2 APPENDIX
Program List for Fourier Analysis [81, Chapter 2]
This appendix contains the program list to compute the Fourier coefficient of a periodic nonsinusoidal function. An output example is given for a rectangular wave.
C
5
R E A D (3,132 ) (Y (J, I), I=l, NPTS+4)
132
F O R M A T (Eli. 4,2X, Eli. 4,2X, Eli. 4,2X, Eli. 4,2X, Eli. 4) Input Do
A2.1 FOURIER ANALYSIS PROGRAM LIST
Y(I,J)=I.0
1321
Y(I,J)=-I.0
test,
ECHO
ANAFOR
square
COMMON
i0
J=21,41
THE
i0
DATA
i000
FORMAT(//'
SCREEN.
SET
NO. ',I4, ' S C A L E
FACTOR : '
COMMON
*, F 1 6 . 1 0 /
NPTS, NPS, INT, INC, NH, GA,
BEFORE
PI, WW, OM, NC, RF, ER, EL
'Y - C O O R D I N A T E S S C A L I N G : ' (/5EII.4))
SUBTRACT
ERR, I T M A X
D.C.
MULTIPLY
Y(30,365),SCALE(30),
DO
Y M A X (30) ,X(365)
30
COMPONENT
THE
SCALE
AND
FACTORS
J=I,NSETS
Y M A X (J) :0.
DIMENSION
DC=0.0
C U R V T (100 ),
DO
C U R V C (10 0 ) ,CLTRVS (10 0 ) ,C U R V P (10 0 )
37
37
K=I,NPTS-I
D C = D C + Y (J, K)
DIMENSION AMP(30,100), A N G (30, i00)
WRITE(0,*)
READ
DO
DATA
THE
J, S C A L E (J) , ( Y ( J , I ) , I = I , N P T S )
NW, mEG (361 ) ,R A D (361 ) ,
DIMENSION
ON
J=I,NSETS
W R I T E (0, i000)
wave
X V ( 3 6 1 ) ,Y V A L U E ( 3 6 1 )
COMMON
1321
Y(1,42)=I.0 DO
PROGRAM
data J=1,20
1320
Do
Following is the program list (in FORTRAN) to compute the Fourier terms (DC offset, even and odd harmonics) of a periodic nonsinusoidal function:
of
1320
FROM
DATA
DC=DC/(NPTS-I)
FILE.
20
'DC:',
DC
I=I,NPTS
Y (J, I ) = S C A L E (J)* (Y (J, I) -DC) OPEN(5,FILE='INDUCTOR.
20
IF
DAT',STATUS='OLD', ACCESS='SEQUENTIAL')
30
C REWIND 5 CWWWwwwwwwwwwwwwww**
C
NSETS=I
WRITE
THE
DO
J:I,NSETS
C
C L O S E (UNIT=5)
C
OPEN(3,FILE='FODA.DAT',
SCALED
W R I T E (0, i010)
i010
FORMAT(//
DATA
NO. ',I4, ' P E A K
V A L U E : ',
*FI6. i0 / ' Y - C O O R D I N A T E S
AFTER
S C A L I N G : ' (/SEll. 4) )
STATUS:'OLD',
DO 50
3
50
I=I,NPTS
X (I ) = F L O A T (I- 1 ) NSPACE=NPTS- 1
5 J=I,NSETS
Power Quality in Power Systems and Electrical Machines ISBN 978-0-12-369536-9
,SET
ABSOLUTE
ACCESS:'SEQuENTIAL') DO
40
40
S C A L E (i) =i. 0
C
YMAX(J))
J,YMAX(J), (Y(J,I),I=I,NPTS)
CWWWWWWWWWWWWWWW
REWIND
.GT.
CONTINUE
NPTS=42
C
(ABS(Y(J,I))
Y M A X (O) =ABS (Y (J, I) )
DEGMULT
473
=
360.0/NSPACE 9 Elsevier Inc. All rights reserved.
