G.M. de La Penha, L . A . Medeiros (eds.) Contemporary Developments i n Continuum Mechanics and P a r t i a l D i f f e r e n t i a l Equations @North-Holland P u b l i s h i n g Company (1978)
QUALITATIVE PROPERTIES OF NAVIER-STOKES EQUATIONS
R.
TEMAM
DGpartement d e Math6matiques U n i v e r s i t 6 d e P a r i s Sud
91405 - Orsay, France
The p u r p o s e o f t h i s p r o p e r t i e s o f t h e s e t of
l e c t u r e i s t o p r e s e n t some new
s t e a d y - s t a t e s o l u t i o n s t o t h e Navier-
S t o k e s e q u a t i o n s of a v i s c o u s i n c o m p r e s s i b l e f l u i d .
I t i s known t h a t f o r s m a l l Reynolds numbers, i f a steady e x c i t a t i o n i s applied t o the f l u i d then there i s a u n i q u e s t a b l e s t e a d y s t a t e which a c t u a l l y a p p e a r s f o r
(t +
If
m).
Joseph
171 )
Benjamin
A s f a r as we know, v e r y l i t t l e
h a s b e e n p r o v e d c o n c e r n i n g t h e s e t of the equations.
( c f . B.T.
t h a t new s t e a d y s t a t e s a p p e a r some being
s t a b l e and some b e i n g u n s t a b l e .
of
large
t h e Reynoldsnumber i n c r e a s e s , t h e n i t i s
c o n j e c t u r e d and e x p e r i m e n t a l l y well-known
[ 1,21, D.
t
a l l s t a t i o n a r y solutions
I n j o i n t works w i t h C .
Foias (cf
[ 4 1 [ 5][ 61)
t h e a u t h o r has a t t e m p t e d t o f i n d some q u a l i t a t i v e i n f o r m a t i o n o n t h i s s e t , and we a r e g o i n g t o summarize t h e main r e s u l t s of
C51[61. S e c t i o n 1 c o n t a i n s t h e d e s c r i p t i o n of N a v i e r - S t o k e s
e q u a t i o n s and t h e i r f u n c t i o n a l s e t t i n g . the description of the r e s u l t s . 1. S t e a d y - s t a t e N a v i e r - S t o k e s 2.
P r o p e r t i e s of 2.1
S(f,v,v)
General p r o p e r t i e s
Section 2 c o n t a i n s
The p l a n i s t h e f o l l o w i n g : Equations.
486
R.
TEMAM
2.2
Generic p r o p e r t i e s
2.3
Generic b i f u r c a t i o n .
.
-
1. S __t e a d y S t a t e Navie r- S t olce s equa t i o n s
R
Let
4 = 2 o r 3.
be t h e domain f i l l e d by t h e f l u i d ,
W e assume t h a t
62
62
C
RL,
i s bounded w i t h a smooth
F.
boundary
,...,u , ( x ) ) ,
u ( x ) = (u,(x)
Let
velocity of the p a r t i c l e pressure a t
x
(x
and
p(x)
x
of f l u i d a t point
E 0);
u
then
and
p
be the
and t h e
s a t i s f y the
equations
where of
f
r
r e p r e s e n t s volumic f o r c e s ,
i s t h e g i v e n velocity -1
CQ
which i s assumed t o be m a t e r i a l i z e d and s o l i d , V = Re
i s t h e i n v e r s e of a Reynolds number. g i v e n , t h e problem i s t o f i n d
u
f , cp,
For
and
p
v
(and
n)
s a t i s f y i n g (1.1)-
(1.3)I n t h e f u n c t i o n a l s & t t i n g of
lL2(n) = L 2 ( n ) &
t o i n t r o d u c e t h e space
2
orthogonal decomposition o f
[8]
or R.
Temam
IL.
2
G = [vp
H =
v
(n)
and t o c o n s i d e r t h e
( c f O.A.
