Preparation and characterization of copper(II) oxide thin films grown by a novel spray pyrolysis method

Preparation and characterization of copper(II) oxide thin films grown by a novel spray pyrolysis method

M a t . R e s . B u l l . , V o l . 24, p p . 7 5 3 - 7 6 0 , 1989. Printed in the 0025-5408/89 $3.00 + .00 Copyright ( c ) 1989 P e r g a m o n P r e...

342KB Sizes 0 Downloads 113 Views

M a t . R e s . B u l l . , V o l . 24, p p . 7 5 3 - 7 6 0 , 1989. Printed in the 0025-5408/89 $3.00 + .00 Copyright ( c ) 1989 P e r g a m o n P r e s s

USA. ple.

PREPARATION AND CHARACTERIZATION OF COPPER(II) OXIDE THIN FILMS GROWN BY A NOVEL SPRAY PYROLYSIS METHOD

W. DeSisto, M. Sosnowski, F. Smith, J. Deluca*, R. Kershaw, K. Dwight and A. Wold' Department of Chemistry, Brown University Providence, RI 02912 *General Electric, Schenectady, NY (Received April 6, 1989; Refereed)

ABSTRACT A novel spray pyrolysis reactor was used to prepare thin f i l m s of CuO o n s i l i c a s u b s t r a t e s . The resulting films were characterized by x-ray diffraction, electron microscopy, optical and electrical measurements. The films were single phase, homogeneous, and uniform. MATERIALS INDEX: c o p p e r , o x i d e s Introduction Copper(II) oxide thin films have been grown by reactive-ion sputtering (1), o x i d a t i o n of e v a p o r a t e d c o p p e r m e t a l (2), a n d m e t a l - o r g a n i c chemical vapor d e p o s i t i o n (3,4). S p r a y p y r o l y s i s h a s b e e n s h o w n to be a n e f f e c t i v e m e t h o d for t h e p r e p a r a t i o n of t h i n f i l m s of o x i d e s i n c l u d i n g SnO 2, I n 2 0 3 , F e 2 0 3 , C r 2 0 3 , PbO, a n d ZnO (5,6); h o w e v e r , t h i s t e c h n i q u e h a s n o t b e e n a p p l i e d t o t h e p r e p a r a t i o n of CuO t h i n films. It w a s t h e p u r p o s e o f t h i s s t u d y t o i n v e s t i g a t e t h e p r e p a r a t i o n of CuO t h i n f i l m s b y d e c o m p o s i n g u l t r a s o n i c a l l y n e b u l i z e d aqueous copper(II) salts on silica substrates using a novel two-zone horizontal reactor. T h e CuO t h i n f i l m s w e r e c h a r a c t e r i z e d b y e l e c t r o n m i c r o s c o p y , x - r a y diffraction, and optical and electrical measurements.

Experimental T h e s p r a y p y r o l y s i s r e a c t o r u s e d i n t h i s i n v e s t i g a t i o n is s h o w n i n Fig. 1. A H o l m e s c o m m e r c i a l u l t r a s o n i c n e b u l i z e r (Fig. 1, No. 14) w a s u s e d to n e b u l i z e the copper(II) acetate solution. A n o x y g e n s w e e p flow c a r r i e d t h e m i s t t o t h e s u b s t r a t e a n d a n a d d i t i o n a l c o n s t a n t o x y g e n p u r g e flow w a s p a s s e d t h r o u g h t h e r e a c t o r a s l a b e l e d i n Fig. 1. T h e r e a c t o r w a s h e a t e d b y a t w o - z o n e m i r r o r f u r n a c e ( T r a n s t e m p Co., C h e l s e a , MA). T e m p e r a t u r e w a s m a i n t a i n e d u s i n g two Theall TC-1000 temperature controllers. L a y e r s of t h i n film w e r e d e p o s i t e d on t h e r o t a t i n g s u b s t r a t e i n t h e l o w e r t e m p e r a t u r e z o n e a n d w e r e t r a n s l a t e d to t h e h i g h e r t e m p e r a t u r e z o n e w h i c h d e n s i f i e d t h e film o n t o t h e s u b s t r a t e . This c y c l e w a s t h e n r e p e a t e d m a n y t i m e s t o p r o d u c e t h e f i n a l film. E l e c t r o n i c *Address all

correspondence 753

754

W. D e S I S T O ,

e t al.

Vol.