474
APPENDIX 2
DO
19
19
IF(YVALUE(I)
J=I,NPTS
X(O) IF
(J.EQ.NPTS)
137
X(J)=
W R I T E (0,1013)
STATUS:'OLD' ) (0, *)
KNOWN
CONTINUE W R I T E ( 0 , *) ' Y M A X (J) =', Y M A X (J)
O P E N (i0, F I L E = ' F O D A 0 1 . WRITE
'THE
POINT
NUMBER
(NPTS)
J , Y M A X ( J ) , (YVALUE (I), I=I,NPTS)
OF 1013
IS
FORMAT(//
(0, *)
DATA
'THE
SETS
NUMBER
(NSETS)
OF THIS
AND
PART
'THE
KNOWN
F(X) IS
ALGORITHMS
ARE
BASED IN
OF
VANDERGRAFT
OM
=
314.1592654
GA
=
0.017453292
PAGE
THE
DO
I=I,NH
144
A N G (J, I ) = C U R V P (I )
DO
144
DO
14
I=I,NH
K=I,NH
CURVP(K) 14
= CURVP(K)/GA
CONTINUE W R I T E (0, *) , *************************,
INT=42 INC=5
WRITE(0,*)
NW=I
W R I T E ( 0 , i00) ( C U R V T (K) ,K:I,NH)
NH=29
W R I T E ( 0 , *)
RADIN
=
PI/20.5
PHASOR
DEGIN
=
180./20.5
=
T2
=-DEGIN
DO
22
T1
= TI+RADIN
T2
W R I T E (0, *) 'T H E THE
I=I,INT
IF
(CURVT(1)
(DEG(I),
WRITE(0,100)
I=I,NPTS) I=I,NPTS)
END
1 J=I,NH+I 12
CONTINUE
CURVS(J)
=0.0
i00
FORMAT
CURVT(J)
=0.0
E N D F I L E (10 )
CURVP(J)
=0.0
REWIND
THEN
K:I, NH)
DO
THDI=0.0
I=i,361
Do
X V (I) = F L O A T (I) -i. 0 iiii
CONTINUE
(100.*CURVT(K)/
10
C L O S E (10 ) iiii
K=2,NH
T H D I = T H D I + (C U R V T (K ) ) * (C U R V T (K ) )
J:I,NSETS
T H D I F I N A L = (S Q R T (THDI) ) /
I=i,361
W R I T E (0, *)
C U R V T (1 )
NC=J YVALUE(I)
Do
CONTINUE I=i,361
THDIFINAL
RMSIWITHOUT: 0
= Y(J,I)
Y M A X (a) : 0 . 0 137
.EQ.0.00000) (0.0,
(6(IX, I P E I I . 4 ) )
CONTINUE
DO
THE
IF
=0.0
13
OF
A',
C U R V T (1 ), K= I, NH)
C U R V C (J)
DO
AS
ELSE (RAD(I),
Write(0,*)
12
OF
W R I T E (0, i00)
= T2
CONTINUE
DO
BASED
FUNDAMENTAL : '
= T2+DEGIN
17
COSINE ARE : '
MAGNITUDE
HARMONICS
*'PERCENTAGE
: T1
Write(0,*) DO
'THE
ANGLES
W R I T E (0, I00) ( - C U R V T (K) -90.,
-RADIN
DEG(I)
' C U R V T ( ' , N H , J , ')=:'
K=I,NH)
T1
RAD(I)
13
133
A M P (J, I ) = C U R V T (I )
INTF=42
17
HARM
133
119
.
PI=3.141593
22
AFTER
(YVALUE, CURVC, CURVS, CURVT, CURVP)
POINTS
9 ' ON
PEAK
S C A L I N G : ' (/5Eli. 4) ) CALL
(0, *) X
NO.',I4,'
V A L U E : ',
*FI6. i0 / ' Y - C O O R D I N A T E S
OF
IS'
,N S E T S WRITE
'SET
ABSOLUTE
', N P T S WRITE
YMAX(J))
W R I T E ( 0 , *) 'J=' ,J
X(J)+0.001 DAT'
.GE.
