Quantitative study of the motion of a rigid body in an ideal fluid

Quantitative study of the motion of a rigid body in an ideal fluid

MECHANICS RESEARCH COMMUNICATIONS Vol. 17(4), 249-254, 1990. Printed in the USA. 0093-6413/90 $3.00 + .00 QUANTITATIVE STUDY Copyright (c) OF THE...

188KB Sizes 0 Downloads 23 Views

MECHANICS RESEARCH COMMUNICATIONS Vol. 17(4), 249-254, 1990. Printed in the USA. 0093-6413/90

$3.00 + .00

QUANTITATIVE

STUDY

Copyright (c)

OF THE MOTION

1990 Pergamon Press plc

O F A RIGID B O D Y

IN A N I D E A L F L U I D

G. BOUCHER Laboratoire de M~canique Th(~orique, Universit(," de Franche-Comt~ 250];0 Besan(;on C~dex, France

(Received 22 January 1990; accepted for print 10 April 1990)

Introduction

The equations of the motion of a rigid body in an ideal" incompressible fluid in an i r r o t a t i o n a l motion, at rest at i n f i n i t y , can be put in a simple from which shows their close analogy with the equations of a non-immersed rigid body. The numerical solution of these equations allows to visualize various trajectories, especially when the forces other than aerodynamic ones are g r a v i t a t i o n a l forces. In the f i r s t paragraph, we write the equations of the three-dimensional motion of rigid body and in the second one we study more p a r t i c u l a r l y the case of a plan profile without a sharp edge with circulation.

1. Equations of the motion

We consider the motion of a rigid body S, with mass M, to which is attached a coordinate

system

R

with

origin

O.

S moves

in a n

ideal

incompressible

fluid

.+

in an irrotational motion~ at rest at i n f i n i t y . We denote by

Vo the

velocity of

..).

0 a n d by co t h e a n g u l a r v e l o c i t y o f S. -4*

.+

If we consider that T = (R, Mp) represents the resultant vector and the resultant moment

about

P of a v e c t o r

field, the kinematic

f i e l d is v = (co, ,.~), t h e

field is Y: = ( M V G , ~o) and the dynamic field is A = (M~G, ~o), with tions. 249

kinetic

usual

nota-

250

G. BOUCHER

1.1. It is easy to show that there is a m a t r i x H, such t h a t

Z

: H(v)

; H=

f'l

M_G_~__M_I_) LJo -MG )

w h e r e Jo is the m a t r i x of i n e r t i a of S, 13 the unit m a t r i x and IS the a n t i s y m m e t r i c m a t r i x of the l i n e a r mapping u

~,

G(G) :

u

A OGo On

A = d____~_Z, and if we p r o j e c t in R, we have A : H ( v ) dt the square b r a c k e t s of L i e of x and y, [1]

1.2. The a e r o d y n a m i c forces

: We show t h a t

the

other

hand,

we

+ [v,H(v)]~ w h e r e

the k i n e t i c

energy of

have

Ix, y]

the

is

f l u i d is

T : 1/2 f I gr~d , 12 d'[ : 1/2 t v L * v w h e r e ~ is the v e l o c i t y p o t e n t i a l of the Fluid fluid~ and L * a s y m m e t r i c a l m a t r i x depending only on the g e o m e t r y of S. The a e r o d y n a m i c forces, are F : - d g

f_o, ] :-4 -13

with L : L*.

. [2]

withg

dt

=

Z L*..v.

i j:i

,j/

i : 1, ..., 6 so t h a t g :

L(v)

tJ31 o ) By

analogy with

i f we l e t

Q :

kinematics,

we

can w r i t e

F = -(L(¢1) + [ v , L ( v ) ] )

in R. F i n a l l y ,

H + L, the e q u a t i o n s of the m o t i o n of the body S are w r i t t e n •

Q(~) + [v,Q(v)] : K

(I)

w h e r e K represents the forces o t h e r than a e r o d y n a m i c a l ones. We can see t h a t

if

we denote by P

the

transition

matrix

from

the

frame

r e f e r e n c e R 1 to IR, and by x the p o s i t i o n of 0 in R1, we have x = P v o and P = P £

¢o

of ,

ql

-r

where

f~=| r 0 - P / , ( p , q , r ) being the c o m p o n e n t s of ~0 in R. Thus it is not k-q P 02 necessary to specify the p o s i t i o n - p a r a m e t e r s of the r i g i d body, in o r d e r to i n t e g r a t e the system (1) and to o b t a i n x and P. f_

Lastly, if Q :[A kL.