24,

No.

timers controlled substrate travel between zones, substrate rotation, nebulization time, and oxygen sweep time. A t y p i c a l s e t o f r e a c t i o n p a r a m e t e r s i n v o l v e d in t h e g r o w t h o f CuO f i l m s a r e g i v e n in T a b l e I. E a c h l a y e r o f t h e film w a s d e p o s i t e d a t 375%" a n d f i r e d a t 700°C. T h e s u b s t r a t e - t o - n o z z l e d i s t a n c e a n d t h e o x y g e n s w e e p flow r a t e were c r i t i c a l for o b t a i n i n g uniform films. T h e a q u e o u s c o p p e r ( I I ) a c e t a t e s o l u t i o n w a s p r e p a r e d by d i s s o l v i n g c o p p e r m e t a l i n a 1:1 m i x t u r e o f n i t r i c a c i d : d i s t i l l e d w a t e r . The r e s u l t i n g s o l u t i o n w a s e v a p o r a t e d to n e a r d r y n e s s a n d a 1:3 m i x t u r e o f a c e t i c acid:distilled water was added. T h e r e s u l t i n g s o l u t i o n w a s a g a i n e v a p o r a t e d to n e a r d r y n e s s a n d r e d i s s o l v e d in t h e a c e t i c a c i d : d i s t i l l e d w a t e r s o l u t i o n . This s o l u t i o n w a s e v a p o r a t e d to a p p r o x i m a t e l y 25 ml a n d was b r o u g h t to t h e f i n a l desired volume with the acetic acid:distilled water solution. T h e s i l i c a s u b s t r a t e s u s e d in t h i s s t u d y w e r e 0.5 in. s q u a r e s c l e a n e d t h o r o u g h l y in b o i l i n g s u l f u r i c a c i d . J u s t p r i o r to d e p o s i t i o n , t h e s u b s t r a t e s w e r e s o a k e d in c o n c e n t r a t e d s u l f u r i c a c i d f o r 5 rain., f o l l o w e d by a t h o r o u g h r i n s e in d i s t i l l e d w a t e r . T h e s u b s t r a t e s w e r e t h e n i m m e r s e d in m e t h a n o l for 1 min. a n d a l l o w e d t o d r y . T h e c l e a n e d s u b s t r a t e w a s s e c u r e d on t h e s u b s t r a t e h o l d e r a n d p l a c e d in the reactor. F i f t e e n ml of 0.1M Cu(II) s o l u t i o n w a s p l a c e d in t h e s o l u t i o n chamber and deposition started when the furnace attained equilibrium. Ultrasonic Nebulization

Spray Pyrolysis Reactor

m

10

m

1

I f 1 Ultrasonic N e b u l i z a t i o n

Spray Pyrolysis Reactor 1. Two zone furnace 2. Low temperature zone 3. High temperature zone 4. Substrate rotating motor (Synchron 4 rpm) 5. Reversible motor 6. Substrate holder (Hurst 120 rpm) 7. Substrate 8. Injection tube 9. Oxygen purge flow Fig. 1.

Apparatus

10: 11. 12. 13. 14.

Oxygen sweep flow Solution c h a m b e r Polyethylene film Solution C o m m e r c i a l ultrasonic humidifier

f o r s p r a y p y r o l y s i s o f CuO f i l m s .

14

6

Vol. 24, No. 6

COPPER OXIDES

755

Table I Reaction Parameters Firing zone temperature Deposition zone temperature

700 375

Furnace diameter P u r g e f l o w 02 Sweep flow 02

38 mm 200 c c / m i n 3 l/rain

Nebulization time Oxygen sweep time Complete cycle time

5 sec 20 s e c 160 s e c

Solution concentration

0.1

Substrate to nozzle distance Nozzle diameter

60 mm 9.3 mm

°C °C

M

Film C h a r a c t e r i z a t i o n Film t h i c k n e s s w a s m e a s u r e d u s i n g a S l o a n D e k t a k s u r f a c e p r o f i l e m e a s u r i n g s y s t e m (Part n u m b e r 900050). Cu/Si r a t i o s d e t e r m i n e d b y EDAX a n a l y s i s u s i n g a n AMR 1000A s c a n n i n g e l e c t r o n m i c r o s c o p e g a v e t h e u n i f o r m i t y of film t h i c k n e s s . T h e SEM o p e r a t e d a t 20 kV a c c e l e r a t i n g v o l t a g e , 16.5 kX m a g n i f i c a t i o n , a n d a 3x3 cm w i n d o w . P h o t o m i c r o g r a p h s o f t h e film s u r f a c e w e r e t a k e n scanning electron microscope.

