BIOCHIMIE, 1977, 59, 287-292.
Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168. F r a n k KUNST, Michel STEINMETZ, J e a n - A n t o i n e LEPESANT a n d R a y m o n d DEDONDER ~.
Ddpartement de Biochimie Cellnlaire, Inslital de Recherche en Biologie MoIdcMaire, C.N.R.S. et Universitd Paris VII, Toar 43, 2 place Jussieu, 75221 Paris Cedex 05 (France). (76-11-1976). Summary. - - A .~-D-fructofuranosidase - - called levanase - - capable of the hydrolysis of sucrose, inulin and /evans has been identified in Bacillus sublilis Marburg. This enzyme call not be detected in strain 168. Ho'wever, sacL mutations - - mapped on the chromosome of strain 168 between the pheA and aroD reference markers - - lead to constitutive levanase synthesis. This synthesis is repressed by carbon sources such as glucose, glycerol or sucrose. INTRODUCTION. T w o sucrose i n d u c i b l e enzymes i n v o l v e d in sucrose h y d r o l y s i s h a v e a l r e a d y been c h a r a c t e r i z e d in Bacillus sabtiIis M a r b u r g [1, 2, 33 : an extracellular l e v a n s u c r a s e and an i n t r a c e l l u l a r sucrase. L e p e s a n t el al. [4, 5] started a genetic analysis of the r e g u l a t i o n of the syntheses of these e n z y m e s i n v o l v i n g m a p p i n g of m u t a t i o n s by t r a n s f o r m a t i o n and PBS1 t r a n s d u c t i o n . T h r e e types of constitutive m u t a t i o n s h a v e been d i s t i n g u i s h e d : mutations l e a d i n g to c o n s t i t u t i v e l e v a n s u c r a s e synthesis (sacR), c o n s t i t u t i v e sucrase synthesis (sacT), and c o n s t i t u t i v e synthesis of both sucrase a n d l e v a n s u c r a s e (sacS). A study of sacS a n d sacT m u t a n t s g r o w n in mineral media supplemented with carbon sources such as glucose, g l y c e r o l or sucrose r e v e a l e d that the rate of c o n s t i t u t i v e sucrase synthesis w a s l o w because of catabolite r e p r e s s i o n . D u r i n g g r o w t h w i t h glutamate + s u c c i n a t e as the c a r b o n sources, release f r o m r e p r e s s i o n allows a h i g h e r rate of synthesis [3]. Constitutive sacR, sacs and sacT m u t a n t s h a v e been isolated on solid m i n e r a l g l y c e r o l m e d i u m (after s c r e e n i n g for the p h e n o t y p e <>) w i t h the use of a c o l o u r test [4]. In v i e w of the r e p r e s s i o n e x e r t e d by g l y c e r o l w e d e c i d e d to isoIate a d d i t i o n a l m u t a n t s a p p l y i n g the same m e t h o d but on solid m i n e r a l m e d i u m s u p p l e m e n t e d w i t h glutamate + citrate as the carbon sources. O To whom all correspondence should be addressed.
On this m e d i u m w e isolated a n e w class of inurants (sacL) s y n t h e t i z i n g c o n s t i t u t i v e l y a different sucrose h y d r o l y z i n g enzyme, called levanase. MATERIALS AND METHODS. CHEMICALS.
I n u l i n ( m o l e c u l a r w e i g h t ~ 5000) was p u r c h a sed f r o m Merck. Levans w e r e p r e p a r e d in this l a b o r a t o r y and h o m o g e n i z e d w i t h r e s p e c t to molec u l a r w e i g h t (mean value : 15000) using a c o l u m n of Biogel P30 (Biorad). BACTERIAL STRAINS.
The strains table I.
used in this study are listed in
MEDIA.
