Prompt gamma decay of fission fragments

Prompt gamma decay of fission fragments

Volume 33B, number 4 PROMPT PHYSICS LETTERS GAMMA DECAY OF FISSION 26 October 1970 FRAGMENTS R. SARKAR Saha Institute of Nuclear Physics, Cal...

371KB Sizes 0 Downloads 53 Views

Volume 33B, number 4

PROMPT

PHYSICS LETTERS

GAMMA

DECAY

OF

FISSION

26 October 1970

FRAGMENTS

R. SARKAR Saha Institute of Nuclear Physics, Calcutta - 9, India

and A. CHATTERJEE Calcutta University and Saha Institute of Nuclear Physics, Calcutta - 9, India Recieved 8 September 1970

Prompt ~-ray energies and yields from fission fragments for the thermal neutron fission of 235U and spontaneous fission of 252Cf are calculated from an improved renormalised Fermi gas model and the collective potential energy surface concept. The predictions agree fairly well with the experimental observations.

An a t t e m p t was made [1,2] to t r e a t the f i s s i o n e n e r g y k i n e t i c s at the s c i s s i o n p o i n t in a s e l f - c o n s i s t e n t way without the help of a conventional m a s s f o r m u l a by c o m b i n i n g two m i c r o s c o p i c m o d e l s of n u c l e a r s t r u c t u r e : (a) the collective potential e n ergy s u r f a c e concept of Mosel and G r e i n e r [3] and (b) the i n t e r a c t i n g r e n o r m a l i s e d F e r m i gas model developed by us [1, 2]. The p r o v i n g grounds of the ideas were the t h e r m a l n e u t r o n induced f i s s i o n of 233U and spontaneous f i s s i o n of 252Cf [1], the t h e r m a l n e u t r o n f i s s i o n of 235U and 239Pu [2] and the fast n e u t r o n f i s s i o n of 238U [4]. F a i r a g r e e m e n t was found in all c a s e s with the m a s s - f o r m u l a e s t i m a t e s of the total e n e r g y r e l e a s e E R , the o b s e r v e d f r a g m e n t excitation e n e r g y UF and the m e a s u r e d f r a g m e n t kinetic e n e r g y T F. The o v e r a l l a g r e e m e n t was found to be b e t t e r than p r e v i o u s a t t e m p t s b a s e d on the s t a t i s t i c a l model [5], the liquid drop model [6] and with shell c o r r e c t i o n s on the liquid drop model [7, 8]. In the work of D i c k m a n n and D i e t r i c h [7], the s h e l l and BCS p a r a m e t e r s a r e e s s e n t i a l l y the s a m e as ours. They also u s e d two liquid drop model p a r a m e t e r s , the s u r f a c e t e n s i o n ~- and the S t r u t i n s k i i type s h e l l - w i d t h ~; we have used the M o s e l - G r e i n e t collective coefficients C O and C' instead. However, the a g r e e m e n t in the f r a g m e n t e x c i t a tion e n e r g i e s with o b s e r v a t i o n s for 235U + n f i s s i o n is found to be much b e t t e r in our case [7,fig. 5; 2, fig. 2]. S i m i l a r c o m m e n t s and conc l u s i o n s apply to the work of Schmitt [8]. After a b r i e f s u m m a r y of our p r e v i o u s p r o cedure [1, 2], we suggest a few i m p r o v e m e n t s

in our t r e a t m e n t of the stiffness coefficients C o and C'. The c o n t r i b u t i o n of the r e c i p r o c a l monop o l e - q u a d r u p o l e Coulomb i n t e r a c t i o n to the p r o m p t v - d e c a y p r o c e s s e s in the f r a g m e n t s is d i s c u s s e d . C o n s i d e r a t i o n s of the f r a g m e n t deexcitation lead p r o c e s s and the nature of n u c l e a r levels in cascade E2 t r a n s i t i o n s lead to the c o r r e c t evaluation of the v - r a y e n e r g y available in, and the m e a n n u m b e r of y - r a y s e m i t t e d from, each fragment. We b r i e f l y r e c o u n t our approach in [1] arid [2]. The total i n t r i n s i c e n e r g y (BCS plus Coulomb e n e r g i e s ) of a f i s s i o n i n g nucleus A c o n s i s t i n g of Z p r o t o n s and N n e u t r o n s EA(°t) = Z~y(~" ,