Y M A X (J) : Y V A L U E (I )
= X(J) * D E G M U L T
1112
1112
K=I,NH
R M S IWI T H O U T : R M S IWI T H O U T + (C U R V T (K)) * (C U R V T (K))
475
Program List for Fourier Analysis [81, Chapter 2] R M S I W I T H O U T F = (S Q R T
D 4 = C 4 * S I N (Xl)
( R M S I W I T H O U T ) )/i0. W R I T E (0, *)
D S = C 2 * S I N (X2)
RMSIWITHOUTF
D6 =C 6" S I N (X3)
R M S I W I T H = (DC) * (DC) Do 1113
1113
D L I = D L I + A I * (DI+D3) + A 2 * D 2
K=I,NH
D L 2 = D L 2 + A I * (D4+D6) + A 2 * D 5
RMSIWITH=RMSIWITH+
(CURVT (K) ) *
33
(C U R V T (K) )
CONTINUE C O M P C (J) = D L I * 2 . / 4 1 .
R M S I W I T H F : (SQRT (RMSIWITH)) /i0.
C O M P S (J) = D L 2 * 2 . / 4 1 .
W R I T E (0, *)
C O M P T (J) = S Q R T (COMPC (J) * * 2
RMSIWITHF
STOP
+ C O M P S (J) * * 2 )
END
If
SUBROUTINE
HARM
(VALUE, COMPC,
NW, mEG (361 ) ,R A D (361 ) ,
X V ( 3 6 1 ) ,Y V A L U E ( 3 6 1 ) COMMON
COMPP (J) =-ATAN (COMPC (J) /COMPS (J))
NPTS, NPS, INT, INC, NH, GA,
END
PI,WW, OM,NC, RF, ER, EL COMMON
IF
ERR, I T M A X
DIMENSION
V A L U E (361) ,
44
C O M P P (i00 ) ,
W R I T E (0, *) (VALUE(I),
PHASOR
I = i, N P T S ) AFTER
THE
i00
FORMAT
AS
OF
F K 3 = 0 . 5 * P * (P-I.)
IF
J:I,NH
THE
((CHECK.EQ.I)
.EQ.
NWW))
DLI =0.0
EMDIF
=
DL2 =0.0
DO
I=I,INT
H = F L O A T (O)
51
.AND.
0
DO
52
J=I,NH, I
T I = H * (RAm(I))
H = F L O A T (J)
T 2 = H * (RAD (I+l))
V A L U E C (I ) = V A L U E C (I )
T 3 = H * (RAD(I+2))
+ C O M P C (J) *COS (H*RAD (I)) +
Xl = F K I * T I +FK2 *T2 +FK3 *T3
* C O M P S ( J ) *SIN (H'RAm (I)) 52
X3 =FK3 *TI +FK2 *T2 +FKI *T3
CONTINUE D I F = A B S (VALUE (I ) - V A L U E C (I) )
C 1 = V A L U E (I )
IF
C2 = V A L U E (I + 1 )
EMDIF=DIF
C3 = V A L U E (I + 2 )
mI FN= F L O A T (I )
C4 =FKI *CI +FK2 *C2 +FK3 *C3 D I = C 4 *COS (Xl)
(NC
THEN
V A L U E C (I) =0.
I=I,INT-2,2
C 6 =FK3 *Cl +FK2 *C2 +FKI *C3
OF
A',
(6(IX, I P E I I . 4 ) )
NWW=I*NW
X2:T2
BASED
FUNDAMENTAL :'
F K 2 = (i. +m) * (l.-m)
33
MAGNITUDE
HARMONICS
* 'PERCENTAGE
A2=8./9.