C m e d i u m c o n t a i n i n g m i n e r a l salts and MM med i u m c o n t a i n i n g m i n e r a l salts and citrate h a v e been p r e v i o u s l y d e s c r i b e d [1, 4]. F o r l i q u i d cultures, C m e d i u m was s u p p l e m e n t e d w i t h t r y p t o p h a n (100 mg/1) and c a r b o n sources : p o t a s s i u m glutamate (0.07 M) + p o t a s s i u m s u c c i n a t e (0.07 M), or glucose (10 g/l) or g l y c e r o l (10 g/l) or sucrose (10 g/1). MM-glycerol and MM-glutamate plates c o n t a i n MM solid m e d i u m s u p p l e m e n t e d t r y p t o p h a n (20 mg/1), e v e n t u a l l y o t h e r a u x o t r o p h i c r e q u i r e m e n t s (20 m g / l ) and e i t h e r g l y c e r o l (1 g / l ) or potassium glutamate (7 ruM) as c a r b o n sources. ISOLATION OF sacL MUTANTS.
E t h y l m e t h a n e sulfonate (EMS) m u t a g e n i z e d cultures of strain 168 [4] ~vere d i l u t e d and plated on MM-glutamate solid m e d i u m . After i n c u b a t i o n at
F. K u n s t a n d coll.
288
37°C separate colonies a p p e a r e d . A c o l o u r test based on the d e t e c t i o n of the glucose l i b e r a t e d after sucrose h y d r o l y s i s has been a p p l i e d as des-
or r e c o m b i n a t i o n b e t w e e n sacL and aroD, pheA or leuA m a r k e r s w e r e c a l c u l a t e d as p r e v i o u s l y d e s c r i b e d [41.
TABLE I.
List of strains. Strain
6enotype
Origin of derivation
168 GSY225 SB120 QB25 QB33 QB35 QB36 QB39
C. Anagnostopoulos
QB46 QB101 QB127 QB136 QB166 QB167 QB168 QB169 QB171
trpC2 pheA1 trpC2 aroD120 lrpC2 sacSc49 trpC2 sacScSO trpC2 sacRc44 trpC2 sacRc37 lrpC2 sacTc30 lrpC2 sacRc41 lrpC2 sacScg8 trpC2 melC3 leuA8 lrpC2 sacUh200 leuA8 trpC2 sacUh32 leuA8 lrpC2 sacL5 lrpC2 sacL6 trpC2 sacL7 trpC2 sacL8 lrpC2 sacL12 lrpC2
QB666
lhr5 leuA8 hisA1 sacA321
QB2018
sacL6 leuA8 hisA1 sacA321
QB2019
sacL6 sacUh200 leuA8 sacA321
QB43
QB2020 QB2021
B
N. Harford Lepesant et al. [4] m
i
Kunst el al. [81 EMS on 168
markers introduced into 168 by transformation in several steps tf (b) QB167 ~ QB666
tf QB127
~" QB2018 tf
sacL6 sacUh32 leuA8 sacA321
QB136
~- QB2018 tf
sacL6 leuA8 sacA321
QB127
~" QB2018
(b) Strains constructed by transformation.
c r i b e d by L e p e s a n t et al. [4]. Colonies of strain 168 r e n l a i n u n c o l o u r e d and r e d halos a p p e a r a r o u n d clones of c o n s t i t u t i v e mutants. T h e mutants w e r e p i c k e d up and reisolated. In this way, several sacL m u t a n t s h a v e been isolated i n d e p e n dently. PBS1 TRANSDUCTION. The t r a n s d u c f i o n p r o c e d u r e has been d e s c r i b e d e a r l i e r [4!. PBS1 lysates of sacL mutants h a v e been utilized to t r a n s d u c e the r e c i p i e n t s SBI20, QB'101 or GSY225 (table I). Aro +, Leu + or Phe + rec o n l b i n a n t s h a v e been selected on MM-glycerol m e d i u m , reisolated, s t r e a k e d as p a t c h e s on the same m e d i u m a n d r e p l i c a p l a t e d on MM-glutamate m e d i u m . Using the c o l o u r test on the latter med i u m r e c o l n b i n a n t s ~xith a c o n s t i t u t i v e p h e n o t y p e c o u l d be identified. The p e r c e n t a g e s of c o t r a n s f e r
BIOCH1MIE, 1977, 59, n ° 3.
QUANTITATIVE
DETERMINATION
OF
LEVANASE
ACTI-
VIT'Y.