-t z + A 2 / G ) + E C A (ol)

(1)

is m i n i m i s e d with r e s p e c t to the shape d e f o r m a tion ot at the s a d d l e s c i s s i o n point. The n u c l e a r p a r t in (1) is composed of (i) a static s t r u c t u r a l p a r t at the ground state d e f o r m a t i o n fl, evaluated from the r e n o r m a l i s e d F e r m i gas model and (ii) a s h a p e - d e p e n d e n t p a r t e s t i m a t e d from the axially s y m m e t r i c potential e n e r g y s u r f a c e exp a n s i o n in a power s e r i e s in the shape deviation upto (0t-/3)3 with a p p r o p r i a t e stiffness coefficients C O and C'; the Coulomb e n e r g y E C A (~) is given a s i m i l a r well-known expansion upto (o~3 _/~3). The i n t r i n s i c e n e r g y changes of the f i s s i o n i n g nucleus I were b a l a n c e d with those of the m u t u a l ly i n t e r a c t i n g p r o m p t f i s s i o n f r a g m e n t s (L and H) at the s a d d l e - s c i s s i o n point:

263

Volume 33B, number 4 E I ( ~ I)

=

~

F=L, H

{EF(%)+½COF(~F-flF) 2 +

+ C~(OZF-~F )3 + E C F ( ~ F) -

Bo

ECF(flF)}+Er-Ed+E q

c o n n e c t i o n b e t w e e n the r e n o r m a l i s e d F e r m i g a s m o d e l and p o t e n t i a l e n e r g y s u r f a c e i s o b t a i n e d by a s s u m i n g t h e m to be f u n c t i o n s of e x t r a c o r e nuc l e o n s n in a n u c l e u s AF(n/A F =-5 E F / E o ) . T h e o c c u p a t i o n d e p e n d e n c e of the c o e f f i c i e n t s a r e a s s u m e d h e r e to be of the f o r m

(3)

w h e r e Coo and C~ a r e the s t i f f n e s s c o e f f i c i e n t s of a f r e e F e r m i g a s ( r e n o r m a l i s e d F e r m i gas m o d e l c o r r e c t i o n 8E F = 0). W e h a v e c h o s e n Coo= = 320 MeV and C o = 160 M e V t h r o u g h t r i a l and e r r o r f o r b e t t e r e n e r g y f i t s of eq. (2) w i t h o b s e r v a t i o n s . T h i s s m a l l i m p r o v e m e n t (3) d o e s not c h a n g e the q u a l i t a t i v e b e h a v i o u r in the p u b l i s h e d e n e r g y c u r v e s in r e f s . [1] and [2] and in f a c t g i v e s b e t t e r s h a p e f i t s in s o m e m a s s r e g i o n s . T h e s e c h o s e n v a l u e s of C o o and C~ a g r e e w i t h the a v e r a g e v a l u e s of M o s e t and G r e i n e r [3]. It is p o s s i b l e to d e d u c e a v a l u e of C o o ~ 350 M e V f r o m e l e m e n t a r y c o n s i d e r a t i o n s of the r e n o r m a l i s e d F e r m i gas m o d e l [10]. T h e f i s s i o n e n e r g y r e l e a s e E R and the c o m p o n e n t s of i n t e r n a l e n e r g y (ER, E d , Eq and the C o u l o m b e n e r g y d i f f e r e n c e ) of the p r o m p t f r a g m e n t F h a v e b e e n r e c a l c u l a t e d by m i n i m i s i n g the t o t a l e n e r g y at the s a d d l e - s c i s s i o n p o i n t a s b e f o r e [1, 2]. T h e f i s s i o n b a r r i e r f o r 235U + n is c o r r e c t l y r e p r o d u c e d (5.64 MeV; e x p e r i m e n t a l v a l u e is 5.75 M e V ; o u r p r e v i o u s v a l u e w i t h o u t u s i n g eq. (3) w a s 4.4 MeV). T h e f r a g m e n t d e f o r m a t i o n s a r e now m o r e s t r o n g l y f l u c t u a t i n g than in r e f s . [1, 2] due to the r e l a t i v e s t r u c t u r a l d i f f e r e n c e s of the f r a g m e n t n u c t e i d e s . T h e s e c a l c u 264

