Pure Autonomic Failure – Predictors of Conversion to Clinical CNS Involvement

Pure Autonomic Failure – Predictors of Conversion to Clinical CNS Involvement

Abstracts / Autonomic Neuroscience: Basic and Clinical 192 (2015) 137–141 137 Contents UN CO RR EC TE DP RO OF P1 Bladder/Micturition . . ...

125KB Sizes 11 Downloads 69 Views

Abstracts / Autonomic Neuroscience: Basic and Clinical 192 (2015) 137–141

137

Contents

UN

CO

RR

EC

TE

DP

RO

OF

P1 Bladder/Micturition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P1.1 Blockage of UDP-sensitive P2Y6 receptors as a novel therapeutic strategy to control urine storage symptoms in men with bladder outlet obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P1.2 Sensory mechanisms of obstruction-induced detrusor overactivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P1.3 ATP evokes cholinergic contraction in the healthy, but not inflamed, intact rat urinary bladder . . . . . . . . . . . . . . . . . . P1.4 Cholinergic activation of brain stem neurons increases intravesical pressure mediated by vasopressin release in female rats . . P1.5 Structural Autonomic Evaluation in Chronic Pelvic Pain Syndromes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P1.6 Receiver operating characteristic analysis of sphincter electromyography and post-void residuals for multiple system atrophy . P2 Enteric Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P2.1 Adrenergic innervation regulates intestinal microbiota diversity via generation of cholinergic Th17 lymphocytes . . . . . . . . P2.2 Smooth muscle-derived neurotrophins regulate development and function of vagal gastrointestinal (GI) afferents . . . . . . . . P2.3 The ghrelin receptor agonist, HM01, activates the innervation of the colon to initiate coordinated propulsive contractions and bowel emptying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P2.4 Functional interaction of cultured mucosal mast cells and isolated enteric neurons in mice . . . . . . . . . . . . . . . . . . . . P2.5 Adenosine A2A receptor-mediated facilitation of myenteric cholinergic neurotransmission is impaired in the ileum of diabetic rats P2.6 Neuronal to non-neuronal shift of purine resources in the tripartite myenteric synapse of postinflammatory ileitis . . . . . . . P2.7 Involvement of autonomic nervous activity changes in gastroesophageal reflux in neonates during sleep and wakefulness . . . P2.8 Autonomic nervous system activity in children with Crohn disease: Short-term effect of anti-TNFα therapy . . . . . . . . . . . P2.9 Modification of the enteric nervous system in diabetic dogs: An immunohistochemical study . . . . . . . . . . . . . . . . . . P2.10 Morphological and functional investigation of cross-talk between enteric neuron and dendritic cell . . . . . . . . . . . . . . P2.11 rAAV transduction in the myenteric and submucous plexus of mouse ileum and colon . . . . . . . . . . . . . . . . . . . . . P2.12 Effect of a stimulant of the lumbo-sacral defection centre on constipation in an animal model . . . . . . . . . . . . . . . . . P2.13 Electrical vagus nerve stimulation as an innovative treatment in inflammatory bowel diseases . . . . . . . . . . . . . . . . . P2.14 Oral ingestion of a 5-HT4 receptor agonist evokes a CNS-ENS mediated gastro-colonic reflex involving High Amplitude Propulsive Contractions (HAPCs) in the human colon within 5 minutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . P3 Thermoregulation/ Hydrosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P3.1 Sympathetic tonus modify endothelial dependent vasodilation in finger pulp of healthy subjects . . . . . . . . . . . . . . . . . P3.2 Endoscopic sympathectomy impairs forearm cutaneous vasodilation and sweating during passive heat stress . . . . . . . . . . P3.3 Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time . . . . . . . . P3.4 Effects of the activation of the orexin receptors within the Raphe Pallidus at different ambient temperatures in the free behaving rat P3.5 Insulin-induced hypoglycemia inhibits brown adipose tissue (BAT) thermogenesis . . . . . . . . . . . . . . . . . . . . . . . . P3.6 Medullary reticular GABAergic neurons mediate neuropeptide Y-induced inhibition of brown adipose tissue thermogenesis . . P3.7 Mechanisms that contribute to central methamphetamine induced hyperthermia . . . . . . . . . . . . . . . . . . . . . . . . P3.8 Hemifacial hyperhidrosis develops compensatory to the anhidrotic area caused by cervical disk herniation or cervical spondylosis P3.9 Gustatory sweating pathways are different from thermal sweating pathways: An interpretation from the findings of a case of hemifacial gustatory sweating deficit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P3.10 Demonstration of autonomic dysfunction following brachial plexus injury using Quantitative Sudomotor Axon Reflex Test [QSART] P4 Respiration/Chemoreflex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P4.1 Gastrin-releasing peptide (GRP) acts centrally to stimulate the cardioventilatory system in trout . . . . . . . . . . . . . . . . P4.2 Transient acute lung injury induces activation and proliferation of a selective cell population in the neuroepithelial body microenvironment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P4.3 Differential cardiovascular reflexes evoked by activation of nociceptive airway sensory nerves in healthy and cardiovascular-diseased rats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P4.4 Muscle Sympathetic Nerve Activity during Hypercapnia in Young and Older Adults . . . . . . . . . . . . . . . . . . . . . . . . P4.5 Obstructive apnea due to laryngospasm during seizures, but not central apnea, causes hypoxic cardiac derangements in rats . . P4.6 Antioxidant treatment with N-acetyl cysteine reduced the hypertension induced by intermittent hypoxia in a rat model of obstructive sleep apnoea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P4.7 Maintenance of ventilation under a hypoxic condition requires activated astrocytes . . . . . . . . . . . . . . . . . . . . . . . P4.8 Respiratory-sympathetic coupling in hypertension of chronic kidney disease . . . . . . . . . . . . . . . . . . . . . . . . . . . P4.9 Hyperglycemia Blunts Hypoxic Ventilatory Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P4.10 Dorsal and ventral hippocampus nmda receptor/nitric oxide pathway modulates cardiovascular but not taquipneic responses to chemoreflex activation in awake rats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P4.11 Acute hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the C1 region . . . . .