Ladyzhenskaya
1141): L (62)
with
the equation, i t i s usual
I {U
= H @ G,
2 P E L (R),
3P ax. E
L
2
(n),
1 s
i s L]
1
E
2
IL
(62)
I
V U = 0,
u.vlr. =
t h e u n i t outward normal v e c t o r on
r.
01, We d e n o t e by
487
QUALITATIVE PROPERTIES O F N A V I E R - STOKES EQUATIONS P
the If
u
l y regular,
and
p
u
then
(1.4)
t o modifying satisfies
H.
clearly satisfies
Pf = f ,
+ ( u - v ) ~ )=
f
in
0,
which i s a l w a y s p o s s i b l e and amounts
181) t h a t i f
Conversely i t i s c l a s s i c a l ( c f
p.
(1.4)
t o g e t h e r with ( 1 . 2 ) p
exists a scalar function
(1.3).
onto
s a t i s f y (1.1)-(1.3) and a r e s u f f i c i e n t -
P(-WAU
assuming t h a t
u
a2((n)
projection i n
and (1.3),
such t h a t
u, p
Therefore the equations ( 1 . 2 ) - ( 1 . 4 )
then t h e r e
s a t i s f y (1.1)for
u
are
e q u i v a l e n t t o t h e o r i g i n a l problem.
N o w we w r i t e function
cp
+
u =
@
0.
inside
CP
where
i s some e x t e n s i o n
It i s convenient t o d e f i n e
as t h e s o l u t i o n o f t h e nonhomogeneous S t o k e s problem
I n t h i s case
1
-A@
vCP
+
VTI
= 0
= 0
R,
in
H = ep
n,
in
r.
on
satisfies
VU
=
o
R,
in
W e i n t r o d u c e t h e l i n e a r unbounded o p e r a t o r
A
in
H,
whose domain i s D(A)
= ~
~ ( n0 ~((61) )
n
H,
and AV = -PAv,
here
Hm(h2)
v
i s t h e S o b o l e v s p a c e of
E
D(A); order
. m,
H”(n) =[H”’(n)l”
485
R.
H:(n)
and
TEMAM
u E H1(n)
i s t h e s p a c e of
the theory of
J.L.
Sobolev spaces cf
[141)
I t i s known ( c f
that
A
Lions-E.
H,
(n
F
(for
Magenes 1111).
i s a self-adjoint
p o s i t i v e and i n v e r t i b l e o p e r a t o r i n
i s compact
v a n i s h i n g on
strictly
and t h a t
A-'
E e(H)
bounded).
B
W e a l s o introduce the operators
= P[
B(u,v)
such t h a t
(~*V)vl,
B ( u ) = B(u,u).
4, = 2 o r 3 ,
For
)
that
B(',
D(A)
x D(A
we i n f e r from t h e S o b o l e v imbedding theorems
H2(n) x k12(n)
maps
I
(1.9)
(1,6)-(1.8)
G
To f i n d VAu
+
and i n p a r t i c u l a r
H.
into
The e q u a t i o r i s p r o b 1em
H,
into
D(A)
in
are now equivalent t o the
such t h a t
B(G+Acp) = f.
T h i s i s t h e f u n c t i o n a l f o r m of
t h e s t e a d y - s t a t e Navier-
S t o k e s e q u a t i o n s which we had i n v i e w and on which i s b a s e d the f o l l o w i n g s t u d y .
6 E D(A)
2.
satisfying
Properties of
W e d e n o t e by
S(f,cp,v).
B 3 / 2 ( 1 - ) = [H3'*(r)]'.
cp
the s e t of
(1.9).
W e assume t h a t
(1.2),
S(f,cp,V)
f
i s given i n
H,
cp
i s given i n
By t h e S t o k e s f o r m u l a , and b e c a u s e o f
must v e r i f y
W e w i l l impose a s l i g h t l y s t r o n g e r c o n d i t i o n o n
cp:
Q U A L I T A T I V E : P R O P E R T I E S O F NAVIER-STOKES
q3.v
(2.1)
489
EQUATIONS
1 s i s N,
dr = 0 ,
‘i
rl,.. . , r N
where
N=l
and
cp
s e t of
r
i f
a r e t h e c o n n e c t e d components of
i s connected).