Levanase a c t i v i t y can be n l e a s u r e d as the rate of h y d r o l y s i s of i n u l i n (~-l,2-fructan), sucrose or levan (~-2,6-fructan). Inulin, w h i c h is not h y d r o lyzed by sucrase or l e v a n s u c r a s e , is the specific substrate g e n e r a l l y used for assaying levanase act i v i t y in c r u d e extracts or culture supernatants. Since sucrose is h y d r o l y z e d by all t h r e e e n z y m e s and levans are h y d r o l y z e d s l o w l y by l e v a n s u c r a s e [61, these less specific substrates can only he used for assaying levanase a c t i v i t y in extracts or supernatants d e v o i d of sucrase a n d l e v a n s u c r a s e activities. Assays ~vere c a r r i e d out at 37°C in r e a c t i o n m i x t u r e s c o n t a i n i n g 0.2 M p o t a s s i u m p h o s p h a t e + 0.2 M p o t a s s i u m acetate buffer pH 5.5, samples
Leoanase synthesis by Bacillus subtilis mutants. of bacterial extracts [1] or culture s u p e r n a t a n t s dialyzed against the same buffer a n d either one of the three substrates : sucrose (240 mM), i n u l i n (10 raM), levan (1.3 raM). The r e a c t i o n Was stopped by h e a t i n g at 100°C for 5 min. and, if necessary, the p r e c i p i t a t e d p r o t e i n s were e l i m i n a t e d by centrifugation. Blanks of the same r e a c t i o n m i x t u r e s heated ~vithout p r e v i o u s i n c u b a t i o n at 37°C have always been included. Samples have been taken to d e t e r m i n e levanase activity w i t h the m e t h o d of Klotzsch and Bergmeyer [7] : the fructose (a) liberated after h y d r o l y s i s of these substrates has been c o n v e r t e d e n z y m a t i c a l l y to glucose-6-phosphate a n d d e t e r m i n e d s p e c t r o p h o t o m e t r i c a l l y with tile use of glucose-6-phosphate dehydrogenase. One u n i t (U) of levanase activity is defined as tile a m o u n t of enzyme l i b e r a t i n g 1 ~tmol fructose
MAPPING
289
saeL MUTATIONS BY PBS1 T R A N S D U C -
OF
TION.
The sacL m a r k e r s have been m a p p e d i n a cluster b e t w e e n tile aroD and p h e A reference m a r k e r s by two factor t r a n s d u c t i o n crosses (table II, figure 1). sacL is also l i n k e d to leuA (17 per cent cotransfer) as was s h o w n by t r a n s d u c t i o n of strain QBIO1 (melC3 leuA8 trpC2) w i t h a lysate of QB166 (sacL5 lrpC2). PROPERTIES
OF LEVANASE SYNTHETIZED BY
sacL
MUTANTS.
Some properties of levanase have been s t u d i e d u s i n g crude extracts or culture s u p e r n a t a n t s of sacL m u t a n t s g r o w n in liquid m e d i u m with glutamate a n d succinate as c a r b o n sources. These
TABLE II. Tu,o factor transduction crosses involving sacL, pheA and aroD Markers. Recipient geootype pheA! trpC2 {6SY225) Recipient genotype aroDl~20 trpC?. ISBt20) Donor marker
sacL5 sacL6 sacL7 sacL8 sacL12
Selection
Phe +
Phe+ sacL Phe+
Per cent recombination
1101288 98•2OO 1011175 60/125 881175
62 51 57 52 50
Selection Aro +
Aro+ sacL Aro+
Per cent recombination
ND (c) 851290 1101294 32/170 441227
ND (e) 71 63 81 81
Conditions of transduction crosses are described in Materials and Methods. (c) Not determined.
per rain. or h y d r o l y z i n g 1 umol sucrose per nlin. u n d e r these c o n d i t i o n s . QUANTITATIVE SYNTHESIS.
DETERMINATION
OF
LEVANASE
Cultures g r o w i n g e x p o n e n t i a l l y at 37°C have been used to d e t e r m i n e i n t r a c e l l u l a r a n d extracellular specific activities of levanase w h i c h have been defined as i n t r a c e l l u l a r a n d extracel]ular activities per mg of p r o t e i n s y n t h e t i z e d w i t h i n the c u l t u r e Ecf. 8]. RESULTS. Mutations of Bacillus subtilis l e a d i n g to constitutive levanase synthesis have been o b t a i n e d as described in Materials a n d Methods. They b e l o n g p r o b a b l y to a single class, sacL, a c c o r d i n g to t r a n s d u c t i o n m a p p i n g results. (a) The fructose and glucose liberated after sucrose hydrolysis.