56 56 56 57 57 57 57 58 58 58 58 59 59 59 60 60 60 61 61 61 62 62 62 62 63 63 63 64 64 64 64 65 65 65 65 66 66 66 67 67 67 68 68 68 69

P4.12 Respiratory modulated bursting of sympathetic activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69

P4.13 A slow-fast approach to studying the emergence and amplitude of respiratory bursting in sympathetic preganglionic neurones P5 Cardiac Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.1 Effect of B-type natriuretic peptide and phosphodiesterase 2A is coupled to neurotransmitter release in pro-hypertensive rats . . P5.2 Targeted disruption of glycogen synthase kinase-3β in the heart attenuates cardiac parasympathetic dysfunction in type 1 diabetic Akita mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.3 Low-threshold mechanoreceptive skin Aδ and C afferent units contribute to an inhibitory effect of touch on nociceptive somatocardiac reflexes via the spinal μ-opioid system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.4 ANP expression in the stressed rat heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69 69 69 70 70 70

138

Abstracts / Autonomic Neuroscience: Basic and Clinical 192 (2015) 137–141

P5.5 Antidepressant-like activity and cardioprotective effects of fatty acid amide hydrolase inhibitor URB694 in socially stressed Wistar Kyoto rats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.6 Innervation of pig cardiac ventricles. An electron microscopical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.7 Distribution, quantity and immunohistochemistry of neuronal cells on pig cardiac ventricles . . . . . . . . . . . . . . . . . . . . P5.8 Quantitative analysis of the innervation of pig cardiac ventricles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.9 Novel anti-fibrotic effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts . . . . . . . . . . . . . . . . . . . . . P5.10 Sympathetic stellate neurons increases cardiac conduction velocity and alters wave patterns in a myocyte-neuron co-culture model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.11 Phosphodiesterase 2A regulation of B-type natriuretic peptide coupled calcium signaling in cardiac sympathetic neurons from prehypertensive rats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.12 A novel neuronal channelopathy could provide the trigger for Ca2+ dysregulation and sympathetic impairment seen in the pro-hypertensive rat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5.13 Chronic treatment with ivabradine reduces heart rate without changes in renal sympathetic nerve activity and blood pressure . . .

71 71 71 72 72 72 73 73 73

P5.14 Cardiac arrhythmias during or after epileptic seizures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 P5.15 The sympathetic co-transmitter Neuropeptide Y is a novel pro-arrhythmic trigger even in the presence of maximal beta-blockade . . 74

OF

P5.16 Heart failure reduces epicardial autonomic nerve density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 P5.17 In heart failure, lesion of the area postrema reduces cardiac sympathoexcitation and improves cardiac function . . . . . . . . . 75 P5.18 Cardiocirculatory effects of the selective 5-HT1A agonist NLX-112 on heart failure in rats . . . . . . . . . . . . . . . . . . . . . 75 P5.19 Biomarker sensitivity of plasma adenosine levels to predict heart failure in dogs . . . . . . . . . . . . . . . . . . . . . . . . . 75

