MANUSCRIPT system, the Gibbs-Duhem equation can be applied in the both vapor and liquid phases as
s V dT − v V dp + y1d µ1V + y2 d µ 2V + y3 d µ 3V = 0 ,
(2)
and
s L dT − v L dp + x1d µ1L + x2 d µ 2L + x3 d µ3L = 0 .
(3)
RI PT
At an equilibrium state, the chemical potentials of component i in vapor and liquid phases are equal, that is
s V dT − v V dp + y1d µ1 + y2 d µ 2 + y3 d µ 3 = 0 ,
(4)
s L dT − v L dp + x1d µ1 + x2 d µ 2 + x3 d µ 3 = 0 .
SC
and
(5)
∑x
i
= 1, ∑ yi = 1 ,
i
i
the following equation can be obtained
M AN U
Combine equation (4) with equation (5) and the normalization of the composition as (6)
( s V − s L ) dT − ( v V − v L ) dp + ( y1 − x1 )( d µ1 − d µ 3 ) + ( y2 − x2 )( d µ 2 − d µ 3 ) = 0 .
dp =
TE D
At constant temperatures,
(7)
( y1 − x1 ) ( y − x2 ) ( d µ1 − d µ3 ) + V2 (d µ 2 − d µ3 ) , V L (v − v ) (v − v L )
(8)
then the necessary condition for ternary azeotropy was derived as (9)
EP
dp =0 .
AC C
Because of the pressure continuation with composition of the liquid phase, equation (9) can be rewritten as
∂p =0 . ∂ x i T,x j
(10)
For a ternary system, the second order partial derivative compose the Hessen matrix, which gives as
D 2 p( x1 , x2 ) =
∂2 p ∂x12
∂2 p ∂x1 x2
∂2 p ∂x2 x1
∂2 p ∂x22
.
(11)
ACCEPTED MANUSCRIPT The pressure will have extreme values if the matrix norm det( D 2 p ( x1 , x2 )) > 0 , and if
∂2 p < 0,(i = 1, 2) ,the pressure has a maximum point, else the pressure has a minimum point; ∂xi2 if det( D 2 p ( x1 , x2 )) < 0 , the pressure has a saddle point; if det( D 2 p ( x1 , x2 )) = 0 , the
RI PT
stagnated pressure cannot be verified only by second order partial derivative. 2.2. PR+VDW model
Chen and Hu et al.[20] correlated thirty-nine binary mixtures consisting of HFCs and
SC
HCs using the PR equation of state with the Van der Waals mixing rule and showed that the VLE properties can be well described by the PR+VDW model. This is due to the weak
M AN U
polarity of HC/HFC refrigerants. In order to accelerate the calculation speed as well as to satisfy the high accuracy, the PR+VDW model was employed in this work. Ninety-four binary systems were recorrelated using PR+VDW model and the results were in good agreement with the experimental data, as shown in Table 1.
The PR EoS can be expressed as the liquid phase mole fraction x variate function at a
p=
TE D
constant temperature
RT am − = f [ am ( x1 , x2 ,L , xi , xN ), bm ( x1 , x2 ,L , xi , xN ) ] , (12) v − bm (v + c1bm )(v + c2bm )
2) is derived as
EP
for PR EoS, c1 = 1 − 2 , c2 = 1 + 2 , then the partial derivative of p with respect to xi (i=1,
AC C
∂p ∂f ∂am ∂f ∂bm , = + ∂xi ∂am ∂xi ∂bm ∂xi
(13)
where
∂f 1 , =− ∂ am (v + c1bm )(v + c2bm )
(14)
∂f RT am c12 c22 , = + − 2 2 2 ∂bm (v − bm ) v (c1 − c2 ) (v + c1bm ) (v + c2bm )
(15)
∂am = am' , ∂xi
(16)
ACCEPTED MANUSCRIPT ∂bm = bm' , ∂xi
(17)
where am , bm and the partial derivative of them depend on the mixing rules selected, for Van der Waals mixing rule, which can be expressed as
am = ∑∑ xi x j aii a jj (1 − Kij ) ,
(18)
RI PT
i
j
bm = ∑ xi bi ,
(19)
i
am' = 2∑ x j aij ,
(20)
bm' = bi .
M AN U
The second order derivative is derived as
SC
j
∂2 p ∂ ∂f ∂am ∂f ∂ 2 am ∂ ∂f ∂bm ∂f ∂ 2bm , = ( ) + + ( ) + ∂xi2 ∂xi ∂am ∂xi ∂am ∂xi2 ∂xi ∂bm ∂xi ∂bm ∂xi2 where
(21)
(22)
(23)
∂ 2 am = aii = 0 , ∂xi2
(24)
TE D
∂ ∂f 1 ∂b ( )= c (v + c2bm ) + c2 (v + c1bm )] m , 2 2 [ 1 ∂xi ∂am ∂xi (v + c1bm ) (v + c2bm )
AC C
∂ 2bm = 0, ∂xi2
EP
∂am ∂bm ∂ ∂f RT ∂bm 1 c12 c22 am c13 c23 + − + +2 ( )=2 , −2 3 2 2 3 ∂xi ∂bm (v − bm ) ∂xi v (c1 − c2 ) (v + c1bm ) (v + c2bm ) ∂xi v (c1 − c2 ) (v + c1bm ) (v + c2bm )3 ∂xi
(25) (26)
∂2 p ∂ ∂p ∂ ∂f ∂am ∂f ∂ 2 am ∂ ∂f ∂bm ∂f ∂ 2bm , = ( )= ( ) + + ( ) + ∂xi x j ∂x j ∂xi ∂x j ∂am ∂x j ∂am ∂xi x j ∂x j ∂bm ∂xi ∂bm ∂xi x j
(27)
∂ 2 am = 2aij , ∂xi x j
(28)
∂ 2bm = 0. ∂xi x j
(29)
It is noteworthy that this method can employ other phase equilibrium models by replacing the partial derivative of the attractive and co-volume parameters of the mixtures.
3. Results and discussion
ACCEPTED MANUSCRIPT The R32 + R125 + R143a and R600a + R134 + R152a ternary system were predicted firstly, and the results were in satisfactorily agreement with reference (15) and were shown in Figures 1 and 2. One hundred and seventy-one ternary systems (presented in Table 2) were tested and eight of them were predicted as azeotropes. The azeotropic loci of each system,
RI PT
including the subsystems, were plotted in Figures 1 to 8. An approximate linear azeotropic loci with the temperatures was exhibited in the ternary phase diagram in a large scale temperature range, which is similar to the binary azeotropes.
3.1. Azeotropic pressure and temperature
SC
There is only one degree of freedom for an azeotropic state, in other words, all the azeotropes of a system fall on a curve [9]. This uniform-composition curve can be plotted on
M AN U
a pressure-temperature diagram regardless of the number of components, and the reduction of the p–T data combined in one set can estimate the reliability of the measured or calculated quantities [119, 120]. The Antoine equation was employed:
log( p / kPa) = A −
B . T + C − 273.15
(30)
In this work, the parameters of equation (30) for the eight ternary azeotropic systems
TE D
were regressed by the calculated azeotropic pressure and temperature, and shown in Table 3. All of the ternary azeotropic points can be well represented by the Antoine equation, and the regressed parameters agreed with that of pure fluids, which indicates the reliability of the
EP
calculated values. Figure 9 gives the variation of the azeotropic pressure with temperature for the ternary systems and the corresponding single fluids. The pressures of pure compounds
AC C
were taken from REFPROP 9.1[121]. It can be showed that the system does not have to be a maximum-point azeotropic mixture even if the azeotropic pressure is higher than any of the pressures of the single fluids.