BIOCHIMIE, 1977, 59, n ° 3.
p r e p a r a t i o n s are essentially free from the other s a c c h a r o l y t i c enzymes, sucrase a n d ievansucrase, since these two enzymes are only synthetized in the p r e s e n c e of sucrose. Indeed, c h r o m a t o g r a p h i c analysis has s h o w n that levanase only is p r e s e n t i n these culture s u p e r n a t a n t s a n d cell-extracts.
- - chromatography. Levanase adsorbed on a h y d r o x y a p a t i t e c o l u m n was eluted w i t h 0.4 M potassium phosphate buffer pH 6.0. Sucrase a n d l e v a n s u c r a s e are eluted by 0.2 M a n d 1.4 to 2 M respectively. Thus the three enzymes can be eluted separately.
-- pH optimum. Optimal levanase activity has been o b t a i n e d at pH 5.5 i n 0.2 M phosphate acetate buffer.
- - catalytic properties. Levanase h y d r o l y z e s ~-1,2 a n d ~-2,6-fructofuranoside linkages. At pH 5.5, the a p p a r e n t K u values
290
F. Kunst
of levanase catalyzed h y d r o l y s i s of sucrose, i n u l i n (~-l,2-fructan) a n d levan (p~-2,,6-fructan) are respectively : 50 raM, 5 mM a n d 0.25 raM. The latter two values are calculated on a m o l e c u l a r weight basis of 5,000 for i n u l i n a n d 150.00 for levans. The rates of h y d r o l y s i s of these three substrates are very s i m i l a r (table III). --
stability.
Levanase can be stored at - - 2 5 ° C for several weeks w i t h o u t appreciable loss of activity. --
iuhibitors.
E n z y m a t i c activity is completely i n h i b i t e d b y a d d i t i o n of m e r c u r i a l s such as p - h y d r o x y m e r c u r i -
and coil. LEVANASE
SYNTHESIS.
Levanase is s y n t h e t i z e d a n d largely excreted into the culture m e d i u m b y s a c L m u t a n t s d u r i n g e x p o n e n t i a l growth i n l i q u i d C m e d i u m supplem e n t e d w i t h potassium glutamate a n d s u c c i n a t e as c a r b o n sources. However, levanase synthesis b y s a c L m u t a n t s is below the detection limit d u r i n g growth in liquid C mediunl supplemented with r a p i d l y metabolizable c a r b o n sources like sucrose, glucose or glycerol (table IV). This explains w i t h our previous failure to detect levanase activity on MM-glycerol plates. F r o m these observations we c o n c l u d e d that levanase synthesis b y s a c L mutants is not i n d u c i b l e b y sucrose a n d that this enzyme is subject to strong catabolite repression.
tP O
%
cj 4 thr
sacQ
arg C
J
:3 s4 :i! !
74
[
leuA
pheA
sacL
aroD
FIG. 1. - - The c h r o m o s o m a l m a p of B. subtilis Marburg according to H a r f o r d [9] and L e p e s a n t - I t e j z l a r o v a et al. [10]. The chromosomal segment indicates the position of the sacL magkers.
benzoate a n d m e r c u r i c chloride to final c o n c e n t r a tions of 10 -a M. BIOCHIMIE, 1977, 59, n ° 3.
s a c L is the only class of m u t a n t s i n w h i c h levanase synthesis could be detected : reference s t r a i n
Levanase synthesis by Bacillus 168 a n d t h e sacR c, sacSC a n d sacT c m u t a n t s l i s t e d i n t a b l e I d o n o t s y n t h e t i z e l e v a n a s e lo a d e t e c t a -
subtilis mutants.
291
s y n t h e t i z e l e v a n a s e at t h e s a m e r a t e as c o m p a r e d to t h e sacL r e f e r e n c e s t r a i n (QB2021).
TABLE III.