RO

P5.20 Non-invasive Neurophysiologic Quantification of Cardiac Sympathetic Denervation for Arrhythmia Management . . . . . . . . . 75 P5.21 Modulation of cardiac vagal tone during breathing at 0.1 Hz in fully conscious human volunteers. . . . . . . . . . . . . . . . . 76 P5.22 Cardiovascular autonomic control in patients with left ventricular assistance continous flow devices . . . . . . . . . . . . . . . 76

EC

TE

DP

P5.23 The dynamics of cardiac autonomic control in sleeping preterm neonates exposed in utero to smoking . . . . . . . . . P5.24 Inhibition of Protein Kinase C Signalling On Cardiac Noradrenaline Uptake in the Spontaneously Hypertensive Rat . . . P5.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P6 Cardiac-Heart Rate Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P6.1 Cardiovascular autonomic regulation in mice overexpressing the vesicular acetylcholine transporter (VAChT) gene . . . P6.2 Multiscale entropy analysis of heart rate variability in sinoaortic denervated rats . . . . . . . . . . . . . . . . . . . . . P6.3 Use of infrared thermography, heart rate and heart rate variability in studying effect of sweeps in rhesus monkey . . . . P6.4 Low Frequency Oscillations of Heart Rate Variability and Central Volume . . . . . . . . . . . . . . . . . . . . . . . . . P6.5 The relationship between indices of parasympathetic nervous activity and cardiovascular health in men . . . . . . . . . P6.6 Impaired cardiac autonomic control in response to active standing in parkinson’s disease with orthostatic hypotension . P6.7 Autonomic Heart Modulation in Chronic Kidney Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P6.8 Heart Autonomic Modulation in the Obese Children: evaluation using linear and nonlinear methods . . . . . . . . . . . P6.9 Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing mental stress . . . . . . . . P6.10 C-reactive protein and heart rate variability: are there associations with severity of coronary artery disease? . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

76 77 77 77 77 78 78 78 79 79 79 80 80 80

P6.11 Demonstration of subclinical autonomic dysfunction following severe traumatic brain injury using serial heart rate variability monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 P6.12 Hierarchical integration of interoception and exteroception in the anterior insula during naturalistic emotional experience . . . 81

RR

P6.13 Pleasant music increases cardiac autonomic responses both in young adults with autism spectrum disorder and typical development 81

UN

CO

P6.14 Jasmine inhalation reduces sympathetic and enhances parasympathetic activity in patients after moderate and severe traumatic brain injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P6.15 The effect of playing a stringed-instrument ensemble on autonomic nerve function . . . . . . . . . . . . . . . . . . . . . . . . P6.16 Effect of Bhramari pranayama (humming bee breath) on heart rate variability and hemodynamic– a pilot study . . . . . . . . . P7 Human Baroreflex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P7.1 Vagal Nerve Stimulation in Autonomic Dysfunction – A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P7.2 Intranasally administered orexin A does not activate sympathetic baroreflex function in healthy humans . . . . . . . . . . . . . P7.3 Olfactory Evoked Brainstem Autonomic Responses in Subjects with Normal Sensations of Smell . . . . . . . . . . . . . . . . . . P7.4 Comparison of cardiovagal baroreflex sensitivity from phase IV of Valsalva maneuver in SCA 1 and SCA 2 patients . . . . . . . . P7.5 Central parasympathetic excitation in real-time during left vagal nerve stimulation in fully conscious patients with drug-resistant epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P7.6 Cardiac vagal tone withdrawal in conscious treated hypertensive patients and normal healthy controls during baroreceptor unloading and baroreceptors loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P7.7 Carotid Sinus Massage: Factors Influencing Response Magnitude and Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . P7.8 Central parasympathetic excitation in real-time during intra-operative stretch stimulation of the carotid sinus intima in anaesthetised human subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P7.9 Impairment of baroreflex sensitivity by sequence technique in Frailty Syndrome . . . . . . . . . . . . . . . . . . . . . . . . . . P7.10 Effects of a hydrotherapy program on baroreflex sensitivity in women with fibromyalgia syndrome . . . . . . . . . . . . . . . P7.11 Assessing cardiac baroreflex function with carotid neck collar technique in heart failure . . . . . . . . . . . . . . . . . . . . . P7.12 Baroreflex sensitivity assessment in patients with type 2 diabetes during orthostatic challenge . . . . . . . . . . . . . . . . . . P7.13 Relationship between baroreflex sensitivity and hsCRP in natural human aging is dependent of gender . . . . . . . . . . . . . P7.14 Cardiac baroreflex sensitivity in coronary patients with and without type 2 diabetes . . . . . . . . . . . . . . . . . . . . . . . P7.15 Is the strength of the baroreflex involvement during orthostatic position related to the impact of fibromyalgia on quality of life?