DO
COSINE ARE : '
(-COMPT(K)-90.,
W R I T E (0, *) 'THE
AI=5./9.
44
')=:'
K=I ,NH)
S C A L I N G : ' (/5EII.4))
F K I = 0 . 5 * P * (I.+P)
'THE
ANGLES
WRITE(0,100)
' Y-COORDINATES
P : S Q R T (0.6)
DO
'COMPT(',NH,J,
W R I T E ( 0 , i00) (COMPT (K) ,K=I,NH)
C H E C K : 1.0
FORMAT(//
CONTINUE
WRITE(0,*)
V A L U E C (361 ) WRITE(0,1013)
0.0)
.LT.
COMPP(J)+PI
W R I T E (0, *) ,**************************,
C O M P T (100 ) DIMENSION
IF (COMPS(J)
COMPP(J)=
COMPC(100),COMPS(100),
1013
THEN
ELSE
COMPS, COMPT, COMPP) COMMON
(COMPS(J) . E Q . 0 . 0 0 0 0 0 )
C O M B P (J) =0.0
(DIF.GT.EMDIF)
THEN
ENDIF 51
CONTINUE W R I T E (0, *)
D 2 = C 2 * C O S (X2)
'***CHECKING
D 3 = C 6 * C O S (X3)
ANALYSIS* '
FOURIER
476
APPENDIX 2
W R I T E (0, *) WRITE(0,*)
0.I024E+01 'VALUE(361)
AT
0.I024E+01
0.I024E+01
0.I024E+01
0.I024E+01
NC=', NC 0.I024E+01 W R I T E (0, i001)
0.I024E+01
0.I024E+01
(VALUE(I), 0.I024E+01
0.I024E+01
I=i,42) WRITE(0,1001)
(VALUEC(I),
I=i,42) i001
FORMAT
0.I024E+01
0.I024E+01
0.I024E+01
0.I024E+01
0.I024E+01
(10(IX, IPEII.4)) -0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E
W R I T E ( 0 , *)
'THE M A X I M U M +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0
DIFFERENCE I=',
IS
: ' ,EMDIF, 'AT
DIFN
-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E
ENDIF
+00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0
RETURN -0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E END +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 -0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0
A2.2 OUTPUT OF THE FOURIER ANALYSIS PROGRAM
-0.9756E+00
The output of the F o u r i e r p r o g r a m for a square wave is as follows:
THE
NUMBER
IS
NO.
1 SCALE
KNOWN
OF
DATA
1.0000000000 BEFORE
0.1000E+01
0.1000E+01
SCALING:
0.1000E+01
0.1000E+01
NUMBER
KNOWi~ POINTS
0.
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
SETS
(NSETS)
OF X A N D
0.153248 0.612994
0.919491
1.075
1.68573
F(X)
ARE
0.306497
0.459745 1.22599
0.1000E+01
0.1000E+01
(NPTS)
1
THE
Y-COORDINATES
0.1000E+01
POINT
FACTOR: IS
0.1000E+01
OF
42
THE SET
0.I024E+01
0.766242
1.37924 1.83898
1.53248 1.99223
2.14548 2.29873
0.1000E+01
2.75847
0.1000E+01
2.45198 2.91172
2.60522 3.06497
3.21822 0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
3.37147 3.83121
-0. 1000E+01-0. 1000E+01-0. 1000E
3.52472 3.98446
4.13771
4.29096 4.44421
+01-0. 1 0 0 0 E + 0 1 - 0 . 1 0 0 0 E + 0 1
4.90395
-0. 1000E+01-0. 1000E+01-0. 1000E
3.67796
4.59745 5.05720
4.75070 5.21045
5.36370
+01-0. 1000E+01-0. 1000E+01 5.51694 -0. 1 0 0 0 E + 0 1 - 0 . 1 0 0 0 E + 0 1 - 0 . 1 0 0 0 E
5.97669 0.