We d e n o t e by
~ ” ~ ( sr a )t i s f y i n g
in
F
(P
if13’2(r)
F,
=
the
(2.1).
General p r o p e r t i e s .
2.1
F o r every the s e t
H
given i n
f
i~s-nonempty.
S(f,Cp,V)
and
Lions
1101
equations.
[S],
Ladyzhenskaya
w i t h s t r o n g e r a s s u m p t i o n s on f,cp E H x k3’ * (T ),
t h e weaker a s s u m p t i o n
S(f,cp,v)
The s e t
k3j2(r),
T h i s i s a n e x i s t e n c e theorem
f o r t h e s t e a d y s t a t e Navier-Stokes r e s u l t a p p e a r s i n O.A.
given i n
J.
f
This existence Leray [ 9 ] , J . L .
and/or
cp;
for
c f . C.Foias-R.T.[6].
i s reduceed t o a s i n g l e p o i n t i f
J!
i s s u f f i c i e n t l y l a r g e , more p r e c i s e l y i f
where t h e f u n c t i o n
Uo:
R+xR+-R+
i s increasing with respect
t o e a c h of i t s t w o a r g u m e n t s . Now l e t
consisting of adjoint i n H
w.,
J
j 2
1,
b e t h e orthomormal b a s i s i n
the eigenvectors of
H).
Let
Pm
(A”
A-1
H
i s compact s e l f -
denote the orthogonal projector i n
o n t o t h e s p a c e s p a n n e d by
wl,
...,wm.
We have t h e follow-
ing:
(2.3)
For
m
sufficiently large,
one t o one mapping on
rn
S ( f ,Cp , W
a r e a l compact @ - a n a l y t i c s e t .
2
)
m*(f,rp,V), and
Pm
pm S(f,cP,V)
is a is
R.
490 T h i s means t h a t
TEMAM
( a n d i n some s e n s e
Pm S ( f , c p , V )
S ( f , c p , ~ ) i t s e l f ) i s a f i n i t e u n i o n of p o i n t s ,
regular
a n a l y t i c c u r v e s , r e g u l a r a n a l y t i c manifolds of h i g h e r
[ 31 ) .
d i m e n s i o n s ( c f Bruhat-Whitney
(2.4)
Either
S(f,Cp,V)
points o r
A s a c o r o l l a r y we g e t :
i s t h e u n i o n o f a f i n i t e number o f
~ ( f , c p , v ) c o n t a i n s a t l e a s t an a n a l y t i c
curve.
2.2
Generic P r o p e r t i e s . We a r e now g o i n g t o d e s c r i b e g e n e r i c p r o p e r t i e s of A r e s u l t which i s t y p i c a l of
S(f,cp,V). ed i n
[4][5]
Theorem 1
-
F o r every
V
>
is finite,
and
0
8
1
C
cp E
H,
&3/2(r) f i x e d ,
and f o r e v e r y
c a r d S(f,cp,V)
The p r i n c i p l e o f t h e p r o o f t h e non l i n e a r mapping
N;
N~
such t h a t
N1,
= f).
Whence t h e
i s compact,
v a l u e s of
N1
The f a c t t h a t
we c o n s i d e r
H:
the Fr6chet derivative
?its
i s o l a t e d and t h e r e i s a f i n i t e number of
Nyl(f)
into
i s r e g u l a r a t every preimage p o i n t
N1(;)
E Q1,
@.
i s as follows: D(A)
from
is a regular value of
f
of
N~
f
there
i s odd, and c a r d S(f,cp,V)
i s c o n s t a n t on e v e r y c o n n e c t e d component of
When
establish-
i s the following
e x i s t s an open d e n s e s e t S(f,cp,V)
the r e s u l t s
in
N;'(f)
such
the s e t
(i.e.