3.2. The type of ternary azeotropes The vapor + liquid equilibrium of the interested ternary systems was calculated near the azeotropic point at 253.15 K, and plotted in Figure 10. The azeotropic behavior of these systems was confirmed again, and six saddle-point azeotropic mixtures and two maximum-point azeotropic mixtures were found. In MIX 1 to 6 ternary systems, two subsystems show positive deviations from ideality while the other subsystem shows negative
ACCEPTED MANUSCRIPT deviations (R125 + R143a, R134 + R152a and R134a + RE170). This makes the ternary mixtures of great possibility to form saddle-point azeotropes. Not surprisingly, the ternary azeotrope with all subsystems show positive deviations from ideality will well be maximum-point azeotropes.
RI PT
4. Conclusions A simple method for predicting homogenous ternary azeotropic was presented in this paper. The PR + VDW model was proved effectively to represent the binary system VLE behavior and was employed to describe the ternary mixture phase equilibrium properties. One
SC
hundred and seventy-one ternary systems were tested, and eight azeotropes with six saddle-point azeotropic mixtures and two maximum-point azeotropic mixtures were found.
M AN U
The Antoine equation was used to correlate the azeotropic pressures and the temperatures. The results showed the similar behavior to pure fluids and revealed the reliability of the calculated value. It can be concluded that to form ternary azeotropes in refrigerant mixtures at least two subsystems are azeotropic and if one of the subsystems shows negative deviations from ideality the ternary system is more likely to be saddle-point azeotrope. Besides, the
TE D
ternary system is easier to form ternary azeotrope if all subsystems are azeotropic. The predicted azeotropic mixtures may provide a direction for search multi-component azeotropic refrigerants.
EP
Acknowledgement
This work is financially supported by the National Natural Sciences Foundation of China
AC C
under the contract number of 51376188 and 51322605.
ACCEPTED MANUSCRIPT References [1] A. Kundu, R. Kumar, A. Gupta, Performance Comparison of Zeotropic and Azeotropic Refrigerants in Evaporation Through Inclined Tubes, Procedia Engineering 90 (2014) 452-458.
RI PT
[2] B. O. Bolaji, Performance investigation of ozone-friendly R404A and R507 refrigerants as alternatives to R22 in a window air-conditioner, Energy and Buildings 43 (2011) 3139-3143.
[3] A. Kundu1a, R. Kumar, A. Gupta, Environmental and Heat Transfer Performance
SC
Review of Replacement to HCFC Refrigerants, 2013.
[4] M. S. Kim, W. J. Mulroy, D. A. Didion, Performance evaluation of two azeotropic
Resour. Technol. 116 (1994) 148-154.
M AN U
refrigerant mixtures of HFC-134a with R-290 (propane) and R-600a (isobutane), J. Energy
[5] W. F. Stoecker, Internal performance of a refrigerant mixture in a two-evaporator refrigerator, ASHRAE trans. 91 (1985) 241-249.
[6] D. Jung, C. B. Kim, K. Song, et al, Testing of propane/isobutane mixture in domestic
TE D
refrigerators, Int. J. Refrig. 23 (2000) 517-527.
[7] D. A. Didion, D. B. Bivens, Role of refrigerant mixtures as alternatives to CFCs, Int. J. Refrig. 13 (1990) 163-175.
EP
[8] G. Morrison, M. O. McLinden, Azeotropy in refrigerant mixtures: Azéotropie dans les mélanges de frigorigènes, Int. J. Refrig. 16 (1993) 129-138.
AC C
[9] S. H. Wang, W. B. Whiting, New algorithm for calculation of azeotropes from equations of state, Ind. Eng. Chem. Proc. Des. and Dev. 25 (1986) 547-551. [10] S. T. Harding, C. D. Maranas, C. M. McDonald, et al, Locating all homogeneous azeotropes in multicomponent mixtures, Ind. Eng. Chem. Res. 36 (1997) 160-178. [11] S. Artemenko, V. Mazur, Azeotropy in the natural and synthetic refrigerant mixtures, Int. J. Refrig. 30 (2007) 831-839. [12] S. Fedali, H. Madani, C. Bougriou, Modeling of the thermodynamic properties of the mixtures: Prediction of the position of azeotropes for binary mixtures, Fluid Phase Equilib. 379 (2014) 120-127.
ACCEPTED MANUSCRIPT [13] P. Hu, Z. S. Chen, W. L. Cheng, Prediction of vapor–liquid equilibria properties of several HFC binary refrigerant mixtures, Fluid Phase Equilib. 204 (2003) 75-84. [14] S. X. Hou, Y. Y. Duan, X. D. Wang, Vapor-liquid equilibria predictions for new refrigerant mixtures based on group contribution theory, Ind. Eng. Chem. Res. 46 (2007)
RI PT
9274-9284. [15] M. H. Barley, J. D. Morrison, A. O'Donnel, et al, Vapour-liquid equilibrium data for binary mixtures of some new refrigerants, Fluid Phase Equilib. 140 (1997) 183-206.
[16] N. Aslam, A. K. Sunol, Computing all the azeotropes in refrigerant mixtures through
SC
equations of state, Fluid Phase Equilib. 224 (2004) 97-109.
[17] X. Q. Dong, M. Q. Gong, Y. Zhang, et al, Prediction of homogeneous azeotropes by
(2008) 6-11.
M AN U
Wilson equation for binary HFCs and HCs refrigerant mixtures, Fluid Phase Equilib. 269
[18] X. Dong, M. Gong, Y. Zhang, et al, Prediction of Homogeneous Azeotropes by the UNIFAC Method for Binary Refrigerant Mixtures, J. Chem. Eng. Data 55 (2009) 52-57. [19] W. Malesiński, Azeotropy and other theoretical problems of vapour-liquid equilibrium,
TE D
Interscience Publishers, 1965.
[20] J. X. Chen, P. Hu, Z. S. Chen, Study on the Interaction Coefficients in PR Equation with vdW Mixing Rules for HFC and HC Binary Mixtures, Int. J. Thermophys. 29 (2008)
EP
1945-1953.
[21] Y. Zhang, M. Gong, H. Zhu, et al, Vapor-liquid equilibrium data for the ethane+
AC C
trifluoromethane system at temperatures from (188.31 to 243.76) K, J. Chem. Eng. Data 51 (2006) 1411-1414.
[22] Y. Zhang, M. Gong, H. Zhu, et al, Vapor–liquid equilibrium measurements and correlations for an azeotropic system of ethane+ hexafluoroethane, Fluid Phase Equilib. 240 (2006) 73-78.
[23] G. Seong, K. P. Yoo, J. S. Lim, Vapor− Liquid Equilibria for Propane (R290)+ n-Butane (R600) at Various Temperatures, J. Chem. Eng. Data 53 (2008) 2783-2786. [24] Y. Kayukawa, K. Fujii, Y. Higashi, Vapor-liquid equilibrium properties for the binary systems propane+ n-butane and propane + isobutane, J. Chem. Eng. Data 50 (2005) 579-582. [25] J. S. Lim, Q. N. Ho, J. Y. Park, et al., Measurement of vapor-liquid equilibria for the
ACCEPTED MANUSCRIPT binary mixture of Propane (R-290)+ Isobutane (R-600a), J. Chem. Eng. Data 49 (2004) 192-198. [26] M. Ju, Y. Yun, M. S. Shin, et al, (Vapour+ liquid) equilibria of the {trifluoromethane + propane} and {trifluoromethane + n-butane} systems, J. Chem. Thermodyn. 41 (2009)
RI PT
1339-1342. [27] B. G. Lee, W. J. Yang, J. D. Kim, et al, Vapor-Liquid Equilibria for the Binary System Difluoromethane+ Propane at Seven Temperatures ((268.15, 278.15, 283.15, 288.15, 298.15, 308.15, and 318.15) K), J. Chem. Eng. Data 48 (2003) 841-846.