on a n AMRAY 1830I

X - r a y d i f f r a c t i o n p a t t e r n s of t h i n film and p o w d e r s a m p l e s were o b t a i n e d u s i n g a P h i l i p s d i f f r a c t o m e t e r a n d m o n o c h r o m a t e d h i g h i n t e n s i t y CUKal, r a d i a t i o n (k = 1.5405A). T h e d i f f r a c t i o n p a t t e r n s w e r e t a k e n i n t h e r a n g e 12 ° < 2{} < 72" w i t h a s c a n r a t e o f 1 ° 2 e / r a i n a n d a c h a r t s p e e d o f 30 i n / h r . O p t i c a l t r a n s m i s s i o n s p e c t r a of t h e f i l m s on s i l i c a s u b s t r a t e s w e r e o b t a i n e d u s i n g a C a r y m o d e l 17 d u a l b e a m r a t i o r e c o r d i n g s p e c t r o p h o t o m e t e r in t h e r a n g e o f 500 nm t o 1500 nm. T h e o p t i c a l b a n d g a p w a s d e d u c e d f r o m t h e transmittance near the absorption edge. Resistivity at room temperature was measured in the center portion of the fllm on the substrate using the van der Pauw technique ( 7 ) . Contacts to the film were made by painting a colloidal mixture of graphite and isopropanol (Electrodag 154, Port Huron, MI) to the edge of the film. Ohmic behavior was established by measuring current-voltage characteristics. A qualitative Seebeck voltage measurement was made to determine the carrier type.

Results and Discussion In s p r a y p y r o l y s i s a s o l u t i o n is a t o m i z e d , s p r a y e d o n t o a h o t s u b s t r a t e , a n d d e c o m p o s e d , r e s u l t i n g in t h i n film g r o w t h . T h e s o l u t i o n c a n be n e b u l i z e d u l t r a s o n i c a l l y , a n d s p r a y e d c o n t i n u o u s l y or in p u l s e s . V i g u i e a n d S p i t z (8) s u g g e s t e d four p o s s i b l e g r o w t h m e c h a n i s m s for t h e s p r a y p y r o l y s i s p r o c e s s as a

756

W. D e S I S T O , et al.

Vol. 24, No. 6

f u n c t i o n of s u b s t r a t e t e m p e r a t u r e . T h e s e a r e shown in Fig. 2 and can be r e l a t e d to t h e g r o w t h of CuO films in t h i s s t u d y . In t h e f i r s t process, t h e s p r a y d r o p l e t impinges d i r e c t l y on t h e s u b s t r a t e , followed by e v a p o r a t i o n of t h e s o l v e n t , and d e c o m p o s i t i o n of t h e m e t a l s a l t to t h e oxide. In t h e s e c o n d process, t h e s o l v e n t is e v a p o r a t e d j u s t p r i or to c o n t a c t i n g t h e s u b s t r a t e , followed by d e c o m p o s i t i o n of t h e oxide. The t h i r d m ech an i sm i n v o l v e s v o l a t i l i z a t i o n of t h e dried m e t a l s a l t , d i f f u s i o n of t h e v a p o r to t h e s u b s t r a t e , followed by d e c o m p o s i t i o n to t h e oxide. This p r o c e s s is r e f e r r e d to as low t e m p e r a t u r e chemical v a p o r d e p o s i t i o n (LTCVD). The f o u r t h p r o cess is a ho m o g en eo u s n u c l e a t i o n of t h e v a p o r p h a s e forming t h e oxide p a r t i c l e which t h e n d e p o s i t s on t h e s u b s t r a t e . The f o r m a t i o n of CuO films in t h i s s t u d y p r o b a b l y p r o c e e d s by t h e t h i r d me ch an i s m s i n ce t h e d e p o s i t e d films a r e smooth, homogeneous, and h a v e a mirror-like appearance. Albin et al. (5), h a v e s u g g e s t e d t h e d e p o s i t e d film o b t a i n e d by t h e l a s t p r o c e s s would h a v e a powdery a p p e a r a n c e . Viguie and Spitz (6) h a v e shown t h a t films grown by p r o c e s s e s A and B h a v e a r o u g h e r m i c r o s t r u c t u r e t h a n films grown by p r o c e s s C. EDAX r a t i o s of c o p p e r - t o - s i l i c o n d e t e r m i n e d t h e r e l a t i v e u n i f o r m i t y of t h e CuO films and a Sloan Dektak s u r f a c e p r o f i l e m e a s u r i n g s y s t e m d e t e r m i n e d t h e a b s o l u t e t h i c k n e s s . The t h i c k n e s s and EDAX r a t i o s of t h e films v a r i e d with t h e number of c y c l e s i n v o l v e d in film p r e p a r a t i o n , and t h i s is shown in

Mechanisms for film growth in spray pyrolysis processing L

¸

substrate 2..;. 2:,z:

t solid

t t

eo o

000

vapor





precipitate

,,,.o,,o,

0

0

0

0

A

B

C

D

Increasing substrate temperature

Fig. 2.