Q1
;Is,
every are since
of r e g u l a r
i s d e n s e i s t h e l e s s t r i v i a l r e s u l t and follows
from t h e i n f i n i t e d i m e n s i o n a l v e r s i o n o f S a r d ' s theorem due
t o Smale [13].
ii
The o t h e r p r o p e r t i e s a r e c o n s e q u e n c e s o f t h e
QUALITATIVE
PROPERTIES
OF
NAVIER-STOKES
491
EQUATIONS
o f N1.
i m p l i c i t f u n c t i o n t h e o r e m and some s p e c i f i c p r o p e r t i e s F i n a l l y t h e o d d n e s s of
f o l l o w s from a
c a r d S(f,ep,V)
t o p o l o g i c a l d e g r e e argument. A s i m i l a r r e s u l t when
f , Cp,
a r e simultaneously
V ,
allowed t o var y i s t h i s one:
-
Theorem 2
x R+,
T h e r e e x i s t s a d e n s e open s e t f,cp,V E Q 2 ,
and f o r e v e r y
and odd. ____
Furthermore card ___________
c o n n e c t ed component o f
82
(r) x
i n Hxk3'2 -
c a r d S(f,cp,V)
is finite
i s c o n s t a n t on e v e r y
S(f,cp,V)
82'
Same p r o o f as Theorem 1. We may n o w t h i n k of a r e s u l t
s y m m e t r i c a l t o Theorem 1
i n the sense of a generic r e s u l t w i t h respect t o and
are fixed.
V
Theorem
a (-a )L
3
n
-
(a >
C
k2'a(r)
+
tp
E Q3,
V
> 0
??& (9
f
8
3
C
i s f i n i t e and odd,
card S ( f , c p , V )
c a r d S(f,cp,V)
in
f
f i x e d , f o r every f i x e d
t h e r e e x i s t s a d e n s e open s e t
such t h a t
(l),
component o f
0),
when
We h a v e :
For every
H
cp
i s c o n s t a n t on every connected
3.
The p r o o f author ( c f [ 1 2 ] )
of
t h i s r e s u l t due t o J . C .
S a u t and t h e
involves d i f f e r e n t technics,
I n particular
theorem i s r e p l a c e d by a t r a n s v e r s a l i t y t h e o r e m
Sard-Smale's
A s a t o o l f o r t h i s p r o o f we a l s o
d u e t o Abraham and Quinns.
need t h e f o l l o w i n g uniqueness
t h e o r e m f o r a Cauchy problem
a s s o c i a t e d t o Stokes e q u a t i o n s : For
(1)
*
Cs(r)
b
given i n
H
n
H1'm(a)t,
i s t h e s e t of f u n c t i o n s
satisfy (2.1).
cp
if
in
v
@*(T')'
and
q
satisfy
which
R.
492
+
-Av
I v = 0
then Remark
1
-
and
2.3
-av = 0
and
+
Vq = 0
hl
in
r
on
av
i s a constant.
The f a c t t h a t
c o n j e c t u r e d by B.T.
(v*V)b
hl
in
0
v = O q
+
(b.V)v
vv =
I
TEMAM
i s g e n e r a l l y f i n i t e was
S(f,rp,V)
Benjamin.
Generic B i f u r c a t i o n . W e now d e s c r i b e a r e s u l t o f g e n e r i c b i f u r c a t i o n f o r
the equation ( 1 . 9 ) .
S i m i l a r r e s u l t s a r e proved i n
C6l f o r
t h e c l a s s i c a l T a y l o r and B h a r d p r o b l e m s . Theorem 4 exists
-
Q4(rp)
f E G4(ep),
a dense
h3'*(T')
cp E
W e assume t h a t
s u b s e t of
G
i s fixed.
There
and f o r e v e r y
H
t h e manifold
s
=
u
S(f,cp,V)
V 70
h a s t h e f o l l o w i n g form: ( i ) I t i s c o n s t i t u t e d of i s o l a t e d p o i n t s and i s o l a t e d
a n a l y t i-c. _ ma n i f o l d s which l i e above s_ o l a t e d v a l u e s of _____ ____________ - _iThe number of s u c h v a l u e s o f
v
2
V.