Levanase s y n t h e s i s by s a c L mulants. Specific activity (U/mg protein) Genotype
Strain
sacL5 sacL6 sacL7 sacL8 sacL12
QB166 QB167 QB168 QB169 QB171
lrpC2 lrpC2 IrpC2 lrpC2 trpC2
Intracellular
Extracellular
Sucrose
Levan
Inulin
Sucrose
Levan
Inulin
70 170 120 100 80
50 115 85 70 60
70 180 130 105 95
330 680 550 390 390
240 450 410 290 240
400 820 730 520 520
sacL m u t a n t s 'were gro'wn in C m e d i u m w i t h p o t a s s i u m g l u t a m a t e a n d succinate as c a r b o n sources. The specific activities of levanase 'were m e a s u r e d as the rates of h y d r o l y s i s of sucrose, i n u l i n or levans per mg of p r o t e i n s y n t h e t i z e d ~vith in the culture (cf. Materials a n d Methods).
ble level during cultivation in C medium mented with glutamate and succinate.
supple-
F u r t h e r m o r e , sacU 1~ m u t a t i o n s l e a d i n g lo o v e r p r o d u c t i o n of s e v e r a l o t h e r e x t r a c e l l u l a r e n z y m e s of Bacillus sublilis [111 d o n o t l e a d to o v e r p r o d u c -
TABLE IV.
I n f l u e n c e of d i f f e r e n t carbon sources on levanase synthesis.
Nature of carbon source
Specific activity of levanase (U/mg protein) Intracellular
Extracellular
180
820
Potassium glutamate
+
Potassium succinate Sucrose Glucose Glycerol
~5 <5 <5
lOO loo 100
DISCUSSION.
Bacillus subtilis 168 s y n t h e t i z e s t w o s a c c h a r o lyric enzymes after induction by sucrose : an intracellular sucrase and an extracellular levansuc r a s e . H o w e v e r , i t is s h o w n i n t h i s p a p e r t h a t another extracellular saccharolytic enzyme, called l e v a n a s e , is s y n t h e t i z e d b y m u t a n t s (sacL) d e r i v e d from this strain. A common r e g u l a t o r y g e n e (sacS) c o n t r o l s simultaneously sucrase and levansucrase synthesis [4, 5]. O n t h e c o n t r a r y , a s e p a r a t e c o n t r o l e x i s t s for levanase synthesis : 1. sacL m u t a n t s s y n t h e t i z e c o n s t i t u t i v e l y l e v a nase only. 2. c o n v e r s e l y , sacT, sacR a n d sacS m u t a n t s s y n thetize constitutively sucrase, levansucrase and both enzymes respectively, but do not synthetize levanase.
S t r a i n QB167 (sacL6 trpC2) was g r o w n i n C m e d i u m s u p p l e m e n t e d w i t h the indicated c a r b o n sources. Specific activities were d e t e r m i n e d as the r a t e s of i n u l i n h y d r o l y s i s per mg of p r o t e i n s y n t h e t i z e d w i t h i n the cultures as described in Materials a n d Methods. The detection l i m i t of i n t r a c e l l u l a r specific activity (5 U/rag) is l~wer t h a n the detection l i m i t of e x t r a cellular specific activity (100 U / m g ) since concentrated bacterial extracts h a v e been utilized in the first case.
L e v a n a s e s y n t h e s i s b y sacL m u t a n t s is r e p r e s s e d i n t h e p r e s e n c e of c a r b o n s o u r c e s l i k e g l u c o s e , glycerol or sucrose. However, if these mutants are grown in mineral medium supplemented only w i t h c a r b o n s o u r c e s of t h e t r i c a r b o x y l i c a c i d cycle (glutamate, succinate or citrate), release from catabo]ite repression occurs, which allows levanase synthesis.
t i o n of l e v a n a s e : c o n s t r u c t e d d o u b l e m u t a n t s of t h e g e n o t y p e sacL sacU ~ (QB20'19 a n d QB2020)
S u c r a s e a n d l e v a n s u c r a s e a r e i n v o l v e d i n suc r o s e c a t a b o l i s m [1, 41. S i n c e l e v a n a s e s y n t h e s i s is n o t s u c r o s e i n d u c i b l e t h i s s a c c h a r o l y t i c e n z y m e may have a different physiological function, for
BIOCHIMIE, 1977, 59, n ° 3.