82 82 82 83 83 83 83 84 84 84 84 85 85 86 86 86 86 87 87

Abstracts / Autonomic Neuroscience: Basic and Clinical 192 (2015) 137–141

UN

CO

RR

EC

TE

DP

RO

OF

P7.16 Spontaneous sympathetic baroreflex sensitivity is correlated with cardiac baroreflex sensitivity in healthy, young individuals . . . P7.17 Upright posture increases the strength of baroreflex coupling between heart period and blood pressure in human subjects . . P7.18 Independent responses of baroreceptors and blood pressure to low bolus dose of phenylephrine in fully conscious human volunteers P8 Animal Baroreflex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P8.1 The medial prefrontal cortex modulates the baroreflex activity through the CB1 receptor/NMDA receptor/Nitric Oxide pathway . . P8.2 Neuronal CGRP/RAMP1 receptors enhance baroreflex and abrogate phenylephrine-induced hypertension . . . . . . . . . . . . P8.3 Effects of Low Frequency Electrical Stimulation in Baroreflex Sensitivity and Heart Rate Variability in Rats with Heart Failure . . P8.4 The Presence of Baroreflex Failure in Hypertension Induces Volume Intorelance and Predisposes to Pulmonary Edema . . . . . . P8.5 A cellular mechanism underlying impairment of arterial baroreflex in rats with portal hypertension . . . . . . . . . . . . . . . P8.6 Arterial baroreflex impairment and functional plasticity of cardiac autonomic neurons in rat models of liver cirrhosis . . . . . . P9 Central Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.1 Relaxin increases sympathetic nerve activity and activates spinally-projecting neurons in the paraventricular nucleus of nonpregnant, but not pregnant, rats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.2 Expression of c-Fos in the hypothalamus and the cardiovascular response during stress in Parkinson's disease model rats . . . . P9.3 Ovarian hormone deprivation impairs oxytocinergic neurons expression in paraventricular nucleus pre-autonomic neurons in rats P9.4 Functional mapping of visceral sympathetic outflow and skeletal muscle blood flow in the hypothalamus of rats . . . . . . P9.5 Activation of 5-hydroxytryptamine-1A receptors suppressestachycardia evoked from the dorsomedial hypothalamus . . . . . . P9.6 Trans-generational effect of maternal obesity on the programming of hypertension: Altered leptin signalling pathway in the central nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.7 Direct projections from the inferior colliculus drive putative pre-motor sympathetic, respiratory and motor populations in the medulla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.8 Involvement of CB1 and TRPV1 receptors of the ventrolateral periaqueductal gray in physical stress-evoked cardiovascular responses during in rats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.9 The role of estrogen receptors in the RVLM of renovascular hypertensive rats . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.10 Prehypertensive juvenile spontaneously hypertensive rats have more orexin neurons than normotensive Wistar Kyoto rats . . P9.11 Hypersensitivity of vagal pulmonary C-fibers is induced by hemorrhagic hypotension in anesthetized rats . . . . . . . . . . . P9.12 Role of commissural nucleus of solitary tract on the maintenance of hypertension and respiratory activity in renovascular hypertensive rats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.13 Increased expression of macrophage migration inhibitory factor in the nucleus of solitary tract attenuates the renovascular hypertension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.14 Effects of sympathetic nerve hyperactivity and high blood pressure on renal handling of water and electrolytes . . . . . . . . P9.15 Exercise training (ET) in treadmill running reduces oxidative stress and inflammatory signaling of the commissural nucleus of the solitary tract (commNTS) and rostral ventrolateral 4450 medulla in rats . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.16 Putative sympathetic premotor neurons in the rostral ventrolateral medulla are not somatotopically distributed . . . . . . . . P9.17 Activation of different cortical areas may be responsible for the divergent sympathetic responses to long-lasting experimental muscle pain in humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.18 Partial pharmacologic blockade demonstrates sympathetic influence on the phase angle between oscillations in blood pressure and cerebral blood flow modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P9.19 Stable transfer of blood pressure fluctuations onto cerebral blood flow velocities despite sympathetic activation . . . . . . . . P9.20 Real-time neuroimmune excitation of the brainstem in fully conscious human volunteers . . . . . . . . . . . . . . . . . . . . P9.21 Higher blood pressure is associated with lower regional grey matter density in healthy, young adults . . . . . . . . . . . . . . P10 Human Blood Pressure -Orthostatic Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P10.1 Seasonal changes in orthostatic tolerance in Parkinson’s disease without autonomic failure . . . . . . . . . . . . . . . . . . P10.2 Progression of Autonomic Dysfunction in Neurogenic Orthostatic Hypotension Patients . . . . . . . . . . . . . . . . . . . . P10.3 Orthostatic cerebral blood flow and symptoms in patients with familial dysautonomia . . . . . . . . . . . . . . . . . . . . . P10.4 Adrenergic Dysfunction in Patient with Initial Orthostatic Hypotension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P10.5 Head-Up Tilt response: might it be conditioned? A Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P10.6 Headaches in young adolescents with both spontaneous intracranial hypotension and postural intolerance with dysautonomia: I cannot stand my headaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P10.7 Cutaneous Nitric Oxide (NO) Modulates Noradrenergic Neurotransmission Pre-and Post-Synaptically; Excess Nitric Oxide (NO) Blunts Presynaptic Adrenergic Transduction in Orthostatic Intolerance (OI) . . . . . . . . . . . . . . . . . . . . . . . . . . . P10.8 Sweating and sympathoadrenal imbalance precede tilt-induced neurally mediated hypotension . . . . . . . . . . . . . . . . P11 Human Blood Pressure- Syncope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P11.1 Droxidopa improves orthostatic intolerance symptoms in low and normal supine blood pressure phenotypes of vasovagal syncope P11.2 Tilt–induced vasovagal syncope and psychogenic pseudosyncope: overlapping clinical entities . . . . . . . . . . . . . . . . . P11.3 Alterations of Cardiac and Vascular Sympathetic Baroreflex Control during pre-syncope . . . . . . . . . . . . . . . . . . . . P11.4 Nausea with syncope: what does it tell us? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P11.5 The Clinical Study for Genetic Evaluation of α2B-AR Gene Polymorphism in Neurally Mediated Syncope. . . . . . . . . . . . P11.6 The use of Transfer Entropy method for the assessment of cardiovascular regulation during head-up tilt test . . . . . . . . . P11.7 Epidemiological characteristics of children and adolescents with positive head up tilt table test (HUTT) . . . . . . . . . . . . P11.8 Cardiovascular responses to isometric handgrip exercise in neurally mediated syncope . . . . . . . . . . . . . . . . . . . . . P11.9 Possible Association of Human Adrenoceptors Polymorphism in Neurally Mediated Syncope . . . . . . . . . . . . . . . . . . P11.10 Is it syncope? Differential diagnosis of transient loss of consciousness in the emergency department . . . . . . . . . . . . . P11.11 The ICD-9-CM 780–2 accuracy in identifying syncope in the emergency department . . . . . . . . . . . . . . . . . . . . .