SC
[28] J. H. Kim, M. S. Kim, Y. Kim, Vapor–liquid equilibria for pentafluoroethane+ propane and difluoromethane+ propane systems over a temperature range from 253.15 to 323.15 K.
M AN U
Fluid Phase Equilib. 211 (2003) 273-287.
[29] S. Bobbo, L. Fedele, R. Camporese, et al, VLE measurements and modeling for the strongly positive azeotropic R32+ propane system. Fluid Phase Equilib. 199 (2002) 175-183. [30] C. Coquelet, A. Chareton, A. Valtz, et al., Vapor-liquid equilibrium data for the azeotropic difluoromethane+ propane system at temperatures from 294.83 to 343.26 K and
TE D
pressures up to 5.4 MPa, J. Chem. Eng. Data 48 (2003) 317-323.
[31] D. Ramjugernath, A. Valtz, C. Coquelet, et al, Isothermal vapor− liquid equilibrium data for the hexafluoroethane + propane system at temperatures from (263 to 323) K, J. Chem.
EP
Eng. Data 54 (2009) 1292-1296.
[32] S. X. Hou, Y. Y. Duan, Isothermal vapor–liquid equilibria for the pentafluoroethane+
AC C
propane and pentafluoroethane+ 1, 1, 1, 2, 3, 3, 3-heptafluoropropane systems, Fluid Phase Equilib. 290 (2010) 121-126. [33] Y. M. Park, M. Y. Jung, Vapor-liquid equilibria for the pentafluoroethane (HFC-125)+ propane (R-290) system, J. Chem. Eng. Data 47 (2002) 818-822. [34] J. S. Lim, J. Y. Park, K. S. Lee, et al, Measurement of vapor-liquid equilibria for the binary mixture of pentafluoroethane (HFC-125)+ propane (R-290), J. Chem. Eng. Data 49 (2004) 750-755. [35] S. Bobbo, L. Fedele, R. Camporese, et al, Hydrogen-bonding of HFCs with dimethyl ether: evaluation by isothermal VLE measurements, Fluid Phase Equilib. 199 (2002) 153-160. [36] X. Dong, M. Gong, J. Liu, et al, Isothermal (vapour+ liquid) equilibrium for the binary
ACCEPTED MANUSCRIPT {1, 1, 2, 2-tetrafluoroethane + propane} and {1, 1, 2, 2-tetrafluoroethane+ isobutane} systems, J. Chem. Thermodyn. 42 (2010) 1152-1157. [37] X. Dong, M. Gong, J. Liu, et al, Experimental measurement of vapor pressures and (vapor+ liquid) equilibrium for {1, 1, 1, 2-tetrafluoroethane+ propane} by a recirculation
RI PT
apparatus with view windows, J. Chem. Thermodyn. 43 (2011) 505-510. [38] R. Stryjek, S. Bobbo, R. Camporese, Isothermal vapor-liquid equilibria for 1, 1, 1, 2-tetrafluoroethane+ propane and propane+ 1, 1, 1-trifluoroethane at 283.18 K, J. Chem. Eng. Data 43 (1998) 241-244.
SC
[39] J. S. Lim, J. Y. Park, J. W. Kang, et al, Measurement of vapor–liquid equilibria for the binary systems of propane+ 1, 1, 1, 2-tetrafluoroethane and 1, 1, 1-trifluoroethane+ propane at
M AN U
various temperatures, Fluid Phase Equilib. 243 (2006) 57-63.
[40] J. S. Lim, J. Y. Park, B. G. Lee, High pressure vapor-liquid equilibria of binary system 1, 1, 1-trifluoroethane+ propane, Korean Journal of Chemical Engineering 22 (2005) 932-937. [41] X. Dong, M. Gong, Y. Zhang, et al, Isothermal Vapor−Liquid Equilibria for 1, 1 Difluoroethane + Propane at Temperatures between (254.31 and 287.94) K, J. Chem. Eng.
TE D
Data 55 (2009) 2145-2148.
[42] G. Seong, A. R. Kim, K. P. Yoo, et al, Measurement of VLE data for propane+ 1, 1-difluoroethane at various temperatures from 268.15 to 333.15 K, Korean Journal of
EP
Chemical Engineering 26 (2009) 206-213.
[43] S. Bobbo, L. Fedele, M. Scattolini, et al, Isothermal vapour+ liquid equilibrium
AC C
measurements and correlation for the dimethyl ether+ 1, 1, 1, 2, 3, 3, 3-heptafluoropropane and the propane+ 1, 1, 1, 2, 3, 3, 3-heptafluoropropane systems, Fluid Phase Equilib. 224 (2004) 119-123.
[44]J. S. Lim, G. Seong, H. K. Roh, et al, Vapor-liquid equilibria for propane + 1, 1, 1, 2, 3, 3, 3-heptafluoropropaneat various temperatures, J. Chem. Eng. Data 52 (2007) 2250-2256. [45] S. Bobbo, G. Artico, L. Fedele, et al, Vapor-liquid equilibrium measurements and correlation of the binary refrigerant mixture propane + 1, 1, 1, 2, 3, 3, 3-heptafluoropropane at 278.15, 293.15, and 308.15 K, J. Chem. Eng. Data 47 (2002) 839-842. [46] S. Bobbo, R. Camporese, R. Stryjek, (Vapour+ liquid) equilibrium measurement and correlation of the refrigerant (propane+ 1, 1, 1, 3, 3, 3-hexafluoropropane) at T=(283.13,
ACCEPTED MANUSCRIPT 303.19, and 323.26) K, J. Chem. Thermodyn. 32 (2000) 1647-1656. [47] S. Bobbo, L. Fedele, R. Camporese, et al, Isothermal vapor–liquid equilibrium for the three binary systems 1, 1, 1, 2, 3, 3-hexafluoropropane with dimethyl ether or propane, and 1, 1, 1, 3, 3, 3-hexafluoropropane with dimethyl ether, Fluid Phase Equilib. 174 (2000) 3-12.
RI PT
[48] X. Dong, M. Gong, J. Shen, et al, Experimental measurement of vapor–liquid equilibrium for (trans-1, 3, 3, 3-tetrafluoropropene+ propane), Int. J. Refrig. 34 (2011) 1238-1243.
[49] M. Gong, H. Guo, X. Dong, H. Li, J. Wu. (Vapor+ liquid) phase equilibrium
SC
measurements for {trifluoroiodomethane+ propane} from T=(258.150 to 283.150) K, J. Chem. Thermodyn. 79 (2014) 167-170.
M AN U
[50] L. Fedele, S. Bobbo, M. Scattolini, et al, Vapor-liquid equilibrium for the difluoromethane + n-butane system, J. Chem. Eng. Data 50 (2005) 44-48. [51] J. Im, M. Kim, B. G. Lee, et al, Vapor-liquid equilibria of the binary n-butane + difluoromethane + pentafluoroethane + 1, 1, 1, 2-tetrafluoroethane systems, J. Chem. Eng. Data 50 (2005) 359-363.
TE D
[52] L. Fedele, S. Bobbo, R. Camporese, et al, Vapour–liquid equilibrium measurements and correlation for the pentafluoroethane + n-butane system, Fluid Phase Equilib. 227 (2005) 275-281.
EP
[53] J. S. Lim, G. Seong, H. K. Roh, et al, Vapor-liquid equilibria for the 1, 1, 1, 2-tetrafluoroethane+ n-butane system, J. Chem. Eng. Data 52 (2007) 1313-1318.