& s f i ? i . t e on e v e r y semi a x i s
V
vo > 0.
( i i ) It; i s c o n s t i t u t e d of one ( o r more) a n a l y t i c manifold(s)
of d i m e n s i o n 1, whose p r o j e c t i o n on t h e __ i-n_ t e_ r v_ al
]O,+m[.
V
a x i s i s t h e whole
The s e t o f s i n g u l a r p o i n t s o f t h i s manifold
i s f i n i t e i n every r e g i o n
V
A s a C o r o l l a r y we g e t
2
V
>
0.
QUALITATIVE PROPERTIES OF NAVIER-STOKES EQUATIONS
(2.6)
493
Generically, the set of (primary and secundary) hi-
v
furcating values of only accumulate at Remark 2 .___
-
V
for (1.9) is countable and can = 0.
As far as we know, this is the first information
available concerning all the primary and secundary bifurcating points of a nonlinear equation, Remark 3
-
The methods used for the proof of the above results
are quite general and probably apply to the equations of nonlinear elasticity.
References [l] T.B.
Benjamin, Applications of Leray-Schauder degree
theory to problems of hydrodynamic stability, Math. Proc. Camb. Phil. SOC. 79, 1976, p.373-392. [2]
T.B. Benjamin, Bifurcation Phenomena i n Steady flows of a viscous fluid, Part 1 Theory, Part 2 Experiments, Reports no 83, 84, University of Essex, Fluid Mechanics Research Institute, May
-
[ 3 ] F. Bruhat
1977.
H. Whitney, Quelques proprietes fondamentales
des ensembles analytiques Rgels, Comm. Math. Helv. 3 3 ,
1959, p. 132-160.
[4] C. Foias
-
R. Temam, On the stationary statistical
solutions o f the Navier-Stokes equations and Turbulence, Publication Math6matique d’orsay, no 120-75-28, Universit6 de Paris
-
Sud, Orsay, 1975.
494
R. TEMAM
[ 5 ] C. Foias
-
R. Temam, Structure o f the set of
stationary
solutions o f the Navier-Stokes equations, C o m m .
Pure
Appl. Math., XXX, 1 9 7 7 , p. 149-164.
[ 6 ] C. Foias
-
R. Temam, Remarques sur les kquations de
Navier-Stokes stationnaires et les ph&norn&nes succesifs de bifuraction, Annali di S c .
Norm. Sup. di Pisa, vol.
d6di6 & J. Leray, & para?tre.
[ 7 ] D. Joseph, Stability of fluid motions, vol. I and 11, Springer-Verlag, New-York-Heidelberg, 1976. [81 O.A. Ladyzhenskaya, The mathematical _ _ theory ~ o f viscous incompressible flow, Gordon and Breach, New-York, 1969.
191 J. Leray, Etude de diverses Qquations int6grales lin6aires et
quelques probl&mes que pose l'hydro-
dynamique, J. Math. Pures Appl. XIII, 193 [lo] J.L.
non
,
p.
1-82.
Lions, Quelques m6thodes de rbsolution des probldmes
aux limites n o n linGaires,Gauthier-Villars-Dunod, Paris 1969. [ll] J.L.
-
Lions
E. Magenes, Non-homogeneous boundary value
problems and applications, Springer-Verlag, Heidelberg/New-York, 1 9 7 3 . [12]
J.C. Saut
-
R. Temam, Propri6tQs de l'ensemble des
solutions stationnaires ou p6riodiques des Qquations de _ Navier-Stokes: _
g6nQricit6 par rapport aux donn6es __
- -
aux limites, Comptes Rendus Ac. S c . Paris,
[I31
S.
1977.
Smale, An infinite dimensional version o f Sardts Theorem, Amer. J. Math., 87, 1965, p. 861-866.
1141 R. Temam, Navier-Stokes equations, Theory and Numerical Analysis, North-Holland-Elsevier, Amsterdam, New-York,
1977
rn