ioo I

90

o.3o

I

iio 1

~'

0.22 ~

-...4

Q

"

J5o

J4o I

(e35u+n) x .

_

'~-

X

x x xx

o.14H

b

I

X

"0,o4

J3o I

,20

X

., ~- -

T h e i n t e r a c t i o n t e r m s Er, Ed and E a h a v e b e e n d i s c u s s e d and d e d u c e d by W i l e t s [9] f o r t e r m s l i n e a r in ~ [1, eq. (5); 2, eq. (13)]. T h e W i l e t s t e r m s E r and E d w e r e a s s u m e d in r e f s . [1, 2] to go into the t r a n s l a t i o n a l e n e r g y of the f r a g m e n t s T F ; the i n t e r a c t i o n e n e r g y E q w a s p r e d i c t e d [1, 2] to g i v e r i s e to E2 t y p e p r o m p t v - r a y s at the final s t a g e s of the g r a g m e n t d e e x c i t a t i o n process. Our p r e v i o u s t r e a t m e n t [1, 2] a s s u m e d a l l n u c l e i to h a v e the s a m e a v e r a g e s t i f f n e s s c o e f f i c i e n t s Co and C~ in eq. (2). One w o u l d e x F p e c t , h o w e v e r , the n u c l e a r s t r u c t u r e e f f e c t s to show up in C o F and C ~ . A m o r e d e t a i l e d i n t e r -

C~ = Co(t-0~F/%)

1970

(2) o~

CoF = %o(1-0~F/%),

26 October

PHYSICS LETTERS

;_

x

x

_

-

-J>x

,

×x,,x

-

+!1,, +l,tt t

o

oo oo+

o;

:;:+

, ,

I

1 t 11

°

I

(

~_

~:

I

-+t A aA

,'

m

-2

5

/

o

(c)

o 80

90

PROMPT

P

I

I

I

IOO

{10

i20

FRAGMENT .

.

I 130

>

-' 140

o 150

MASS NUMBER m a x

Fig. 1. Calculated quanhhes OZF, E y and my for the 235U + fission reaction with thermal neutrons, plotted against the prompt fragment mass number A F. 1 (a) : The scission point deformation parameter otF estimated from eq. (2) ; 1 (b) : The available y-decay energy E~nax calculated by solving eq. (2) are shown as G) and are compared with the data {@) of ref. [15]; the calculated energies are slightly lower for heavy fragments and higher for tight ones; 1(c) : The mean photon number no/shown as A are compared with the data of ref. [15]. l a t e d d e f o r m a t i o n s a r e shown at the top s e c t i o n s m a r k e d (a) in f i g s . 1 and 2 f o r the t h e r m a l n e u t r o n i n d u c e d f i s s i o n of 235U and s p o n t a n e o u s f i s s i o n of 252Cf r e s p e c t i v e l y . T h e r e a r e no l i q u i d d r o p m o d e l c a l c u l a t i o n s f o r the f r a g m e n t d e f o r m a t i o n s ~ F f o r 252Cf, but F e r g u s o n and R e a d [6] h a v e e s t i m a t e d ~ F f o r a few f r a g m e n t p a i r s f o r the 235U + n f i s s i o n f r o m the l i q u i d d r o p m o d e l ;