+01-0. 1000E+01-0. 1000E+01
5.67019 6.12994
8.78049
5.82344 6.28319
17.5610
26.3415
35.1220
52.6829
61.45
43.9024
-0. 1 0 0 0 E + 0 1 - 0 . 1 0 0 0 E + 0 1 - 0 . 1 0 0 0 E +01-0. 1 0 0 0 E + 0 1 - 0 . 1 0 0 0 E + 0 1 70.2439 DC=
96.5854
0.1000E+01
-0.1000E+01
NO.
1 PEAK
ABSOLUTE
VALUE:
1.0243902206 Y-COORDINATES 0.I024E+01 0.I024E+01
87.8049 114.146
122.927
-2. 4 3 9 0 2 E - 0 2
131.707 SET
79.0244 105.366
158.049
140.488 166.829
149.268 175.610
184.390 AFTER
SCALING:
0.I024E+01 0.I024E+01
0.I024E+01
193.171 219.512 245.854
201.951 228.293
210.732 237.073
:
477
Program List for Fourier Analysis [81, Chapter 2] 254.634
263.415
280.976
289.756
272.195 298.537
-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0
307.317 316.098
324.878
342.439 J=
351.220
333.659 360.000
-0.9756E+00
COMPT(
1
YMAX(J):
0.I024E+01
* * * ** * * * * * * * *SUBROUTINE* * * ** * * * * * * 29
30)=:
1.2717E+00
1.02439
3.4488E-02
3.6450E-02 SET
NO.
1
PEAK
ABSOLUTE
VALUE:
2.4608E-01
1.6870E-01
4.0489E-02
4.1067E-02
1.0243902206 Y-COORDINATES
AFTER
SCALING:
9.1722E-02
6.8664E-02
3.7860E-02
3.4436E-02 0.I024E+01 0.I024E+01 0.I024E+01 0.I024E+01
0.I024E+01
0.I024E+01
0.I024E+01 0.I024E+01
3.1712E-02
0.I024E+01
0.I024E+01
2.4685E-02
2.5122E-02
2.0924E-02
2.2261E-02
0.I024E+01 0.I024E+01
3.8456E-02
2.5107E-02
THE 0.I024E+01
3.8801E-02
0.I024E+01
0.I024E+01
BASED
-9.1272E+01
0.I024E+01
PHASOR
-9.0034E+01
-9.0036E+01
-9.0246E+01 -9.0040E+01
5.1330E-02 3.0685E-02 3.7949E-02 2.1601E-02 2.7380E-02 ANGLES
ARE:
-9.0420E+01 -9.0039E+01 -9.0123E+01
0.I024E+01 -9.0041E+01
0.I024E+01
1.2299E-01 4.0183E-02
3.0684E-02
COSINE
-9.0169E+01 0.I024E+01
4.1969E-01 3.8742E-02
-9.0092E+01
-9.0040E+01
0.I024E+01 -9.0069E+01
-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0
-9.0038E+01
-9.0034E+01 -9.0032E+01
-9.0039E+01 -9.0038E+01
-9.0025E+01 -0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 -0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0
-9.0025E+01
-9.0025E+01 -9.0021E+01
-9.0022E+01 THE
***
CHECKING
-9.0031E+01 -9.0038E+01 -9.0022E+01 -9.0027E+01
-9.0031E+01
MAGNITUDE
APERCENTAGE
-9.0051E+01
OF OF
THE
THE
HARMONICS
AS
FUNDAMENTAL:
FOURIER
ANALYSIS*
-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E VALUE(361)
AT
NC=
1
+00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 1.0244E+00 -0.9756E+00
1.0244E+00
0.I024E+01
1.0244E+00 1.0244E+00
1.0244E+00 1.0244E+00