139

88 88 88 89 89 89 89 89 90 90 90 90 91 91 91 92 92 92 93 93 93 94 94 94 94 95 95 95 96 96 96 97 97 97 98 98 98 98 99 99 99 100 100 100 100 101 101 101 102 102 102 103 103

P11.12 Differentiation by Clinical Symptoms in Positive Head up Tilt Table Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 103

140

Abstracts / Autonomic Neuroscience: Basic and Clinical 192 (2015) 137–141

UN

CO

RR

EC

TE

DP

RO

OF

P12 Human Blood Pressure- Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P12.1 24 Hour Blood pressure monitoring profile in Holmes-Adie-Ross spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . P12.2 Periodic breathing in short-term day-time recordings in hypertensive and normotensive individuals alters blood pressure parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P12.3 Acute and chronic increases in serum sodium and blood pressure variability in normotensive humans . . . . . . . . . . . . P12.4 Acute effects of high-dose ethanol on autonomic control of cardiovascular system . . . . . . . . . . . . . . . . . . . . . . . P12.5 Neural cardiovascular responses to static handgrip in psoriatic patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . P12.6 Abnormality of circadian blood pressure profile and the nature of autonomic dysfunction . . . . . . . . . . . . . . . . . . . P12.7 Valsalva Maneuver in Pulmonary Arterial Hypertension: Hemodynamic Changes and Excessive Systemic Vasodilation . . . . P12.8 Characterization of blood pressure and daily stress in Mexican children with Diabetes Mellitus Type 2 risk factors . . . . . . P12.9 Resting Heart Rate and Blood Pressure Changes During Adjuvant Treatment for Breast Cancer . . . . . . . . . . . . . . . . . P12.10 Blood Pressure lowering effects of Vanilla inhalation are reduced after moderate and abolished after severe traumatic brain injury P13 Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P13.1 Neurovegetative control is altered in transgenic mice expressing the prion protein mutation associated with fatal familial insomnia P13.2 Sleep-related changes in arterial blood pressure critically depend on sympathetic control of vascular resistance in mice . . . P13.3 Obstructive sleep apnea syndrome in non severely obese patients with nonalcoholic fatty liver disease . . . . . . . . . . . . P13.4 Single-unit muscle sympathetic nerve activity (MSNA) is more powerful predictor of sleep apnea syndrome patient’s severity than multiunit MSNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P13.5 Seasonal differences in saliva melatonin concentrations and heart rate variability during sleep in obese men . . . . . . . . . P13.6 Cardiovascular autonomic control during sleep in patients with acute ischemic stroke . . . . . . . . . . . . . . . . . . . . . P13.7 Angiotensin-II-mediated Nondipping during nocturnal sleep increases morning sympathetic activity but not blood pressure in healthy humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P13.8 Pre-sleep emotional induction affects REM rate and sympathetic activity during sleep . . . . . . . . . . . . . . . . . . . . . P13.9 Preserved cardiac autonomic dynamics during sleep after partial sleep restriction . . . . . . . . . . . . . . . . . . . . . . . P13.10 Cardiovascular autonomic control during sleep in Steinert’s disease: the effects of comorbidity with OSAS . . . . . . . . . . P13.11 Cardiac autonomic regulation in major depressive disorder during sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . P14 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P14.1 The Neuroprotective Effects of Endurance Training on the Aging Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P14.2 Metaboreflex Influence on Heart Rate Recovery after Aerobic Exercise in Normotensive and Hypertensive Subjects . . . . . . P14.3 Blood pressure reactivity to mental stress is attenuated following resistance exercises in treated older hypertensive women . . P14.4 Low-intensity aerobic training (T) blocks age-induced decrease of cardiac vagal preganglionic neurons in Spontaneously Hypertensive rats (SHR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P14.5 Cardiovascular neural regulation in Triathlon Athletes: an assessment by spectral analysis of cardiovascular oscillations and muscle sympathetic nerve activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P14.6 Physical training and aging effects on autonomic control of the heart during supine and active standing in young sedentary and master rowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P14.7 The relationship between heart rate variability and recovery heart rate in women . . . . . . . . . . . . . . . . . . . . . . . P14.8 Influence of physical training and chronic testosterone treatment on cardiovascular changes evoked by ethanol consumption in rats P14.9 Time course of muscle sympathetic nerve activity to active muscle during mild isometric contractions in humans . . . . . . P14.10 Inspiratory muscle training improves cardiac autonomic modulation in healthy individuals . . . . . . . . . . . . . . . . . . P15 Autonomic Function- General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P15.1 Effects of healthy aging and coronary artery disease on sympathetic axonal recruitment strategies during prolonged end-inspiratory apnea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P15.2 Vestibular modulation of muscle sympathetic nerve activity by the utricle during sub-perceptual sinusoidal linear acceleration in humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P15.3 Quantitative analysis of human cutaneous vasomotor innervation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P15.4 Interaction between h-current and nicotinic EPSPs in sympathetic neurons serves to modulate synaptic amplification in ganglia P15.5 Sensory and sympathetic nerves are depleted in the knee synovium of vitamin D deficient rats . . . . . . . . . . . . . . . . P15.6 Thyroid deficiency during antenatal and early postnatal development affects cardiovascular control in adult rat offspring . . P15.7 Sympathetic nerve to the ovary regulates ovarian testosterone secretion in female rats . . . . . . . . . . . . . . . . . . . . P15.8 Functional and morphological characterization of muscarinic receptors in the rat lacrimal gland . . . . . . . . . . . . . . . . P15.9 Effects of nebivolol on sympatoexcitation and renal fibrosis in a model of chronic kidney disease . . . . . . . . . . . . . . . P15.10 Effects of renal denervation on renal function and sodium transporters in Goldblatt model of hypertension . . . . . . . . . P15.11 Increased resting tension abolishes endothelial anti-contractile effect induced by phenylephrine in renal hypertensive rat aorta P15.12 Exploring Fruit Bat Cortical and Subcortical Neurophysiology: Optimizing Planes of Section . . . . . . . . . P15.13 Localization of c-Fos immuno-reactive neurons in the frog brain during physiological stress . . . . . . . . . P16 Human Autonomic Disease- Dysautonomia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P16.1 Determinants of sudden death during sleep in familial dysautonomia: a preliminary study . . . . . . . . . . P16.2 Sleep structure and sleep disordered breathing in familial dysautonomia . . . . . . . . . . . . . . . . . . . . P16.3 Perfusion of muscle groups during HUTT in patients with dysautonomia . . . . . . . . . . . . . . . . . . . . P16.4 Reduced Arousability during sleep in patients with Familial Dysautonomia . . . . . . . . . . . . . . . . . . . P16.5 Direct recordings of muscle and cutaneous sympathetic nerve activity in patients with familial dysautonomia P16.6 Pattern Of Dysautonomia In Patients With Functional Gastrointestinal Disorders . . . . . . . . . . . . . . . . P16.7 Muscle and cerebral perfusion trends during HUTT in pediatric and adolescent patients with dysautonomia .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