AC C
[54] J. Im, G. Lee, Y. J. Lee, et al, Vapor-liquid equilibria of the 1, 1, 1-trifluoroethane+ n-butane system, J. Chem. Eng. Data 52 (2007) 391-394. [55] G. Seong, J. S. Lim, H. S. Byun, Vapor− Liquid Equilibria for the Binary System of 1, 1, 1-Trifluoroethane+Butane at Various Temperatures, J. Chem. Eng. Data 53 (2008) 1470-1473. [56] J. S. Lim, G. Seong, H. S. Byun, Vapor–liquid equilibria for the binary system of 1, 1-difluoroethane+n-butane at various temperatures, Fluid Phase Equilib. 259 (2007) 165-172. [57] J. Im, G. Lee, Y. J. Lee, et al, (Vapour+ liquid) equilibria of the {1, 1-difluoroethane + n-butane} system, J. Chem. Thermodyn. 39 (2007) 1164-1167. [58] G. Seong, J. S. Lim, H. K. Roh, et al, Vapor–Liquid Equilibria for 1, 1, 1, 2, 3, 3, 3 Heptafluoropropane+Butane at Various Temperatures, J. Chem. Eng. Data 53 (2007) 189-193.
ACCEPTED MANUSCRIPT [59] J. S. Lim, J. Y. Park, B. G. Lee, et al, Phase equilibria of chlorofluorocarbon alternative refrigerant mixtures. Binary systems of trifluoromethane+ isobutane at 283.15 and 293.15 K and 1, 1, 1-trifluoroethane + isobutane at 323.15 and 333.15 K, J. Chem. Eng. Data 45 (2000) 734-737.
RI PT
[60] J. S. Lim, J. Y. Park, B. G. Lee, et al, Phase equilibria of CFC alternative refrigerant mixtures: binary systems of isobutane + 1, 1, 1, 2-tetrafluoroethane,+ 1, 1-difluoroethane, and+ difluoromethane, J. Chem. Eng. Data 44 (1999) 1226-1230.
[61] J. X. Chen, Z. S. Chen, P. Hu, et al, Vapor-liquid equilibria for the binary system
SC
pentafluoroethane + isobutane at temperatures from (243.15 to 333.15) K, J. Chem. Eng. Data 52 (2007) 2159-2162.
M AN U
[62] S. Bobbo, R. Stryjek, N. Elvassore, et al, A recirculation apparatus for vapor–liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a and R236fa. Fluid Phase Equilib. 150 (1998) 343-352.
[63] S. Bobbo, L. Fedele, M. Scattolini, et al, Isothermal VLE measurements for the binary mixtures HFC-134a+ HFC-245fa and HC-600a+ HFC-245fa, Fluid Phase Equilib. 185 (2001)
TE D
255-264.
[64] H. Guo, M. Gong, X. Dong, et al, A static analytical apparatus for vapour pressures and (vapour+ liquid) phase equilibrium measurements with an internal stirrer and view windows,
EP
J. Chem. Thermodyn. 76 (2014) 116-123.
[65] X. Dong, M. Gong, J. Shen, et al, Vapor–Liquid Equilibria of the trans-1, 3, 3,
AC C
3-Tetrafluoropropene + Isobutane System at Various Temperatures from (258.150 to 288.150) K. J. Chem. Eng. Data 57 (2011) 541-544. [66] P. Hu, L. X. Chen, Z. S. Chen, Vapor–liquid equilibria for binary system of 2, 3, 3, 3-tetrafluoroprop-1-ene + isobutane. Fluid Phase Equilib. 365 (2014) 1-4. [67] S. Bobbo, R. Camporese, R. Stryjek, et al, Vapor-liquid equilibrium for dimethyl ether and 2-methylpropane, J. Chem. Eng. Data
45 (2000) 829-832.
[68] H. Guo, M. Gong, X. Dong, et al, Measurements of (vapour+ liquid) equilibrium data for {trifluoroiodomethane + isobutane} at temperatures between (263.150 and 293.150) K, J. Chem. Thermodyn. 58 (2013) 428-431. [69] J. S. Lim, J. Y. Park, B. G. Lee, Vapor–liquid equilibria of CFC alternative refrigerant
ACCEPTED MANUSCRIPT mixtures: trifluoromethane + difluoromethane, trifluoromethane + pentafluoroethane, and pentafluoroethane + 1, 1-difluoroethane, Int. J. Thermophys. 21 (2000) 1339-1349. [70] Y. Zhang, M. Gong, J. Wu, Vapor-liquid equilibrium measurement and correlation for R23 + R116 system, J. Chem. Ind. Eng. 59 (2008) 269.
RI PT
[71] X. L. Cui, G. M. Chen, X. H. Han, et al, Vapor-liquid equilibria for the trifluoromethane+ 1, 1, 1, 2-tetrafluoroethane system, J. Chem. Eng. Data 51 (2006) 1927-1930.
[72] J. S. Lim, K. H. Park, B. G.Lee, et al, Phase equilibria of CFC alternative refrigerant mixtures. Binary systems of trifluoromethane +1,1,1,2-tetrafluoroethane and trifluoromethane
SC
+ 1, 1, 1, 2, 3, 3, 3-heptafluoropropane at 283.15 and 293.15 K, J. Chem. Eng. Data 46 (2001) 1580-1583.
M AN U
[73] J. S. Lim, K. H. Park, B. G. Lee, Phase equilibria of HFC mixtures: Binary mixtures of trifluoromethane+ 1, 1-difluoroethane and trifluoromethane+ 1, 1, 1-trifluoroethane at 283.15 and 293.15 K. J, Chem. Eng. Data 47 (2002) 582-586.
[74] R. Kato, K. Shirakawa, H. Nishiumi, Critical locus and vapor–liquid equilibria of HFC32–HFC125 system, Fluid Phase Equilib. 194 (2002) 995-1008.
TE D
[75] X. Han, G. Chen, X. Cui, et al, Vapor-liquid equilibrium data for the binary mixture difluoroethane + Pentafluoroethane of an Alternative Refrigerant, J. Chem. Eng. Data 52 (2007) 2112-2116.
EP
[76] S. Horstmann, M. Wilken, K. Fischer, et al, Isothermal vapor-liquid equilibrium and excess enthalpy data for the binary systems propylene oxide+ 2-methylpentane and
AC C
difluoromethane + pentafluoroethane, J. Chem. Eng. Data 49 (2004) 1504-1507. [77] Y. Higashi, Vapor-liquid equilibrium, coexistence curve, and critical locus for difluoromethane+pentafluoroethane(R32+ R125), J. Chem. Eng. Data
42 (1997) 1269-1273.
[78] R. Kato, H. Nishiumi, Vapor–liquid equilibria and critical loci of binary and ternary systems composed of CH2F2, C2HF5 and C2H2F4, Fluid Phase Equilib. 249 (2006) 140-146. [79] S. Shimawaki, K. Fujii, Y. Higashi, Precise measurements of the vapor-liquid equilibria of HFC-32/134a mixtures using a new apparatus, Int. J. Thermophys. 23 (2002) 801-808. [80] Y. Higashi, Vapor-liquid equilibrium, coexistence curve, and critical locus for binary HFC-32/HFC-134a mixture, Int. J. Thermophys. 16 (1995) 1175-1184. [81] B. G. Lee, J. Y. Park, J. S. Lim, et al, Phase equilibria of chlorofluorocarbon alternative
ACCEPTED MANUSCRIPT refrigerant mixtures, J. Chem. Eng. Data 44 (1999) 190-192. [82] C. N. Kim, Y. M. Park, Vapor-liquid equilibria for the difluoromethane (HFC-32)+ 1, 1, 1-trifluoroethane (HFC-143a) system, J. Chem. Eng. Data 45 (2000) 34-37. [83] X. H. Han, Y. J. Xu, X. W. Min, et al, Density Data for the Refrigerant Ethyl Fluoride
RI PT
over a Temperature Range from (230 to 344) K, J. Chem. Eng. Data 56 (2011) 3038-3042. [84] C. Coquelet, D. N. Hong, A. Chareton, et al, Vapour–liquid equilibrium data for the difluoromethane+ 1, 1, 1, 2, 3, 3, 3-heptafluoropropane system at temperatures from 283.20 to 343.38 K and pressures up to 4.5 MPa, Int. J. Refrig. 26 (2003) 559-565.