~1, A , B , C , D

being 4 (3 x 3 ) m a t r i c e s , w i t h B and C s y m m e t r i c a l ~

LJJ

the e q u a t i o n s reduce to : A

+ B¢o + coA (Aco + Bvo) = R e s u l t a n t of K

c~

+ Dec + c0A(Cco + Dye) - vo A (Arc + Bvo) = R e s u l t a n t m o m e n t of K.

1.3. Integrals and positions of equilibrium for (1) : * If K derives f r o m a p o t e n t i a l U, t h e n we have the i n t e g r a l of the k i n e t i c energy~ T If

total

=U+h.

K = 0~ we have :

* I A ~ + B:,,I *(A~

+

: C1

B~.).(C~

+

D~o)

= C 2

* In some p a r t i c u l a r cases~ t h e r e is a f o u r t h i n t e g r a l [3].

RIGID BODY IN IDEAL FLUID

251

The positions of e q u i l i b r i u m satisfy ~ = 0. I t must exist t w o reals :~ and P which

satisfy the system

(C- pl 3) ~ + (D + :kl3) Vo = 0 (A-

XI 3) ~ + B~o = O.

1.4. Particular cases ." * M o t i o n of E u l e r - P o i n s o t : 0 is fixed and the resultant moment of K is zero. The equation giving the r o t a t i o n is = Cco + co ACco -- 0. I t

is

the

same

as

in

the

absence of a fluid. *

Motion

of

Lagrange-Poisson

." The rigid

body

is d y n a m i c a l l y revolving about

the axis z (OG = ~ z ) . 0 is f i x e d and the solid is subjected to the g r a v i t y forces.

The equation giving the r o t a t i o n is _).

C

-y

-~

+ m h Cm = mgR,.Pz

-)*

A z

C is s y m m e t r i c a l . There are two matrices U and D, D diagonal so t h a t C = U -1 DU, and D•'

+ ~' A D ~ ' = m g ~ , U P ~

(~'

;

= LI~).

This is the equation corresponding to the motion of any rigid body w i t h a fixed point~ subjected

to

gravity

forces.

The e f f e c t

of

the presence of

the f l u i d is

to s h i f t the position of G.

2. Bi-dimensional case of a profile without a sharp edge

A

reasoning

analogous to

that

of

section

1 allows the d e r i v a t i o n of

a matrix

equation s i m i l a r to (1) but in three dimensions. We denote by (~,,m) the components -4~ of

--~

--)-

vo in R and by co = ~0 z 1 the r o t a t i o n ; then v = ( ~ , m~ co) and

Q =

M

MXGI

+ the m a t r i x from aerodynamical fo~'ces.

/

-MY G

MX G

lo

,J ÷ AR

We o b t a i n Q(~,) + [ v ~ Q ( v ) ] + 0 £ J ( v )

= K with now [v,T] =

.+

where

R

is

roAR the resultant the circulation

v e c t o r o f T. p I" 3(v) is I" is not e q u a l to z e r o :

the

additional

aerodynamical

force

when

252

G BOUCHER

0 3 =

-1 - XC

center,

1

X C "]

0

YCI

-Yc

' XC

and Y C are the c o o r d i n a t e s of the p r o f i l e

O

p the density of f l u i d .

C o u c h e t [/4] showed the e x i s t e n c e of a c o o r d i n a t e system

R in w h i c h the m a t r i x

Q is d i a g o n a l ; in this way we have the w e l l - k n o w n equations A~.