Mechanisms of film growth.

Vol. 24, No. 6

COPPER OXIDES

757

T a b l e II. A f t e r p r e p a r a t i o n , film t h i c k n e s s w a s d e t e r m i n e d from a c a l i b r a t i o n o f EDAX Cu/Si r a t i o v s . t h i c k n e s s o b t a i n e d from t h e d a t a in T a b l e II. T h e d e s i r e d t h i c k n e s s c o u l d b e a p p r o x i m a t e d by t h e n u m b e r o f c y c l e s in t h e preparation. EDAX r a t i o s w e r e t a k e n a t f i v e p o i n t s from e d g e t o e d g e on t h e f i l m s a n d t h e s e r a t i o s c l e a r l y s h o w t h a t CuO f i l m s p r e p a r e d b y t h i s m e t h o d a r e uniform.

T a b l e II EDAX Cu/Si R a t i o s v s T h i c k n e s s Position #

Film A

1 2 3 4 5

and Number of Cycles

B

C

D

0.38(I) 0.39 0.39 0.39 0.38

0.08(i) 0.08 0.08 0.08 0.08

0.18(1) 0.18 0.17 0.18 0.17

0.16(1) 0.16 0.16 0.17 0.17

(A)

2700

1200

1900

1850

Number Cycles

150

75

110

110

Thickness

An SEM p h o t o m i c r o g r a p h t a k e n a t low m a g n i f i c a t i o n o f a 2 0 0 0 A CuO film p r e p a r e d in t h i s s t u d y is s h o w n in Fig. 3. T h e n a t u r e o f t h e p a r t i c l e s in t h e s e CuO f i l m s a r e v e r y d i f f e r e n t f r o m CuO f i l m s p r e p a r e d u s i n g MOCVD by L a u r i e a n d N o r t o n (4), w h e r e t h e f i l m s a r e c o m p r i s e d o f n e e d l e - l i k e p a r t i c l e s .

Fig. 3.

Photomicrograph of a typical C u O film prepared from an acetate solution.

758

W. D e S I S T O ,

et a l .

Vol.

24,

No.

CuO

PolxcryGtol Standard

(lid C-liD

>-, 4J @ C

O

C l-t 0

>

Thin Film on SIO~ 0 01

(11D (-lid

20

30

40

50

60

70

80

Oi??roction Angle 28 (de9) Fig. 4.

X - r a y d i f f r a c t i o n p a t t e r n o f a CuO film on a s i l i c a s u b s t r a t e a s c o m p a r e d w i t h t h a t o f a p o l y c r y s t a l l i n e CuO standard. The differences in relative peak intensities d e m o n s t r a t e t h e e x i s t e n c e of a p r e f e r r e d o r i e n t a t i o n in t h e film.

CuO ....

I00

i ....

?ilm

on

i ....

i

silico

....

i ....

i

....

/11a ~- ....

80

/ ;t

E 0

/

60

/ / /

0} O)

/ /

40

o= & 20

0 400

500

B00

700

Wovelength Fig. 5.

Optical transmission

800

000

I000

(nm)

s p e c t r u m of a CuO film on a s i l i c a s u b s t r a t e .