SC
[85] S. Bobbo, R. Camporese, R. Stryjek, Vapor-Liquid Equilibria for Difluoromethane + and Pentafluoroethane + 1, 1, 1, 3, 3, 3-Hexafluoropropane at 303.2 and 323.3 K, J. Chem. Eng.
M AN U
Data 44 (1999) 349-352.
[86] S. Bobbo, L. Fedele, M. Scattolini, et al, Vapor+ Liquid Equilibrium Measurements and Correlation of the Binary Refrigerant Mixtures Difluoromethane+ 1, 1, 1, 2, 3, 3 Hexafluoropropane and Pentafluoroethane+ 1, 1, 1, 2, 3, 3-Hexafluoropropane at 288.6, 303.2, and 318.2 K, Int. J. Thermophys. 21 (2000) 781-791.
TE D
[87] Y. Arakawa, H. S. Kim, T. Kamiaka, et al, Thermophysical property measurement of HFO-1234yf + HFC-32 mixtures.//2010 International Symposium on Next-generation Air-Conditioning and Refrigeration Technology, Tokyo, Japan. 2010.
EP
[88] T. Kamiaka, C. Dang, E. Hihara, Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a, Int. J. Refrigeration 36 (2013) 965-971.
AC C
[89] C. Coquelet, A. Valtz, D. Richon, Vapor–liquid equilibrium data for the difluoromethane–dimethyl ether system at temperatures from 283.03 to 363.21 K and pressures up to 5.5 MPa, Fluid Phase Equilib. 232 (2005) 44-49. [90] L. Fedele, S. Bobbo, V. De Stefani, et al, Isothermal VLE measurements for difluoromethane + dimethyl ether and an evaluation of hydrogen bonding, J. Chem. Eng. Data 50 (2005) 128-132. [91] J. Im, G. Lee, H. Kim, Vapor-liquid equilibria of the difluoromethane+ dimethyl ether and 1, 1, 1, 2-tetrafluoroethane+dimethyl ether systems, J. Chem. Eng. Data 51 (2006) 1126-1129. [92] H. Madani, A. Valtz, C. Coquelet, et al, Vapor–liquid equilibrium data for the
ACCEPTED MANUSCRIPT (hexafluoroethane+ 1, 1, 1, 2-tetrafluoroethane) system at temperatures from 263 to 353K and pressures up to 4.16 MPa, Fluid Phase Equilib. 268 (2008) 68-73. [93] H. Madani, C. Coquelet, D. Richon, Vapor-liquid Equilibrium Data Concerning Refrigerant Systems (R116+ R143a), Energy Procedia. 18 (2012) 21-34.
RI PT
[94] X. H. Han, G. M. Chen, C. S. Li, et al, Isothermal Vapor-Liquid Equilibrium of (Pentafluoroethane+ Fluoroethane) at Temperatures between (265.15 and 303.15) K Obtained with a Recirculating Still, J. Chem. Eng. Data 51 (2006) 1232-1235.
[95] S. X. Hou, Y. Y. Duan, Measurement of Vapor−Liquid Equilibria for the
SC
Pentafluoroethane + Propene Binary System from (263.15 to 323.15) K, J. Chem. Eng. Data 55 (2010) 3184-3188.
M AN U
[96] L. Fedele, S. Bobbo, R. Camporese, et al, Isothermal vapour+ liquid equilibrium measurements and correlation for the pentafluoroethane+ cyclopropane and the cyclopropane + 1, 1, 1, 2-tetrafluoroethane binary systems, Fluid Phase Equilib. 251 (2007) 41-46. [97]H. Guo, M. Gong, X. Dong, et al. (Vapour+ liquid) equilibrium data for the azeotropic {1, 1-difluoroethane (R152a) + 1, 1, 2, 2-Tetrafluoroethane (R134)} system at various
TE D
temperatures from (258.150 to 288.150) K, J. Chem. Thermodyn. 54 (2012) 129-133. [98] X. Dong, M. Gong, J. Liu, et al, Vapor− Liquid Equilibria for 1, 1, 2, 2-Tetrafluoroethane + Fluoroethane at Temperatures between (263.15 and 288.15) K, J. Chem. Eng. Data
EP
(2010) 3383-3386.
55
[99] X. Dong, H. Guo, M. Gong, et al, Measurements of isothermal (vapour+ liquid)
AC C
equilibria data for {1, 1, 2, 2-Tetrafluoroethane + trans-1, 3, 3, 3-tetrafluoropropene} at T=(258.150 to 288.150) K, J. Chem. Thermodyn. 60 (2013) 25-28. [100]
X. Dong, M. Gong, J. Wu, Phase equilibrium for the binary azeotropic mixture of
trifluoroiodomethane + 1, 1, 2, 2-tetrafluoroethane at temperatures from 258.150 to 283.150 K, Fluid Phase Equilib. 315 (2012) 35-39. [101]
J. S. Lim, J. Y. Park, B. G. Lee, et al, Phase equilibria of 1, 1, 1-trifluoroethane + 1,
1, 1, 2-tetrafluoroethane, and+ 1, 1-difluoroethane at 273.15, 293.15, 303.15, and 313.15 K, Fluid Phase Equilib. 193 (2002) 29-39. [102]
C. N. Kim, E. H. Lee, Y. M. Park, et al, Vapor–Liquid Equilibria for the 1, 1, 1 -
Trifluoroethane + 1, 1, 1, 2-Tetrafluoroethane System, Int. J. Thermophys. 21 (2000) 871-881.
ACCEPTED MANUSCRIPT [103]
X. Dong, M. Gong, Y. Zhang, et al, Vapor− Liquid Equilibria of the Fluoroethane +
1, 1, 1, 2-Tetrafluoroethane System at Various Temperatures from (253.15 to 292.92) K, J. Chem. Eng. Data [104]
53 (2008) 2193-2196.
S. Koo, J. Chang, H. Kim, et al, Vapor–Liquid Equilibrium Measurements for
RI PT
Binary Mixtures Containing 1, 1, 1, 2, 3, 3, 3-Heptafluoropropane, Int. J. Thermophys. 21 (2000) 405-414. [105]
J. Y. Park, J. S. Lim, B. G. Lee, et al, Phase Equilibria of CFC Alternative
Refrigerant Mixtures: 1, 1, 1, 2, 3, 3, 3-Heptafluoropropane + Difluoromethane,+ 1, 1, 1,
[106]
SC
2-Tetrafluoroethane, and+ 1, 1-Difluoroethane, Int. J. Thermophys. 22 (2001) 901-917.
M. Kleiber, Vapor-liquid equilibria of binary refrigerant mixtures containing
[107]
M AN U
propylene or R134a, Fluid Phase Equilib. 92 (1994) 149-194.