PHYSICS L E T T E R S

Volume 33B, n u m b e r 4 r,,, W fLU

:E

g

I00 I

0.3

120 l

I

252

XX XX X

~a2

140 I

I

X

X

7

~

5

I

:

24

~

--

2o

[_ ;

oo ° ®

I ® "~ )~ X_

oxe~

°

~x

'<



"

80 O

@

ee~

2 I

I

I

I ,h

"'°°'x°

I

I Oz

-6¢n

(c) 90

I rio

I 120

I' 130

I 140

120

130

I 150

140

I$0

160

i

m u s t b e s p e n t i n t h e f o r m of q u a d r u p o l e v i b r a t i o n d e e x c i t a t i o n s (E2 t r a n s i t i o n s ) . The entire prompt fragment deexcitation process is visualised as

AF*

4

I10

Fig. 3. The s t a t i s t i c a l level density p a r a m e t e r (the a - p a r a m e t e r ) of the p r o m p t fission f r a g m e n t s as a function of the p r o m p t f r a g m e n t m a s s number. The method of calculation of ref. [18]. The e x p e r i m e n t a l data compilation of ref. [19] is also shown for c o m parison.

(b)

a

I fO0

IOO

MASS NUMEE R

A

IO-

90

¢) E)

7-

O

,

%

>,.

~E

" I

o

~

"b "

13-

>I

-,

6

13-

rn _J uJ

,

e

F"

:

I

~

i

(o,)

,

£XPFRIM£NTAL DATA CALCULATED VALUES

I

O× 0

, ® X

xx

x xx

I

X

× X×

£

>o uJ

zs|

×

n,-

0.1

160 : '

cf

X .X)O(X X X K

uJ c3

I

26 October 1970

-2 160

PROMPT FRAGMENT MASS NUMBEP--~

Fig. 2. Calculations of oz- E max and n.. for the spon~' y -.Y taneous fission of 252Cf. F o r details (a), (b) and (c), see the r e s p e c t i v e captions of fig. 1. No e x p e r i m e n t a l c o m p a r i s o n is possible in fig. 2(b). The e x p e r i m e n t a l data of fig. 2(c) are from ref. [14]. The r e l a t i v e scales of the quantities on the right in both figs. 1 and 2 a r e those used by the e x p e r i m e n t o r s [14, 15]. their estimates for a F are in fair agreement with our calculations. The quadrupole-monopole interaction energy between the fragment pairs E a is identified as the v-emission energy EZax.-The physical situation here is that a free vibrating quadrupole q is held in constraint by a charge monopole at a finite d i s t a n c e r = ROL + R o l l a n d h e n c e t h e p o t e n t i a l e n e r g y of t h e q u a d r u p o l e i n c r e a s e s [11]; r e m o v a l of t h e i n t e r a c t i o n a l l o w e s t h e s t o r e d p o t e n t i a l e n e r g y of t h e q u a d r u p o l e to b e r e l e a s e d . S i n c e t h e p o s t s c i s s i o n c o n f i g u r a t i o n of t h e r e c o i l i n g fragments may be taken as the snapping process of t h i s i n t e r a c t i o n , t h e e x t r a s t o r e d e n e r g i e s i n t h e q u a d r u p o l e s E q L a n d EqH l e f t to t h e m s e l v e s ,

neutrons uF '

gammas

AF,* ny



AF'