103 103 104 104 104 105 105 105 106 106 106 107 107 107 107 108 108 108 109 109 109 110 110 110 110 110 111 111 111 112 112 112 113 113 113 113 114 114 114 115 115 115 116 116 116 117 117 117 117 117 118 118 118 119 119 119

Abstracts / Autonomic Neuroscience: Basic and Clinical 192 (2015) 137–141

P17 Human Autonomic Disease- POTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P17.1 Combined β-blockade and Splanchnic Venous Compression in the Treatment of POTS . . . . . . . . . . . . . . . . . . . . . P17.2 Hypoplasia of Aorta in Postural Orthostatic Tachycardia Syndrome (POTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . P17.3 Regulation of Circulation during Exercise in Adolescents with Postural Orthostatic Tachycardia Syndrome (POTS) . . . . . . . P17.4 Effects of High Sodium Intake on Plasma Volume and Physical 7425 Fitness in Patients with Postural Tachycardia Syndrome and Healthy Females . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P17.5 Short-Term Outcome in Children and Adolescents with Orthostatic Intolerance (OI) and Postural Tachycardia Syndrome (POTS) P17.6 Arterial stiffness characterization in patients with Postural Orthostatic Tachycardia Syndrome and Ehlers-Danlos Syndrome Type 3 P17.7 Orthostatic Intolerance and Autonomic Dysfunction following Bariatric Surgery: A case series and review of the literature . . P17.8 The Association of Autonomic GPCR Activating Autoantibodies to POTS and Vaso-Vagal Syndrome (VVS) . . . . . . . . . . . P17.9 Tilting Cerebral Blood Flow and Standing Balance in Postural Orthostatic Tachycardia Syndrome . . . . . . . . . . . . . . . P17.10 Autoantibodies, T, B and Dendritic cell abnormalities in Postural Orthostatic Tachycardia Syndrome (POTS) . . . . . . . . .

141

120 120 120 120 121 121 121 122 122 122 123

P17.11 Median Arcuate Ligament Syndrome Presenting as POTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 P17.12 A comprehensive study on postural orthostatic tachycardia syndrome (POTS) symptoms . . . . . . . . . . . . . . . . . . . 123 P17.13 Balance Disorders in Postural Orthostatic Tachycardia Syndrome (POTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

OF

P17.14 Study ii- beighton score and delta heart rate (Δ HR) correlation in patients with ehlers danlos syndrome (EDS) and postural orthostatic tachycardia syndrome (POTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 P17.15 Frequency of Symptoms in Postural Orthostatic Tachycardia Syndrome (POTS) . . . . . . . . . . . . . . . . . . . . . . . . 124

RO

P17.16 Median Arcuate Ligament Syndrome in Postural Orthostatic Tachycardia Syndrome (POTS) . . . . . . . . . . . . . . . . . . 124 P17.17 A case report of Mitochondrial Disease in a patient with Postural Orthostatic Tachycardia Syndrome (POTS) . . . . . . . . . 125 P17.18 Small fibre neuropathy and Collagen IV reduction in Postural Tachycardia Syndrome and Joint Hypermobility Syndrome . . 125