Q. N. Ho, B. G. Lee, J. Y. Park, et al, Measurement of vapor–liquid equilibria for the
binary mixture of propylene + 1, 1, 1, 2-tetrafluoroethane, Fluid Phase Equilib. 225 (2004) 125-132. [108]
A. Valtz, L. Gicquel, C. Coquelet, et al, Vapour–liquid equilibrium data for the 1, 1,
TE D
1, 2 tetrafluoroethane + dimethyl ether system at temperatures from 293.18 to 358.15 K and pressures up to about 3MPa, Fluid Phase Equilib. 230 (2005) 184-191. [109]
Q. Wang, Z. J. Gao, Y. J. Xu, et al, Isothermal Vapor− Liquid Equilibrium Data for
EP
the Binary Mixture Trifluoroethane + Ethyl Fluoride over the Temperature Range (253.15 to 303.15) K, J. Chem. Eng. Data 55 (2010) 2990-2993. S. Bobbo, R. Camporese, C. Zilio, Isothermal Vapor-Liquid Equilibria for the
AC C
[110]
Binary System 1, 1, 1-Trifluoroethane + 1, 1, 1, 3, 3, 3-Hexafluoropropane at 283.11, 298.16, and 313.21 K, J. Chem. Eng. Data 45 (2000) 276-279. [111]
J. Im, G. Lee, J. Lee, et al, Vapor–liquid equilibria of the 1, 1, 1-trifluoroethane
[HFC-143a]+ dimethyl ether [DME] system, Fluid Phase Equilib. 251 (2007) 59-62. [112]
Z. Yang, M. Gong, H. Guo, et al, Phase equilibrium for the binary mixture of {1,
1-difluoroethane [R152a]+ trans-1, 3, 3, 3-tetrafluoropropene [R1234ze (E)]} at various temperatures from 258.150 to 288.150 K, Fluid Phase Equilib. 355 (2013) 99-103. [113]
M. Gong, K. Cheng, X. Dong, et a, Measurements of isothermal (vapor+ liquid)
phase equilibrium for {trifluoroiodomethane [R13I1]+ 1, 1-difluoroethane [R152a]} from
ACCEPTED MANUSCRIPT T=(258.150 to 283.150) K, J. Chem. Thermodyn. 88 (2015) 90-95. [114]
Q. Wang, Y. J. Xu, Z. J. Gao, et al, Isothermal vapor–liquid equilibrium data for the
binary mixture ethyl fluoride + 1, 1, 1, 2, 3, 3, 3-heptafluoroproane over a temperature range from 253.15 K to 313.15 K, Fluid Phase Equilib. 297 (2010) 67-71. C. Coquelet, A. Valtz, P. Naidoo, et al, Isothermal Vapor− Liquid Equilibrium Data
RI PT
[115]
for the Hexafluoropropylene (R1216) + Propylene System at Temperatures from (263.17 to 353.14) K, J. Chem. Eng. Data 55 (2009) 1636-1639. [116]
H. Guo, M. Gong, X. Dong, et al, (Vapour+ liquid) equilibrium data for the binary
SC
system of {trifluoroiodomethane + trans-1, 3, 3, 3-tetrafluoropropene} at various temperatures from (258.150 to 298.150) K, J. Chem. Thermodyn. 47 (2012) 397-401. S. Bobbo, R. Camporese, R. Stryjek, (Vapour+ liquid) equilibrium measurements
M AN U
[117]
and correlations of the refrigerant mixture {dimethyl ether (RE170)+ 1, 1, 1, 3, 3, 3-hexafluoropropane (R236fa)} at the temperatures (303.68 and 323.75) K, J. Chem. Thermodyn. 30 (1998) 1041-1046. [118]
Y. Zhao, M. Gong, X. Dong, et al, The investigation on the vapor+ liquid
TE D
equilibrium for the ternary mixture isobutene (R600a)+ 1, 1-difluoroethane (R152a)+ 1, 1, 2, 2-tetrafluoroethane (R134) at temperatures from 253.150 to 273.150 K, Fluid Phase Equilib. 408 (2016) 72-78.
Y. Zhao, M. Gong, X. Dong, et al, (Vapor+ liquid+ liquid) equilibrium
EP
[119]
measurements and correlation for {1, 1, 2, 2-tetrafluoroethane (R134)+ isobutane (R600a)}
AC C
system, J. Chem. Thermodyn. 78 (2014) 182-188. [120]
X. Dong, Y. Zhao, M. Gong, et al, (Vapour+ liquid+ liquid) equilibrium
measurements and correlation for the {1, 1, 1, 2-tetrafluoroethane (R134a)+ n-butane (R600)} system, J. Chem. Thermodyn. 84 (2015) 87-92. [121]
E. W. Lemmon, M. L. Huber, M. O. McLinden, NIST Standard Reference Database
23. Reference Fluid Thermodynamic and Transport Properties (REFPROP), 2012.
ACCEPTED MANUSCRIPT Table 1. Results of the recorrelated data with PR + VDW model for binary systems. AARDpa AADyb Kij
Com.1
Com.2
type
[21]
R170
R23
azeotropic 0.9526
0.0077
0.1874
[22]
R170
R116
azeotropic 0.6298
0.0051
0.1308
[23, 24]
R290
R600
zeotropic
0.4466
0.0178
0.0039
[24, 25]
R290
R600a
zeotropic
0.4090
0.0094
-2.50E-04
[26]
R290
R23
azeotropic 1.9843
0.0114
0.1994
[27-30]
R290
R32
azeotropic 1.7100
0.0104
0.1893
[31]
R290
R116
azeotropic 1.1735
0.0114
0.1583
[28, 32-35]
R290
R125
azeotropic 0.7182
0.0053
0.1490
[36]
R290
R134
azeotropic 0.6329
0.0099
0.1775
[37,38]
R290
R134a
azeotropic 0.7935
0.0051
0.1648
[38-40]
R290
R143a
azeotropic 0.4814
0.0036
0.1245
[41, 42]
R290
R152a
azeotropic 1.0890
0.0114
0.1346
[43-45]
R290
R227ea
azeotropic 0.9623
0.0057
0.1353
[46, 47]
R290
R236fa
azeotropic 0.8178
0.0046
0.1525
[47]
R290
R236ea
azeotropic 0.7117
0.0030
0.1546
[48]
R290
R1234ze[E] azeotropic 0.2969
0.0027
0.1089
[49]
R290
R13I1
zeotropic
0.3461
0.0022
0.0238
R600
R23
zeotropic
2.5950
0.0071
0.2046
R600
R32
azeotropic 4.5555
0.0120
0.1993
SC
M AN U
TE D
AC C
[50, 51]
EP
[26]
RI PT
Conference
[51, 52]
R600
R125
azeotropic 1.1403
0.0066
0.1584
[51, 53]
R600
R134a
azeotropic 1.3468
0.0117
0.1676
[54, 55]
R600
R143a
zeotropic
1.2326
0.0118
0.1318
[56, 57]
R600
R152a
azeotropic 0.9483
0.0064
0.1300
[58]
R600
R227ea
azeotropic 0.6188
0.0138
0.1400
[59]
R600a
R23
zeotropic
2.2983
0.0146
0.2171
[60]
R600a
R32
azeotropic 2.8500
0.0071
0.1910
[61]
R600a
R125
azeotropic 3.1621
N/A
0.1466
ACCEPTED MANUSCRIPT R600a
R134
azeotropic 0.8964
0.0076
0.1641
[60, 62]
R600a
R134a
azeotropic 1.2891
0.0076
0.1556
[59]
R600a
R143a
azeotropic 1.0830
0.0138
0.1364
[60]
R600a
R152a
azeotropic 0.7273
0.0154
0.1168
[62]
R600a
R236fa
azeotropic 0.2313
0.0029
0.1482
[63, 64]
R600a
R245fa
azeotropic 0.6620
0.0054
0.1570
[65]
R600a
R1234ze[E] azeotropic 0.3891
0.0020