(2)

w h e r e u F i s t h e n u m b e r of p r o m p t n e u t r o n s f r o m A F , a n d ny i s t h e n u m b e r of p r o m p t y - r a y s e m i t ted from the fragment AF, , (AF, -u F = AF,,) • T h e h i g h e s t p o s s i b l e v a l u e of t h e r e s i d u a l e x c i tation (~ neutron separation energy Sn) is 7 M e V f o r 2 5 2 C f a n d ~ 5.5 M e V f o r 2 3 5 U + n, a s p r e d i c t e d i n f i g s . l ( b ) a n d 2(b) a n d a s f o u n d max e x p e r i m e n t a l l y [12]; t h i s Ey corresponds to a single direct v-transition from near the neutron t h r e s h o l d t o t h e g r o u n d s t a t e of A F , . On t h e a v e r a g e , h o w e v e r , ( E ~ nax) a v ~ ~1 S n ~ 3.5 MeV, a n d is the average energy available for prompt y-dec a y of t h e f r a g m e n t s [13]. W e now c o r r e l a t e t h e t o t a l a v a i l a b l e y - e n e r g y Em Ya x w i t h t h e a v e r a g e y - d e c a y e n e r g y ( p h o t o n e n e r g y ) E y a n d w i t h t h e t o t a l n u m b e r of p h o t o n s ny in a fragment F'* from the renormalised Fermi gas model. Here we make the crucial a s s u m p t i o n s t h a t (1) o n l y a c a s c a d e d e e x c i t a t i o n of m e a n e n e r g y Ey i s p e r m i t t e d , (2) a p r e s c r i b e d s t a t i s t i c a l l e v e l s t r u c t u r e of t h e f r a g m e n t s e x i s t a n d (3) t h e d e e x c i t a t i o n t a k e s p l a c e b y E 2 t r a n sitions alone, i.e.,

E ~ ax = ny • Ey There are the following good experimental

rea265

Volume 33B, number 4

PHYSICS LETTERS

sons to b e l i e v e that the p r o m p t v - d e e x c i t a t i o n p r o c e s s p r o c e e d s through a s e r i e s of c a s c a d e y - r a y s ; (i) the m e a s u r e d y i e l d of y - r a y s with e n e r g y (E~naX)av = ½ E max is ~ 100 t i m e s g r e a t e r [12] than the yield with' e n e r g y E~ nax, (if) the m e a s u r e d e n e r g y - s e l e c t e d y i e l d of e n e r g y < 1 MeV is ~ 105 t i m e s g r e a t e r than of e n e r g y E~rnax [14] and (iii) it has been s t a t e d that on the a v e r a g e about 3 to 5 y - r a y s of m e a n e n e r g y < 600 keV a r e o b s e r v e d [15]. A c a s c a d e d e e x c i t a t i o n of m e a n e n e r g y E v is a l s o f a v o u r e d f r o m the following c o n s i d e r a t i o n s : (a) f i s s i o n f r a g m e n t s have to get a r i d of the l a r g e a n g u l a r m o m e n t u m l I of the f i s s i o n i n g nucleus I; s i n c e p r o m p t neutrons c a r r y away only a s m a l l f r a c t i o n of l I, the r e l i e f can c o m e only through a y - c a s c a d e p r o c e s s , and (b) the q u a d r u p o l e - m o n o p o l e type of mutual coulomb i n t e r a c t i o n E q as d i s c u s s e d e a r l i e r , is e x p e c t e d to give r i s e to the E2 type c a s c a d e y - r a y s ; s o m e d i s c u s s i o n s on this point e x i s t in the U t e r a t u r e [16]. The w e l l known s t a t i s t i c a l p r o p e r t y of the l e v e l s t r u c t u r e of the f r e e gas is that the single p a r t i c l e l e v e l density g o n e a r the F e r m i s u r f a c e eo g e n e r a t e s a n u c l e a r l e v e l density Po at an e x citation Uo [17]. T h e s e quantities a r e i n t e r a c t i o n m o d i f i e d in a r e a l n u c l e a r c a s e . The n e c e s s a r y m o d i f i c a t i o n s m ay be e v a l u a t e d f r o m the r e n o r m a l i s e d F e r m i gas model. It can be shown that the l e v e l spacing d r , and the single p a r t i c l e l e v e l density g F ' of the nucleus F ' is r e l a t e d to the f r e e gas density g o [18] by

g F ' = 1/dF' = gn +gp,

gn o r p ~ go(l+6e/eo)(4)