292
F. Kunst
i n s t a n c e , d e g r a d a t i o n of l e v a n s a f t e r c a r b o n s o u r ce d e p l e t i o n . I n d e e d , l e v a n a s e a c t i v i t y h a s also b e e n d e t e c t e d i n w i l d t y p e B. s u b t i l i s s t r a i n s g r o w n o n l e v a n c o n t a i n i n g s o l i d m e d i u m [12] o r i n s u c r o s e g r o w n l i q u i d c u l t u r e s [13] ( R a p o p o r t , Jozon-Toulouse and Dedonder, unpublished res u l t s ) . I n t h e l a t t e r case, t h e a c t i v i t y h a s b e e n det e c t e d at t h e e n d of t h e e x p o n e n t i a l g r o w t h p h a s e when sucrose was mostly exhausted and ]evans were present at a high concentration. However, appropriate conditions for quantitative measurem e n t s of t h e r a t e of s y n t h e s i s of t h i s e n z y m e i n t h e s e s t r a i n s a n d i n s t r a i n 168 n e e d s t i l l t o b e defined. A eknolwledgme nls.
The generous gifts of b a c t e r i a l s t r a i n s f r o m C. Anagnostopoulos a n d N. H a r f o r d is g r a t e f u l l y acknowledged. W e w i s h to t h a n k our colleagues Rdgis C h a m b e r t , Genevi6ve Gonzy-Treboul, Georges R a p o p o r t a n d Martial Pascal for h e l p f u l suggestions a n d s t i m u l a t i n g discussions. W e are g r a t e f u l to Dani~le Lef6vre for the typing of the m a n u s c r i p t . R~SUM~. Une l~-D-fructofuranosidase - - appel~e l~vanase - qni h y d r o l y s e le saccharose, l ' i n u l i n e et les 16vanes a ~td identifi~es chez Bacillus subtilis Marburg. Cet e n z y m e n ' e s t pas d~celable d a n s la souche 168. Cependant, des m u t a t i o n s sacL - - localis~es sur le chromosome de la souche 168 e n t r e les m a r q u e u r s de r~f&-
BIOCH1MIE, 1977, 59, n ° 3.
a n d coll.
rence pheA et aroD - - c o n d u i s e n t h u n e synth6se constitutive de la lSvanase. Cette synth~se est rdprim6e p a r des sources de earbone telles que le glucose, le glyc6rol on le saecharose. REFERENCES. 1. Pascal, M., Kunst, F., Lepesant, J.-A. ~ Dedonder, R. (1971) Biochimie, 53, 1059-1066. 2. Pascal, M. & Dedonder, R. (1972) Carbohydr. Res., 24, 365-377. 3. Kunst, F., Pascal, M., Lepesant, J.-A., Walle, J. Dedonder, R. (1974) Eur. J. Biochem., 42, 611620. 4. Lepesant, J.-A., ~ u n s t , F., Lepesant-Kejzlarova, J. Dedonder, R. (1972) Molec. Gen. Genet., 118, 135-160. 5. Lepesant, J.-A., Kunst, F., Pascal, M., K e j z l a r o v a Lepesant, J., Steinmetz, M. ~ Dedonder, R. (1976) Microbiology, (American Society for Microbiology), pp. 58-69. 6. Rapoport, G. ~ Dedonder, R. (1963) Bull. Soc. Chim. Biol., 45, 493-513. 7. Klotzsch, M. ,& Bergmeyer, H. U. (1965) in <) (H. U. Bergmeyer ed.), 2nd p r i n t i n g revised, pp. 156-159, Academic Press, Nexv-York. 8. Kunst, F., Pascal, M., Lepesant-Kejzlarovh, J., Lepesant, J.-A., Billault, A..a Dcdonder, R. (1974) Biochimie, 5~, 1481-1489. 9. Harford, N. (1975) J. Bacteriol., 121, 835-847. 10. Lepesant-Kejzlarov~, J., Lepesant, J.-A., Walle, J., Billault, A. a Dedonder, R. (1975) J. Bacieriol., 1~1, 823-834. 11. Steinmetz, M., Kunst, F. a Dedonder, R. (1976) Molec. Gen. Genet., 148, 281-285. 12. Fuchs, A. (1959), Ph. D. Thesis, U n i v e r s i t y of Delft (The Netherlands). 13. Rapoport, G. (1966), Th~se de Doctorat d'Etat, Universit~ de P a r i s (France).