Physica 143B (1986) 143-145 North-Holland, Amsterdam
143
QUANTUM EFFECTS ON IMPURITY PINNING AND DEPINNING OF CHARGE DENSITY WAVES Tetsuro SASO and Yoshikazu SUZUMURA Department of Physics, Tohoku U n i v e r s i t y ,
Sendai, 980 Japan
Based on the previous quantum Monte Carlo study o f i m p u r i t y pinning of charge d e n s i t y waves by use o f Fukuyama-Lee model in one dimension, e f f e c t of a p p l i e d e l e c t r i c f i e l d is i n v e s t i g a t e d near but below t h r e s h o l d . The depinning takes place inhomogeniouslv at the s p a t i a l region where the pinning is r a t h e r weak and the quantum f l u c t u a t i o n is large,and the quantum hopping r a t e between metastable s t a t e s increases, Such metastable s t a t e s may c o n t r i b u t e to anomalous low frequency response of the system observed e x p e r i m e n t a l l y .
I,
ble.
INTRODUCTION Recent i n t e r e s t on the pinning of charge den-
S t a t i c c o n d u c t i v i t y measurement shows t h r e s h -
s i t y waves (CDW's) by i m p u r i t i e s and t h e i r non-
old behavior at the e l e c t r i c
l i n e a r response a g a i n s t a p p l i e d e l e c t r i c
p u t e r s i m u l a t i o n on c l a s s i c a l
field
has a t t r a c t e d many researchers to t h i s new f i e l d
field
Eth 7,
Com-
Fukuyama-Lee model 8
seems to well e x p l a i n the e l e c t r i c
field
depen-
of m a c r o s c o p i c a l l y condensed e l e c t r o n systems I .
dence of the s t a t i c
One of the c e n t r a l problems s t i l l
one takes i n t o account t h r e e d i m e n s i o n a l i t y 9,
unsolved seems
t o be whether the dynamics of CDW can be d e s c r i b -
It is,
ed by a p u r e l y c l a s s i c a l model, or quantum t u n -
l y c l a s s i c a l model can e x p l a i n the behavir close
n e l i n g process dominates.
to Eth.
Reagor and Gruner 2
however, s t i l l
c o n d u c t i v i t y above Eth i f ambiguous whether the pure-
Maki I0 pointed out r e c e n t l y t h a t the
showed r e c e n t l y t h a t at l e a s t f o r m i l l i m e t e r and
temperature dependence o f the t h r e s h o l d f i e l d
micrometer range of the wavelength in the dynami-
Eth(T) 7 can be explained by a c l a s s i c a l model i f
cal c o n d u c t i v i t y measurements of the a l l o y e d sys-
one includes thermal f l u c t u a t i o n
tem Tal_xNbxS3 the observed oCDW(m) is compati-
states.
ble w i t h t h e i r c l a s s i c a l over-damped s i n g l e p a r ticle
model and c o n f l i c t s
model 3.
w i t h the t u n n e l i n g
But both t h e o r i e s seem t o apply a t low
In a d d i t i o n t o t h i s ,
the observed low frequen-
cy c o n d u c t i v i t y o(~) y i e l d s power law behavior o(~) ~ ~
w i t h ~ < 14 .
Quantum mechanical models have been i n v e s t i gated t h e o r e t i c a l l y
Feigel'man and Vinokur 5
to c l a r i f y
the motion of
CDW, but the deformation of CDW pinned by impurities
frequencies.
o f the pinned
has not been taken i n t o account I I .
The
present paper s t a r t s from the study of the p i n ned s t a t e s of CDW and the e f f e c t s of i t s quantum f l u c t u a t i o n
around the c l a s s i c a l
states,
showed t h a t o(m) should behave as m2~n2~ f o r
where the s p a t i a l dependence of the pinned s t a t e s
some low frequency range in the weakly pinned
play c r u c i a l r o l e s .
limit
of CDW, which is the same as f o r n o n i n t e r -
As was pointed e a r l i e r 12, the pinning of CDW
a c t i n g e l e c t r o n s 6, and o(~) ~ e x p ( - c o n s t / ~ ) f o r
is e q u i v a l e n t t o Anderson l o c a l i z a t i o n
the low frequency l i m i t ,
a c t i n g e l e c t r o n s in one dimension.
The above power law
of i n t e r -
Thus i t
is.
behavior in experiment does not agree w i t h t h i s
also o f much i n t e r e s t to study the pinning of
theory.