=

Bc0m - p £(m + c0XC) + X

Bfn

= -AR0J + p £(R - c0Yc) + Y

C~

= (A-B)

2.1. N u m e r i c a l

w i t h B >-- A > 0

and C > 0

(2)

Rm + p F ( R X C + m Y C) + Z

study when X = Y = Z = O :

The system (2) a d m i t s two i n t e g r a l s : AR 2 + Bm 2 + C J

- K1

(3)

A2R 2 + B2m 2 + 2pF (ARY C - B m X C + Cw)= K 2 The t r a j e c t o r y

of

(2) is the

intersection

(4)

of e l l i p s o i d (3) and the p a r a b o l o i d (4).

i t is closed, and hence it is p e r i o d i c a l . On an e l l i p s o i d w i t h an energy K 1> 0, we

can

have

2,

3, 4,

5 or 6 positions of

e q u i l i b r i u m for the system (2), d e f i n e d by Re

P ['O~eYc -

me

;

p[" _Ac~ e

PFU)eX C ;

we

=

coe

BoJe - p£

coe must s a t i s f y the e q u a t i o n P (coe) = AR e + B m e + Cw e - K 1 = 0. It is an e q u a t i o n equivalent

to

a polynomial

because P ( - / / ~ ) > 0 , v

C

of

P(0) < 0

degree

6 which

always at

least

two

real roots,

and p ( / ' K _ ~ ] ) > 0.

It is easy to see on a graph the stable positions of equilibrium

and the unstable

positions, fig (1).

2.2. Numerical

study when K represents

the 9ravity

forces :

X = - M g sin e, Y -- - M g cose, Z = - M g ( X G c o s 8 - YG sine),

with ~

de dt

Then we have the i n t e g r a l A (R---~Mg cos6)2 +B(m +-~-MgsinS)2 + Cc02 = 2Mg [(X C - X G) sine + ( Y c - YG ) c ° s 8] - (Mg) 2 ( A c o s 2 0 + B sin2O)+ h



RIGID BODY IN IDEAL FLUID

253

L e t F(0) + h be the second member ; F is C co and 2~-periodical. We deduce t h a t the motion is possible only when 0 satisfies F(0) + h > 09 fig (2).

Positions of e q u i l i b r i u m f o r (2). m =-

~.:m:~=6:0

i m p l i e s 0 : 0 e , 6o = 0 , ~, = -Mg - cos 0e r #F There are at least two positions of e q u i l i b r i u m ,

nrMgs i n e e and F ' ( e e) = 0.

because-F'

always has two roots. One of these positions is stabler the s t a b i l i t y

being assured i f F " ( e e) < 0. [4]

2.3. Study of the motion around a stable equilibrium position : We choose h~ so t h a t F(0 e) + h is

small

and

we

choose

the

following

initial

conditions : eo = 0e + E, 4o = Mg cOS0o + (F (eo) + h)1/2 cos U2o cos % pF

6oo -- (F(eo) + h) 1/2 sin ~2o r

mo = - Mg sin 0o + iF (0o) + h) 1/2 cos d2o sin % , pF ~, ~°o, ~2o are a r b i t r a r y parameters.

By i n t e g r a t i n g the system (2)~ to which we add the equation

dO :- 6o, we

obtain the

curve t ÷ 0(t) and the t r a j e c t o r y of point 0r fig (3). Moreoverrwe can observe the v a r i a t i o n s of J~,r mr

6o. in the space (~,r m, 6o)rwecut

the t r a j e c t o r i e s w i t h the ellipsoid A(~, - ~,e)2 + B (m-me)2 + C 6o2 -- F(0 e) + h.

The

i n t e r s e c t i o n s are situated on polhodes s i m i l a r to the previous ones. fig ( 4 ) .

References 1.

D. C h e v a l l i e r and 3.M. H e l m e r . Annales des Ponts et Chauss~es l e r t r i m e s t r e . France (1984).

2.

N.E.

Kotchin,

I.A.

IKibel,

N.V.

Roze.

Theorical

hydromechanics.

Intersience

publishers (1964). 3.

V.N. Rubanovskii. PMM U.S.S.R., Vol. 52, n ° 3 (1988).

4.

G.

Couchet.

3oukowski. 5.

Les p r o f i l s Librairie

en aerodynamique

scientifique

et technique

P. Capodanno. Les #quations d'Appel d'un solide dans un fluide.

instationnaire Albert

et la condition

Blanchard.

et d'Euler-Lagrange

M a t e m a t i c a 21 (44)r 9-32 (1979).

de

Paris (1976).

pour le mouvement

254

G. BOUCHER

i

FIG. i

FIG. 2

Trajectories on the ellipsoid

Curve F(8)+h 8e position of equilibrium

L~

5.,, i¸ ,:

~ ......

.::..,.

ii~ /i,!i~ ....... I

FIG. 3

FIG. 4

Trajectory of point 0

Intersection trajectories with the ellipsoid