UN

CO

RR

EC

TE

DP

P17.19 Diagnosing PoTS: additional investigations beyond the HUT and standing tests . . . . . . . . . . . . . . . . . . . . . . . . P18 Human Autonomic Disease-MSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P18.1 Baseline Features of Patients with Multiple System Atrophy Enrolled in the U.S. Autonomic Disorders Consortium Natural History Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P18.2 Hypotension-induced vasopressin release distinguishes Lewy body disorders from multiple system atrophy . . . . . . . . . . P18.3 Natural history study of MSA in North America: A prospective cohort study . . . . . . . . . . . . . . . . . . . . . . . . . . P18.4 Pattern and evolution of sudomotor dysfunction in Multiple System Atrophy . . . . . . . . . . . . . . . . . . . . . . . . . . P18.5 Depression in Multiple System Atrophy: Impact on Quality of Life and Disease Progression . . . . . . . . . . . . . . . . . . . P18.6 Early Impairment of central modulation of autonomic activity in neurodegenerative disorders . . . . . . . . . . . . . . . . . P19 Human Autonomic Disease-PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P19.1 Combined CV and sudomotor autonomic testing to differentiate multiple system atrophy from parkinson disease . . . . . . . P19.2 Does cardiovascular autonomic failure affect cerebrovascular reactivity in PD and MSA? . . . . . . . . . . . . . . . . . . . . P19.3 Chilblain in Parkinson’s disease: a questionnaire survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P19.4 Low CSF DOPAC and DHPG levels are biomarkers of parkinsonian disorders . . . . . . . . . . . . . . . . . . . . . . . . . . P19.5 Monoamine oxidase inhibition decreases endogenous production of the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P19.6 Alpha-Synuclein and Autonomic Neuropathy Progression in a Longitudinal Study of Parkinson’s Disease . . . . . . . . . . . . P20 Human Autonomic Disease-Autoimmune/Pure Autonomic Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P20.1 Autoimmune Autonomic Ganglionopathy – Symptom Antibody Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . P20.2 Autoimmune autonomic ganglionopathy in a patient with ovarian teratoma . . . . . . . . . . . . . . . . . . . . . . . . . . P20.3 Cardiac autonomic neuropathy (CAN) in asymptomatic type-1 diabetic adolescents . . . . . . . . . . . . . . . . . . . . . . P20.4 Plasma noradenaline levels and disease duration in Pure Autonomic Failure . . . . . . . . . . . . . . . . . . . . . . . . . . P20.5 123-ioflupane (DaTscanTM) revealed presynaptic nigrostriatal involvement in two elderly patients with pure autonomic failure P20.6 Pure Autonomic Failure – Predictors of Conversion to Clinical CNS Involvement . . . . . . . . . . . . . . . . . . . . . . . . . P21 Human Autonomic Disease- Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P21.1 Autonomic involvement in Holmes-Adie-Ross spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P21.2 Sympathetic overactivity predicts the velocity of disease progression in ALS patients . . . . . . . . . . . . . . . . . . . . . . P21.3 SOD1 Mutant Mouse Model of Amyotrophic Lateral Sclerosis Exhibits Severe Autonomic Dysfunction Prior to Developing Motor Function Deficits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P21.4 Respiratory Sinus Arrhythmia in the Infection by the Human Immunodeficiency Virus . . . . . . . . . . . . . . . . . . . . . P21.5 Heart Autonomic Modulation in the Infection by the Human Immunodeficiency Virus: evaluation using linear and nonlinear methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P21.6 Subacute autonomic, endocrine, and cognitive disorders in Japanese girls at puberty after human papillomavirus vaccination . . P21.7 Autonomic Dysfunction in Chiari Malformation: A Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P21.8 COMPASS-31 Questionnaire Screening in individuals with Cornelia de Lange Syndrome . . . . . . . . . . . . . . . . . . . . P21.9 Skin Sympathetic and Cardiovascular Autonomic functions in Miller Fisher Syndrome . . . . . . . . . . . . . . . . . . . . . P21.10 Sympathovagal imbalance in patient with exercise syncope and Brugada syndrome - case report. . . . . . . . . . . . . . . P21.11 Autonomic dysfunction in NMDA receptor encephalitis – Is it central or peripheral in origin? . . . . . . . . . . . . . . . . . P21.12 Clinical, electrophysiologic, and autonomic observations in a 11-year old boy with acute autonomic and sensory ganglionopathy and therapeutic response to noradrenergic enhancement with droxidopa . . . . . . . . . . . . . . . . . . P21.13 Differential effects of Diabetes Mellitus on nerve fibers by type of Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . P21.14 Eyeball pressure stimulation causes paradox sympathetic activation in moderate-severe post traumatic brain injury patients . . P21.15 Intermittent Autonomic Disorders and Emotion: A Two-way Street? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

125 126 126 126 126 127 127 127 128 128 128 128 129 129 129 130 130 130 130 131 131 131 132 132 132 132 133 133 133 134 134 134 135 135 135 135 136 136