6

Vol. 24, No. 6

COPPER OXIDES

759

X - r a y d i f f r a c t i o n d a t a is s h o w n in Fig. 4. A CuO s t a n d a r d w a s p r e p a r e d by h e a t i n g Cu m e t a l (JM 5 0 2 5 0 A ) in a i r a t 600°C. By c o m p a r i n g t h e x - r a y o f t h e f i l m to t h e s t a n d a r d , i t c a n be s e e n t h a t t h e i n t e n s i t y o f t h e (020) p e a k o f t h e film is i n c r e a s e d a n d t h e ( - 2 0 2 ) a n d (202) p e a k s a r e a b s e n t . This can be a t t r i b u t e d t o p r e f e r r e d o r i e n t a t i o n o f t h e p a r t i c l e s m a k i n g up t h e film, growing with t h e b - a x i s p e r p e n d i c u l a r to t h e s u b s t r a t e . The transmission spectra for a copper(If) oxide film prepared from copper(II) acetate is shown in Fig. 5, and is in agreement with copper(If) oxide films prepared by ,Qayi et al. ( 3 ) . The optical transmission was used to generate plots of (ahu) Ij2 vs hu. It was found that the indirect band gap of the prepared copper(II) oxide films was 1.36(i) eV. All CuO thin films prepared in this study were p - t y p e semiconductors with room temperature resistivity of 102 ohm-cm. Beensh-Marchwicka et al. (1) have reported resistivities of i ohm-cm at room temperature for CuO films grown by reactive-ion sputtering; however, carrier type was not measured. The low resistivity is consistent with the presence of mixed formal valence of copper. If Cu(II) and Cu(III) were present in the film, then anneal~ng ~he film in argon would increase the resistivity by reducing the Cu(III) to Cu(II). In contrast, if the low resistivity of the film was due to the presence of Cu(1) and Cu(II), then an argon anneal would further decrease the resistivity by" increasing the amount of Cu(1) in the sample. Typical films of CuO were annealed in argon at 650°C for 15 hrs and the resulting resistivity and carrier type were measured. The resistivity of the films increased to 103 ohm-era and remained p-type. R e a n n e a l i n g t h e s e f i l m s in o x y g e n a t 650°C for ]6 h r s r e s u l t e d in r e s i s t i v i t y d e c r e a s i n g t o ].02 o h m - c m . T h e r e s i s t i v i t y o f t h e f i l m s a n n e a l e d in a r g o n is h i g h e r t h a n t h e r e s i s t i v i t y o f t h e f i l m s p r e p a r e d in o x y g e n w i t h n o c h a n g e in c a r r i e r t y p e . This h i g h e r r e s i s t i v i t y of films a n n e a l e d in a r g o n is c o n s i s t e n t w i t h a d e c r e a s e in Cu(III) a s a r e s u l t o f t h e annealing process.

Conclusion U n i f o r m , h o m o g e n e o u s c o p p e r ( I I ) o x i d e t h i n f i l m s c a n be p r e p a r e d in a n o v e l t w o - z o n e h o r i z o n t a l s p r a y p y r o l y s i s r e a c t o r by d e c o m p o s i n g a q u e o u s copper(II) salts. The s p r a y in t h e form of an a e r o s o l was p r o d u c e d by a c o m m e r c i a l u l t r a s o n i c h u m i d i f i e r . T h e film w a s g r o w n b y s p r a y i n g p u l s e s o f t h e aerosol and heating the deposited thin layer at a higher temperature after each spray pulse. T h e f i l m s g r e w w i t h p r e f e r r e d o r i e n t a t i o n a s i n d i c a t e d by x-ray diffraction. In a d d i t i o n , t h e f i l m s w e r e p - t y p e s e m i c o n d u c t o r s w i t h room t e m p e r a t u r e r e s i s t i v i t y o f 102 o h m - c m . T h e p - t y p e n a t u r e o f t h e f i l m s w a s d e t e r m i n e d to be d u e t o t h e p r e s e n c e o f Cu(III).

Acknowledgements This r e s e a r c h was p a r t i a l l y s u p p o r t e d by t h e N a t i o n a l Science F o u n d a t i o n u n d e r G r a n t No. D M R - 8 8 0 3 1 8 4 a n d b y t h e E a s t m a n K o d a k C o m p a n y o f R o c h e s t e r , NY.

References i.

G. Beensh-Marchwieka, L. Krol-Stepniewska and M. Slaby, Thin Solid Films 88, (1982) 88-89.

760

W. D e S I S T O , et al.

Vol. 24, No. 6

2.

J. P. H l e r n a u t , A. Roch and J. Van C a k e n b e r g h e , Thin Solid Films, 71, (1980) 2 4 9 - 2 5 4 .

3.

O. B. AJayt, M. S. Akanni, J. N. Lambi, H. D. Burrows, O. Osasona and B. Podar, Thin Solid Films, 138 (1988) 9 1 - 9 5 .

4.

A. B. L a u r i e and M. L. Norton, M a t e r i a l s R e s e a r c h Bulletin, 24, (1989) 213.

5.

D. Albin and S. H. Rlsbud, A d v a n c e d C e r a m i c Materials, 2(3A), (1987) 243-52.

8.

J. Mooney and S. Raddtng, Ann. Rev. Mater. Sci., 12, (1982) 8 1 - 1 0 1 .

7.

L. J. v a n d e r Pauw, Phillips Res. Rep., 18 (1958) 1.

8.

J. C. Vlguie and J. Spitz, J. F,l e c t r o c h e m . Soc., 122, (1975) 5 8 5 - 5 8 8 .