including the s t at e mixing e f f e c t s and e f f e c t i v e occupation f a c t o r s in a d e f o r m e d open s h e l l (coulomb contribution added). A plot of the l e v e l density p a r a m e t e r a F ( = ~ n 2 g F) f o r the p r o m p t f i s s i o n f r a g m e n t s a r e shown in fig. 3 and a r e c o m p a r e d with the e x p e r i m e n t a l data c o m p i l a t i o n of the a - p a r a m e t e r [19]; we note f a i r a g r e e m e n t between c a l c u l a t e d and m e a s u r e d v a lu e s . A c o r r e l a t e d s et of n u c l e a r l e v e l s t r u c t u r e coupled to the ground s t a t e (e. g., 0 +, 2 +, 4 +, . . , in an e v e n - e v e n and jrr + ~ k 2 k s e r i e s with/e = 0, 1, 2 , . . . , in an o d d - e v e n nucleus) is often known to p e r s i s t upto f a i r l y high e x c i t a t i o n s (~ 3 - 4 MeV). A s s u m i n g this s p e c i a l s e t of c o r r e l a t e d l e v e l s to be a s e t of equidistantly s p a c e d s t a t i s t i c a l l e v e l s of spacing def f above the r e n o r m a l i s e d gas m o d el F e r m i s u r f a c e e, we note that (i) upto about E~nax, l e v e l s of only one kind of p a r i t y a r e e f f e c t i v e for E2 t r a n s i t i o n s and (if) an upper l i m i t can be s e t at N ~E ymax (not E vmax ), as d i s c u s s e d below. Condition (i) gives 266

aeff -- 2 a F, = 2 / e r

26 October 1970

(5)

= 1/eef f "ev

R e g a r d i n g (if), it is w e l l known that h i g h e r r o t a t i o n a l - v i b r a t i o n a l groups of l e v e l s a p p e a r at N 3 MeV and that our c o r r e l a t e d s t a t i s c i t c a l l e v e l s (5) d e g e n e r a t e into an exponentially v a r y i n g l e v e l density Po above ~ ½E~nax ; si n ce the n u m b e r of l e v e l s between ½E~max and E ~nax i n c r e a s e s f r o m tens to h u n d r e d - t h o u s a n d s , the a v e r a g e d e f f is so s m a l l , and the c o m p e t i t i o n b e t w e e n E2 t r a n s i t i o n - f a v o u r i n g l e v e l s is so l a r g e , that it is i m p o s s i b l e to o b s e r v e the ef f ect s of s p e c i a l l e v e l s any m o r e . M o r e o v e r , the e l e c t r o n i c s and the d et ect i n g co u n t er e n e r g y s e l e c t i v i t y a r e often u su al l y b i a s e d ag ai n st counting t h ese low e n e r g y y - r a y s in typical e x p e r i m e n t s [12, 14, 15]. The c o r r e l a t i o n (3) thus m o d i f i e s to m ax ~E m a x (ET )av ~ ~ V ~ %.

aeff ~ E v " %

.

(6)

The n u m b e r of p r o m p t y - r a y s n 9, a r e c a l c u l a t e d f r o m the c o r r e l a t i o n (6) and a r e shown in figs. l(c) and 2(c). E x p e r i m e n t a l data a r e a l s o shown in figs. 1 and 2 when a v a i l a b l e . We note that f o r figs. l(b) and l(c), the e x p e r i m e n t a l e r r o r s have been i n c r e a s e d by a f a c t o r of 3 on the b a s i s of s o m e c o m m e n t s of the w o r k e r s [15] on 235U + n. Our absolute y i e l d s n3, a g r e e f a i r l y w e l l with the m e a s u r e d r e l a t i v e y - r a y y i e l d s [14, 15]. S e v e r a l p h en o m en a c o m p e t e with (6) to p r o v i d e a l t e r n a t i v e paths of d e e x e i t a t i o n of the p r o m p t f i s s i o n f r a g m e n t s , e . g . , the d el ay ed neutron em i s. sion, the d i r e c t E 7max t r a n s i t i o n to the ground st at e and o t h er c r o s s - o v e r y - r a y s of d i f f e r e n t m u l t i p o l a r i t i e s , e t c . . Such delayed, weak and r e t a r d e d p h e n o m e n a have b e e n a s s u m e d in the p r e s e n t w o r k to make a negligible contribution to the m a i n s t r e a m of d e e x c i t a t i o n (6). The e x p e r i m e n t a l t i m e r e s o l u t i o n of ~ 10 -9 to 10 -11 s [14, 15] ' d e f i n e s ' the p r o m p t p r o c e s s e s in y - d e c a y . This t i m e s c a l e is a p p r o p r i a t e f o r allowed E2 t r a n s i t i o n s .