CDW f o r wide range of parameters from t h a t p o i n t
I t i s argued t h a t the e x i s t e n c e of meta-
s t a b l e s t a t e s are r e s p o n s i b l e t o t h i s behavior 4, Thus a d e t a i l e d study of such s t a t e s are d e s i r a 0378 - 4363/86/$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division) and Yamada Science Foundation
of view 13
T. Saso and I~ Suzumura / Quantum e.ff~'cts on impurity pinning attd depinning
144
2. FORMULATION We s t a r t
the quantum f l u c t u a t l o n
from t h e d i s c r e t i z e d
v e r s i o n o f the
ever,
Fukuyama-Lee model in one d i m e n s i o n 14
p o i n t e d out 13 t h a t
ble spatial yields
N
H = ~ [ A(@i+l-@i)2+ i=l and map i t
CP#- V c o s ( e i - ~ i )
t o the e q u i v a l e n t
classical
+ FO i ] (I)
It
there exists
was, howconsidera
dependence of f l u c t u a t i o n s ,
whlch
quantum hopping between m e t a s t a b ] e s t a t e s
In the f o l l o w i n g s ,
Hamilton-
f o r T-~ ~ O.
we d e m o n s t r a t e how these
states
behave under the a p p l i c a t i o n
static
electric
o f small
field.
ian in two d i m e n s i o n s by use o f S u z u k i - T r o t t e r f o r m u l a 15
3. RESULTS AND DISCUSSIONS 1
H2(T) = ~
M
For t h i s
N
~ ~ [ A(Oi+I(J)-@i(J)) j=li=l
+ Ay(Oi(J+I)-6i(j))2-V
2
0.5,
and d e t e r m i n e d a q u a s i - g r o u n d
cos(@i(j)-~ i)
+ FOi(J)
-(NMT/2)Ln(~MT/(4w2rI2/A)) where t h e a d d i t i o n a l degree o f freedom.
j-axis
boundary c o n d i t i o n
i s assumed in both d i r e c t i o n s . t h e magnitude o f d e f o r m a t i o n @i and t h a t
o f the c o u p l i n g
(2)
expresses the quantum
Periodic
A and V denotes e n e r g y o f CDW phase
to impurities
are r e p r e s e n t e d by t h e random v a r i a b l e s denotes e l e c t r i c qA) o r i g i n a t e s
field.
which ~i"
F
Ay = p2 w i t h p = MT/(4~I
from the k i n e t i c
e n e r g y CP# in (1)
and the p a r a m e t e r s q = ( C / A ) I / 2 / 2 ~
and e = V/4~A
r e p r e s e n t t h e degree o f quantumness and o f r a n domness, r e s p e c t i v e l y .
"Classical"
p a r t o f @i
M
t o H2(T),
j .= ~lei(J)
>>
(3)
<<,°,>> is t a k e n w i t h r e s p e c t
The quantum f l u c t u a t i o n
by the o r d i -
for classical around 0~ w i l l
models. be es-
t i m a t e d from
(e~)211/~"
ly.
For each step o f the
tric
field,
state without
i n c r e a s e o f the e l e c
we seek f o r a new e q u i l i b r i u m
the m o t i o n o f the c l a s s i c a l process.
Note t h a t
elec
was a p p l i e d g r a d u a l
( t h o u g h sometimes m e t a s t a b l e ) .
state
Fig.l(a)
shows
p a r t @~ t h r o u g h t h i s
the phase U# a t the s i t e
5 moves d r a s t i c a l l y ,
since this
v e r y w e a k l y a t the b i g i n n i n g
site
i =
was pinned
o f the process and
had l a r g e quantum f l u c t u a t i o n
(Fig. l(b)).
Th~
m o t i o n o f 0~ a t i = 5 is not monotonous ( F i g . 2 (a))
as the f i e l d
flected
increases,
in the v a r i a t i o n
(Fig.2(b),
solid
line),
o f the i n t e r n a l
total
which is a l s o r e -
o f the i n t e r n a l while
slower.
cancel each o t h e r ,
energy (defined
as the i n t e r n a l
as a f u n c t i o n
s i n c e the f l u c t u a t i o n transient
aver-
As the v a r i a
e n e r g y and the c o u p l i n g
partly
most q u a d r a t i c a l l y
energy
the s p a t l a l
plus t h e c o u p l i n g e n e r g y t o f i e l d )
the
energy
decreases a l o f F.