0.1058
[66]
R600a
R1234yf
azeotropic 0.5722
0.0034
0.0948
[67]
R600a
RE170
azeotropic 0.5428
0.0031
0.0401
[68]
R600a
R13I1
zeotropic
0.2487
0.0045
0.0248
[69]
R23
R32
zeotropic
0.3616
0.0035
-0.0130
[70]
R23
R116
azeotropic 1.1521
0.0143
0.1106
[69]
R23
R125
zeotropic
0.5000
0.0044
0.0032
[71, 72]
R23
R134a
zeotropic
1.1200
0.0064
0.0081
[73]
R23
R143a
zeotropic
0.8600
0.0051
-0.0022
[73]
R23
R152a
zeotropic
1.2500
0.0066
-0.0190
[72]
R23
R227ea
zeotropic
1.8304
0.0083
0.0221
[74-77]
R32
R125
zeotropic
0.8700
0.0055
0.0033
[78-80]
R32
R134a
zeotropic
0.7515
0.0043
-0.0022
R32
R143a
azeotropic 0.4517
0.0046
0.0141
R32
R152a
zeotropic
1.6100
0.0073
0.0166
SC
M AN U
TE D
AC C
[81]
EP
[81, 82]
RI PT
[36]
[83]
R32
R161
zeotropic
0.9383
0.0129
0.0128
[84]
R32
R227ea
zeotropic
0.7868
0.0057
0.0058
[85]
R32
R236fa
zeotropic
0.5039
0.0039
-0.0042
[86]
R32
R236ea
zeotropic
0.6021
0.0033
-0.0153
[87, 88]
R32
R1234yf
zeotropic
0.5695
0.0102
0.0391
[89-91]
R32
RE170
zeotropic
0.7981
0.0046
-0.0077
[92]
R116
R134a
zeotropic
1.8869
0.0121
0.1157
[93]
R116
R143a
zeotropic
1.0935
N/A
0.1014
R125
R134a
zeotropic
[15]
R125
R143a
[69]
R125
[94]
0.0017
azeotropic 0.7966
N/A
-0.0101
R152a
zeotropic
0.5577
0.0063
-0.0205
R125
R161
zeotropic
1.4348
0.0141
-0.0023
[32]
R125
R227ea
zeotropic
1.1612
0.0054
0.0021
[85]
R125
R236fa
zeotropic
0.1603
0.0013
0.0020
[86]
R125
R236ea
zeotropic
0.2218
0.0016
0.0064
[88]
R125
R1234yf
zeotropic
1.2011
0.009
0.0031
[95]
R125
R1270
azeotropic 0.4692
0.0042
0.1005
[96]
R125
RC270
azeotropic 0.6583
0.0031
0.1034
[35]
R125
RE170
zeotropic
0.0191
-0.1186
[97]
R134
R152a
azeotropic 0.1600
0.0014
-0.0198
[98]
R134
R161
zeotropic
0.7032
0.0039
-0.0373
[99]
R134
R1234ze[E] azeotropic 0.1502
0.0027
0.0106
[100]
R134
R13I1
azeotropic 0.6022
0.0061
0.0965
[101, 102]
R134a
R143a
zeotropic
0.6559
0.0049
-0.0036
[103]
R134a
R161
zeotropic
0.4766
0.0044
-0.0116
[104, 105]
R134a
R227ea
zeotropic
0.6137
0.0059
0.0085
[62]
R134a
R236fa
zeotropic
0.1076
0.0016
-0.0020
[63]
R134a
R245fa
zeotropic
0.2263
0.0018
0.0013
R134a
R1234yf
azeotropic 0.3586
0.0024
0.0185
1.6244
M AN U
TE D
AC C
[88]
0.4300
SC
[78]
RI PT
0.0044
EP
ACCEPTED MANUSCRIPT
[106, 107]
R134a
R1270
azeotropic 0.5759
0.0042
0.1203
[96]
R134a
RC270
azeotropic 0.5759
0.0042
0.1203
[91, 108]
R134a
RE170
azeotropic 0.5662
0.0044
-0.0364
[101]
R143a
R152a
zeotropic
0.5867
0.0075
0.0096
[109]
R143a
R161
zeotropic
0.5363
0.0131
-0.0046
[110]
R143a
R236fa
zeotropic
0.3031
0.0030
-0.0130
[111]
R143a
RE170
zeotropic
2.6641
0.0112
-0.0062
[105]
R152a
R227ea
zeotropic
0.6946
0.0060
-0.0111
ACCEPTED MANUSCRIPT R152a
R1234ze[E] zeotropic
0.1753
0.0014
0.0026
[106]
R152a
R1270
zeotropic
0.8373
0.0044
0.0854
[113]
R152a
R13I1
azeotropic 0.3526
0.0026
0.0527
[114]
R161
R227ea
zeotropic
2.8922
0.0148
-0.0663
[115]
R1216
R1270
azeotropic 1.3860
0.0053
0.0858
[116]
R13I1
R1234ze[E] azeotropic 0.1655
0.0024
0.0510
[43]
RE170
R227ea
azeotropic 2.1361
0.0153
-0.1492
[47, 117]
RE170
R236fa
zeotropic
1.1827
0.0069
-0.0922
[47]
RE170
R236ea
zeotropic
0.9236
0.0078
-0.1176
SC
RI PT
[112]
N/A The vapor phase compositions are not available in the original paper.
b
AARD p =
AAD y =
1 N
N
1 N
∑ abs( p
exp
− pcal ) / pexp × 100
i
N
∑ abs( y
exp
− y cal )
i
M AN U
a
Com.3
R23
R116
R600
R23/R32/R125/R134a/R143a/R152a/R227ea
R600a
R23/R32/R125/R134/R134a/R143a/R152a/R236fa/R1234ze(E)/R13I1
R23
R116/R125/R134a/R143a/R152a/R227ea
AC C
R170
Com.2
EP
Com.1
TE D
Table 2. The 171 ternary systems tested in present work.
R290
R32
R125/R134a/R143a/R152a/R227ea/R236fa/R236ea
R116
R134a/R143a
R125
R134a/R143a/R152a/R227ea/R236fa/R236ea
R134
R152a/R1234ze(E)/R13I1
R134a
R143a/R227ea/R236fa
R143a
R152a/R236fa
R152a
R227ea/R1234ze(E)/R13I1
R13I1
R1234ze(E)
ACCEPTED MANUSCRIPT R23
R32/R125/R134a/R143a/R152a
R32
R134a/R143a/R152a/R236fa/R1234yf/RE170
R125
R134a/R143a/R152a/R236fa/R1234yf/RE170
R134
R152a/R1234ze(E)/R13I1
R134a
R143a/R236fa/R245fa/R1234yf/RE170
R143a
R152a/R236fa/RE170
R23
R125/R134a/R143a/R152a/R227ea
R32
R125/R134a/R143a/R152a/R227ea
R125
R134a/R143a/R152a/R227ea
R134a
R143a/R227ea
R152a
R143a/R227ea
R32
R125/R134a/R143a/R152a/R227ea
R116
R134a/R143a
R125
R134a/R143a/R152a/R227ea
R134a
R143a/R227ea
R152a
R143a/ R227ea
R227ea
RE170
R125
R134a/R143a/R152a/R161/R227ea/R236fa/R236ea/R1234yf/RE170
R134a
R143a/R161/R227ea/R236fa/R1234yf/RE170
SC
EP
R143a
R152a/R161/R236fa/RE170
R227ea
R152a/R161
AC C
R32
TE D
R23
M AN U
R600
R116
RI PT
R600a
R236ea
RE170
R134a
R143a
R134a
R143a/R161/R227ea/R236fa/R1234yf/R1270/RC270/RE170
R143a
R152a/R161/R236fa/RE170
R152a
R227ea/R1270
RE170
R227ea/R236fa/R236ea
R152a
R1234ze(E)/R13I1
R13I1
R1234ze(E)
R125
R134
R143a
R161/R236fa/RE170
R161
R227ea
RE170
R236fa/R227ea
R143a
R236fa
RE170
R152a
R13I1
R1234ze(E)
R134a
RI PT
ACCEPTED MANUSCRIPT
Table 3. The azeotropic type and the parameters of Antoine equation of the predicted ternary azeotropic refrigerants. Com.1
Com.2
Com.3
BAS
TOTA
MIX1
R32
R125
R143a
3
saddle
MIX2
R600a
R134
R152a
3
saddle
MIX3
R134a
RE170
R600a
3
saddle
MIX4
R152a
R134
R1234ze(E)
2
MIX5
R13I1
R134
R152a
MIX6
RE170
R236fa
MIX7
R170
R23
MIX8
R13I1
R600a
A
B
C
4.754
1056.917
275.149
4.356
1020.966
263.299
4.380
1039.206
262.479
saddle
4.692
1193.517
275.863
3
saddle
4.357
1023.473
262.408
R600a
2
saddle
4.278
1038.311
262.026
R116
3
max
4.350
771.052
274.735
2
max
4.251
986.954
257.219
TE D
M AN U
SC
No.