Reference s [1] R. Sarkar and A. Chatterjee, Phys. Letters 30B (1969) 313. [2] R. Sarkar and A. Chatterjee, Phys. Rev. C1 (1970) 619. [3] U. Mosel and W. Greiner. Z.Physik 217 (1968) 256; 222 (1969) 261. [4] R. Sarkar, to be published. [5] Gy. Kiuge and A. Lajtai, Phys. Letters 27B (1968) 65; 30B (1969) 311. [6] J.M. Ferguson and P.A Read, Phys. Rev. 150 (1966) 1018.

Volume 33B, n u m b e r 4

PHYSICS

[7] F. Dickmann and K. Dietrich, Nucl. Phys. A129 (1969) 241. [8] H. W. Schmitt, P r o c . Intern. Sym. on Why and how shlould we investigate nucleides f a r off the stability line, Lykesil, Sweden (1966); Arkiv Phys. 36 (1966) 633; P r o c . Intern. Conf. on the P h y s i c s and c h e m i s t r y of f i s s i o n , Vienna, 1969 (L A. E. A., Vienna, 1969) p. 67. [9] L.Wilets, T h e o r i e s of nuclear fission (Oxford University, Oxford, 1964). [10] S. Chatterjee, unpublished private communication. [11] W. K. H. Panofsky and M. Phillips, Classical e l e c tricity and magnetism (Addison-Wesley, Reading, Mass. 1962) Fig. 1-3, p. 16 and Ex. 6, p. 116 [12] E. C. Maienschein, R.W. Peele, W. Zobel and T. A. Law, Second Intern. Conf. on Peaceful u s e s of atomic energy, Geneva, 1958 (United Nations, Geneva) Vol. 15, p a p e r No. P/670; F . E . W . Rau, Ann. Physique 10 (1963) 252.

LETTERS

26 October 1970

[13] V . F . Apalin, Yu.N.Gritsiuk, I.E.Kutikov, V.L Lebedev and L. A. Mikailian, Nucl, Phys. 71 (1965) 553. [14] S . A . E . Johanson, Nuel. Phys. 60 (1964) 378; 64 (1965) 147. [15] H. M a i e r - L e i b n i t z , H.W. Schmitt and P. A r m b r u s t e r Intern. Conf. on the P h y s i c s and c h e m i s t r y of f i s sion, Salzburg, 1965 (I. A. E . A . , Vienna, 1965) Vol. 2, p. 143. [16] R. B. Leaehman, Second Intern. Conf. on Peaceful uses of atomic energy, Geneva, 1958 (United Nations, Geneva) Vol. 15, p a p e r No. P/665; V, M. Strutinskii, Soviet Phys. J E T P 10 (1960) 613. [17] T . E . O . E r i c s o n Advances in Phys. 9 (1960) 425. [18] S.K. Chosh, S. Chatterjee and A. Chatterjee, to be published. [19] E. Erba, U. Facchini and E. Seatta-Menichella, Nuovo Cim. 22 (1961) 1237; U. Facchini and E. Saetta-Menichella, Energia Nucleare 15 (1968) 54.

267