But
becomes l a r g e t h r o u g h the
m o t i o n f o r 0.2 ~ F < 0.6 ( f l u c t u a t i o n
reaches maximum a t F = 0.3 [ F i g . l ( b ) ] ) , states
(4) As was r e p o t e d in our p r e v i o u s papers 14, the
U
Then the f i e l d
example
05 can
be r e g a r d e d as hopping between two m e t a s t a b l e
<~2>i/~ [ <> 1 mj=l i results
field.
energy to field
and e v a l u a t e d n u m e r i c a l l y
n a r y Monte C a r l o a l g o r i t h m
numerical
tric
tion M
where the a v e r a g e
J
age ~c E N-l#:i6~ v a r i e s
is d e f i n e d as 9c _ << 1
purpose, we chose N = lO, M = 20, { =
q =0.3 and T = l as an i l l u s t r a t i v e
for e.g.
t h e degree o f p i n n i n g
e N-IZ~=lcoincides_
by Fukuyama and Lee 8 f o r c l a s s i c a l and w i t h the s e l f - c o n s i s t e n t
w i t h the t h e o r y limit
rl ~ 0
phonon t r e a t m e n t
of
quantum m e c h a n i c a l l y .
s t a t e s may a f f e c t s i d e r a b l y 4, est for tion
d ( ~ ) a t low f r e q u e n c i e s
Therefore,
future
E x i s t e n c e o f such
it
will
study to investigate
of these states
numerically.
con-
be o f much i n t e r the d i s t r i b u -
T. Saso and Y. Suzumura / Quan turn effects on impurity pinning and depinning
r[
i
i
|
,
!
,
i
l
,
"'21 ........
(a) 8
~,
0
,'~""
',
145
.
-
io; .
.
.
-._.
x
IS
-TT
|
i
i
i
0
I
I
i
0.5
.
.
.
.
t
i
I
I
,
,
I 1
F" ,
,
i
(b) x
,
-TT
,
i
i
0
I
i
5 i
i
i
,
I
,
i
,
10
Xi l
,
,.,,,
,
W
,
"lb.
- 1.0
(b)
"u .
.
.
.
I
0.5
,q:)
i
0
i
i
5
×i
10
REFERENCES I. For a review, see Charge Density Waves in Solids, eds. Gy. Hutiray and J. Solyom (Springer Verlag, 1985). 2. D. Reagor and G. Gruner, Phys. Rev. Lett. 56 (1986) 659. 3. J. Bardeen, Phys. Rev. Lett. 42 (1979) 1478, i b i d 45 (1980) 1978. 4. Wei-Yu Wu, L. Mihaly-, G. Mozurkewich and G. Gruner, Phys. Rev. Lett. 52 (1984) 2382, and ref. l , p.311. 5. M.V. Feigel'man and V.M. Vinokur, Phys. Lett. 87A (1981) 53.
i
i
F
i
I
I
FIGURE 2 (a) Field dependence of the classical part of the phase e~ at the s i t e i = 5(0) and the spat i a l average ~c(e).
FIGURE 1 (a) Spatial v a r i a t i o n of the classical part of CDW phase for e l e c t r i c f i e l d F = 0(o and dashed l i n e ) , 0. I ( ~ ) , 0.2([]), 0.3(~), 0.4(~), 0.5(e), 0.6(A)° O.8(m) and l . O ( v and s o l i d l i n e ) . Not a l l the symbols are drawn since they j u s t l i e between F : 0 and 1.0. The crosses indicate ~ i t s . (b) Spatial dependence of quantum f l u c t u a t i o n of the phase of CDW for F : 0(o) and O.3(v).
i
(b) Variation of the i n t e r -
nal energy E(O) and the t o t a l energy E + FZie~(e ) as a function of e l e c t r i c f i e l d F.
Lager and Z.Z. Wang, in ref. l , p.279. 8. H. Fukuyama and P.A. Lee, Phys. Rev. BI7 (1978) 535. 9. H. Matsukawa and H. Takayama, Solid State Commun. 50 (1984) 283, and in t h i s volume. I0. K. Maki, Phys. Rev. B33 (1986) 2852. I I . Ko Hida, Z. Phys. B61 (1985) 223, and r e f e r ences therein. 12. Y. Suzumura and H. Fukuyama, J. Phys. Soc. Jpn. 52 (1983) 2870, i b i d 53 (1984) 3918, ibid 54 (1984) 2077, see also, T. Saso, Y. Suzumura and H. Fukuyama, Prog. Theor. Phys. Suppl. 84 (1985) 269. 13. T. Saso and Y. Suzumura, J. Phys. Soc. Jpn. 55 (1986) 25, and submitted to J. Phys. Soc. Jpn.
6. N.F. Mort, P h i l . Mag. 17 (1968) 1259, V.L. Berezinskii, Zh. Eksp. Teor. Fiz. 65 (1973) 1251 [ Sov. Phys. JETP 38 (1974) 620 ].
14. T. Saso, Y. Suzumura and H. Fukuyama, Proc. Int. Conf. 17th Low Temp. Phys., Karlsruhe 1984 (North Holland Pub. Co., 1984) p. 1345, T. Saso and Y. Suzumura, ref. l , p..531.
7. P. Monceau, M. Renard, J. Richard. M.C. Saint-
15. M. Suzuki. Prog. Theor. Phys. 56 (1976) 1454.