EP
R1234ze(E)
0.00 1.00
0.25
0.50
25 R1
R1 43
a
AC C
0.75
0.50
0.75
0.25 T
1.00 0.00
0.25
0.50
0.75
0.00 1.00
R32
Figure 1. The azeotropic loci of R32 + R125+ R143a ternary system. (○): reference [13] at 221 K; (☆): reference [14] at 219.945 K; (●): this work at temperatures range from 223.15 K to 283.15 K.
ACCEPTED MANUSCRIPT 0.00 1.00
0.75 34 R1
0.50
0.50
0.75
0.25 T
1.00 0.00
0.25
0.50
0.00 1.00
0.75
R600a
RI PT
R1 52 a
0.25
Figure 2. The azeotropic loci of R600a + R134 + R152a ternary system. (○): reference [118]
SC
at temperatures range from 253.15 K to 273.15 K; (●): this work at temperatures range from
0.00 1.00
T
0.75 0 17 RE
R6 00 a
0.25
0.50
0.50
0.75
1.00 0.00
0.25
0.50 R134a
TE D
0.25
M AN U
243.15 K to 323.15 K.
0.00 1.00
0.75
Figure 3. The azeotropic loci of R134a + RE170 + R600a ternary system at temperatures
EP
range from 233.15 K to 323.15 K.
R1
23 4ze (E )
0.25
0.50
T
0.75 34 R1
AC C
0.00 1.00
0.50
0.75
1.00 0.00
0.25
0.50
0.25
0.75
0.00 1.00
R152a
Figure 4. The azeotropic loci of R152a + R134 + R1234ze(E) ternary system at temperatures range from 253.15 K to 343.15 K.
ACCEPTED MANUSCRIPT 0.00 1.00
0.75 34 R1
0.50
0.50
0.75
0.25 T
1.00 0.00
0.25
0.50
0.00 1.00
0.75
R13I1
RI PT
R1 52 a
0.25
Figure 5. The azeotropic loci of R13I1 + R134 + R152a ternary system at temperatures range
SC
from 253.15 K to 323.15 K.
0.50
0.50
T
0.25
0.25
0.50 RE170
0.00 1.00
0.75
TE D
0.75
1.00 0.00
0.75 fa 36 R2
R6 00 a
0.25
M AN U
0.00 1.00
Figure 6. The azeotropic loci of RE170 + R236fa + R600a ternary system at temperatures range from 243.15 K to 333.15 K.
EP
0.00 1.00
AC C
0.75
3 R2
R1 16
0.25
0.50
0.50 T
0.75
1.00 0.00
0.25
0.50
0.25
0.75
0.00 1.00
R170
Figure 7. The azeotropic loci of R170 + R23 + R116 ternary system at temperatures range from 173.15 K to 253.15 K.
ACCEPTED MANUSCRIPT 0.00 1.00
0.25
R6
23 4ze (E )
0.75
0.75
0.25
RI PT
R1
0.50
00a
0.50
T 1.00 0.00
0.25
0.50
0.00 1.00
0.75
R13I1
Figure 8. The azeotropic loci of R13I1 + R600a + R1234ze(E) ternary system at temperatures
M AN U
R32 R125 R143a MIX1
1.0
SC
range from 233.15 K to 313.15 K.
R600a R134 R152a MIX2
1.2 1.0
p/MPa
p/MPa
0.8
0.5
0.6 0.4
0.0
240
TE D
0.2
260
0.0
280
260
280
(a) R32 + R125 + R143a system
R134a RE170 R600a MIX3
1.2
2.0
1.2 p/MPa
0.8
p/MPa
R152a R134 R1234ze(E) MIX4
1.6
AC C
1.0
320
(b) R600a + R134 + R152a system
EP
1.4
300
T/K
T/K
0.6
0.8
0.4
0.4
0.2 0.0
240
260
280
300
T/K
(c) R134a + RE170 + R600a system
320
0.0
260
280
300
320
340
T/K
(d) R152a + R134 + R1234ze(E) system
ACCEPTED MANUSCRIPT 1.2 1.0
1.2 1.0 p/MPa
0.8 p/MPa
RE170 R236fa R600a MIX6
1.4
R13I1 R134 R152a MIX5
0.6
0.8 0.6
0.4
0.0
0.2 240
260
280
300
0.0
320
260
T/K
320
0.8 0.7
p/MPa
0.8
R13I1 R600a R1234ze(E) MIX8
M AN U
0.6
1.2
SC
0.9
p/MPa
300
(f) RE170 + R236fa + R600a system
R170 R23 R116 MIX7
1.6
280
T/K
(e) R13I1 + R134 + R152a system
2.0
RI PT
0.4 0.2
0.5 0.4 0.3 0.2
0.4
0.1
0.0
0.0
180
200
220
240
TE D
T/K
(g) R170 + R23 + R116 system
240
260
280
300
T/K
(h) R13I1 + R600a + R1234ze(E) system
Figure 9. The azeotropic pressure of the ternary systems and the saturated vapor pressures of
AC C
EP
the single fluids.
(a) R32 + R125 + R143a system
(b) R600a + R134 + R152a system
(d) R152a + R134 + R1234ze(E) system
TE D
M AN U
SC
(c) R134a + RE170 + R600a system
RI PT
ACCEPTED MANUSCRIPT
(f) RE170 + R236fa + R600a system
AC C
EP
(e) R13I1 + R134 + R152a system
(g) R170 + R23 + R116 system
(h) R13I1 + R600a + R1234ze(E) system
Figure 10. The vapor + liquid phase equilibrium of the azeotropic ternary systems near the azeotropic point at 253.15 K.
ACCEPTED MANUSCRIPT ► A simple method for predicting homogenous ternary azeotropic refrigerants was presented. ► 171 systems were tested and eight azeotropes with six saddle-point azeotropes and two maximum-point azeotropes were found. Seven of them are proposed for the first time on the public publications.
RI PT
► It can be concluded that to form ternary azeotropes in refrigerant mixtures at least two subsystems are azeotropic and if all subsystems are azeotropic, the ternary system is more likely to
AC C
EP
TE D
M AN U
SC
form ternary azeotrope.