1.0245 Y-COORDINATES 0.I024E+01 0.I024E+01
AFTER
SCALING:
0.I024E+01
0.I024E+01
1.0244E+00 1.0244E+00
0.I024E+01
0.I024E+01
0.I024E+01
0.I024E+01
-9.7561E-01
0.1024E+01
0.I024E+01
-9.7561E-01
-9.7561E-01
-9.7561E-01
-9.7561E-01
-9.7565 -9.7561E-01
0.I024E+01
1.0244E+00 1.0244E+00
1.0245
0.I024E+01
-9.7561E-01 0.I024E+01
1.0244E+00 1.0244E+00
0.I024E+01
-9.7561E-01
-9.7561E-01 -9.7561E-01
-9.7561E-01 -9.7561E-01
0.I024E+01 -9.7565
0.I024E+01 0.I024E+01
0.I024E+01
0.I024E+01
0.I024E+01
-9.7561E-01 5.0335E-01 1.0407E+00
-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 -0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E +00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0
+00-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0
I.I156E+00 9.6388E-01
9.8548E-01 1.0831E+00
9.7205 9.5716E-01 1.0748E+00
i. 0 4 5 1 E + 0 0
9. 9 4 2 7 E - 0 1
9.3542E-01
I. 0 6 3 7 E + 0 0
-9.6836E-01
-9.0364E-01
1.0225 -8.8539E-01
-0. 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E + 0 0 - 0 . 9 7 5 6 E
1.0244E+00
-I.0717E+00 -9.4575
-9.4528E-01
-9.9542E-01
478
APPENDIX 2
-9.5329E-01 -I.0258E+00
-I.0331E+00
-9.2584E-01
-9.5068E-01
-I.0254E+00
-9.3105 MAXIMUM
5.0335E-01 DIFFERENCE
0.521040AT
I=
-9.0032E+01
IS
:
1.00000
-9.0025E+01 THE
29
i)=:
1.2717E+00 3.6450E-02 1.6870E-01 4.1067E-02 3.4436E-02
3.7860E-02 3.8801E-02
3.1712E-02 2.5107E-02
3.8456E-02 2.4685E-02
2.5122E-02 2.2261E-02 COSINE
4.0489E-02 9.1722E-02
6.8664E-02
THE
3.4488E-02
2.0924E-02
4.1969E-01 3.8742E-02 1.2299E-01 4.0183E-02 5.1330E-02 3.0685E-02 3.7949E-02 2.1601E-02 2.7380E-02
3.0684E-02 BASED
-9.1272E+01 -9.0036E+01 -9.0169E+01
PHASOR
-9.0034E+01 -9.0246E+01 -9.0040E+01
1.0000E+02 2.8661E+00 1.3265E+01 3.2292E+00 5.3992E+00 2.7078E+00 2.4936E+00 1.9742E+00 1.9754E+00 1.7504E+00
ANGLES
ARE:
-9.0420E+01 -9.0039E+01 -9.0123E+01
0.444086 0.139151 0.139172
-9.0031E+01 -9.0038E+01
-9.0025E+01 -9.0021E+01
-9.0022E+01 -9.0027E+01
-9.0031E+01
MAGNITUDE
APERCENTAGE
2.4608E-01
-9.0039E+01
-9.0022E+01
-9.0040E+01 -9.0051E+01
-9.0038E+01
-9.0025E+01
***********MA******************** CURVT(
-9.0092E+01 -9.0038E+01
-9.0034E+01
-5.0985E-01 THE
-9.0041E+01 -9.0069E+01
OF
OF
THE
THE
HARMONICS
AS
FUNDAMENTAL:
2.7118E+00 1.9350E+01 3.1837E+00 7.2123E+00 2.9770E+00 3.0510E+00 3.0239E+00 1.9410E+00 1.6453E+00 2.4127E+00
3.3001E+01 3.0463E+00 9.6712E+00
3.1597E+00 4.0362E+00 2.4128E+00 2.9840E+00 1.6985E+00 2.1530E+00