Quasi-degenerate rayleigh-schrödinger perturbation theory with hermitean model hamiltonian

Quasi-degenerate rayleigh-schrödinger perturbation theory with hermitean model hamiltonian

Vo!“me 32, numtier 3’ ..” ‘. .. _, ‘. ‘, CHEMICAI’PNYSICS LETTERS : ,, ._ “. . _, .. :.., ” ,. ‘. 1 May l.975 ‘. ,. ,. .‘,. .. A me...

598KB Sizes 0 Downloads 35 Views

Vo!“me

32, numtier 3’

..” ‘.

..

_, ‘.

‘,

CHEMICAI’PNYSICS LETTERS

: ,, ._ “.

.

_,

.. :..,



,.

‘.

1 May l.975

‘.

,. ,.

.‘,.

..

A methbd for the construction of ;h& hermitaan’tiodel hakiltonian in &a framework of thequasidegenerate Rayleigh@ertuxbationtheory is kuggesterj. The approach of a model hamiltonian is bati on the assunption that ifit

SchCdinpr is ~kqmE.=d

in a chosen fmitedimension~

model space it will yield eigenvalues of the origin&l

hzmiltonian

in the entire

space, For a unitary operator tra’nsformingihe unperturbti~stite vectors onto the prturbed rtite vectors, md P model-interaction operator, the pcrh\rbo~oncxp3nsionformSe are developed. H&ert

The calculation of the eigenvaIu6s of a hamilt~~~ which describe some’molecular system, is one of the basic prdblems of quantuq chemistry. If we attempt to solve this problem using the standard Rayleighh-Ritz variational method, then we meet some difficulties originating from the diagonalization of a hermitean matrix ofenotious dimensiondity. An alternative approach fir overcoming these difficulties is the perturbation theory, namely, its idea of a model hamiltonian defined in a unite-Dimensions model space. The approach of a model ham~tonian is based on the assumption. that if it is diagon~zed in a model space it will yield eigenv@ues of the originat perturbed hamiltonian defmed in the entire Hilbert space. It s,ho&be emphasized that the method of a’model hamiltonian in tfie present short communication is noting else than a natural extension of the non-degenerate perturbation

theorv to a more generaleither degenerateor quasi*de~eRerat~ pe~~rbation theory. Genera& speaking,the model h~~ton~ans, sj~arly as the standard perturbation theoq, CXLbe cIassif%d into two types: Those which are dependent on the pertukbed eigenenerm E and those’which are nor: dependent OR E. An Emdependent model hamiltonian was formulated as an extension of the Bril.lo&-Wigner perturbation theory-by Bloch and Horowiti [I] tid L6wdin (21. A construction of a.~E-independent model ham&or&n, as zn extezision of the ~ylei~-Schr~d~ger p~r~rbatio~ theory i;grascarried out i~t~y by E&to. f31, Spiesman [4], Bloch.f!Q, Des Cloizaux- [ti] an$_Primas [7], Rece&Iy, the con$uction of&independent made1 hamiItonians has been studied and treated from different point of views and by’differe’nt appioaches @--251. It shouftj be noted that .ELS was said by Elir~chfelder arid @ertti [2iJJithere is nothing basically tiew to be discovered in the Rayleigh-SchrGiing~r ~r~rbatio~.theory. An extensive review of different fo~u~ations of ~yIe~~chr~dinge~ perturba~on theory as we&as intkrrelation between these diffe‘rent approaches was given by K$ein [24] .’ .The aim bf [email protected] short communication 6 tdsugg&t an operator extensioti of.the standard Rayie$G Scfir6dinger pkiturbation theory inio a quasi-degenerate case producing a her@tean E.indepkndetit model hamiltp&n. This problem has been sofved 1255 by t&k van Vleck ~r~sfo~ation~ and $.so by the Rimas <‘s~Ipe~o~e~ ator”,technique 1221. We believe that thk present for&disni’&. &nipler and easier to use th& the mentioned approaches. It $&ld,be tinderstood as a gener~~~~n of,some ideas’of the HirschfeIder and Certain method E19,,201;into,a’qiuasi-deg~nerate syieig;?-SchiBdingei pe$urb,ation theory. ‘Let is assume that a.totd hamikonia~ of m &&ctron byste,riz may be writ& k t&e split: form

‘.’

-.y

;, y

..,

. :f k+&jP”P&~ .f ., :_Y*. : ” ;,, : ., ._ ,, .,; ,,;.,, ;I c-3 .:. ..::. ,‘.,... (’ .: . :’$Mcondition .meBns that the space ~2i~n+ tb tk.model spat+ !$, when .the. r&b&ion $1 is “swit&ed-off’. .; I+othFr’words, there exist d perturbed eigenvalues {E,; )\uMj tending to: {E, 6 ; aElM 1 ihrhenHI.+ $4 I_:,:. .: thti piesent apijroach is a utiitary wave operator defined. as follows .: ., ._ I.,.’:l3e ._ basic cqkept.of ‘,,

‘_.

:. ~~~2$,‘_‘..

‘.. .. y

_

’ $&ch m&@s that the’ b&ator ‘_ .: maps !J.ontd ino:, A.&ogdkly. .: ,.

:_‘ ., :

..’

_y .‘.

“:

;

:.:wheretheprojectolsqh.gre.deter~~~tiby’,_’..

b&.(6) :,

~~‘~~ul&ying

:

gives the @ojkto~,~o

_,

: .. (6)

in the,f+wi~g

‘_ ,., ,, :_ : ..:. :

f&m

.-..:._:.,.‘_

(7) froth @& s&t

‘_ ,:, ..

., .. ._., :. ,: .., ‘1,,I, : I:. .. ‘: : 1 ‘. .. :. ‘., ., ‘,‘__, ., ,: ,~ ,_ .. : ,‘. ; 1” .. . ‘_ .‘,:: ,;’ -:.i., )_. 1,. ;

:

.,Subsiitution,(&)

‘,j,‘., ,.‘

C!Po gaps’ the model space 6,-, ‘onto spa& S2, qd c&Gersely , thd’opeiatof VP to’(6) let us defme’k hermitkan mbdel ~a~i~~o~~n ‘. ,i :’ .’

..A,

:

;

by the prajec,t&

.

:

I,.

(7). :.

._ ,’

..’ . ,.,. &&&p+ob!em, ;

,yh WC arr;;ve ‘iit a &b&l:

. .. ,’

” ‘.

1.‘. ,_

: -.

_,

‘. :



,‘.

:

;

:,

..I.

Volume 32, number 3

_’

,@J =;(g&@J+);

._

.’ *

.; ‘. ..

:

:,

.:

.‘.

The algebraic structure of the above,recurrent formulae (17) and (20)$3 is suitable-for their simtiltane6us iterative solution. Indeed, for the constructibn Ucn)PO and @$ @I2.2) only the lower-&de; contdbutions uWg, cmP(), ..:, U+-ljPo and c#;;@& .a., ~~$‘)~shoul~l be kyvwn,.Ftiran illustratidll of the presen’t method we give, the perturbationckpansioti ,f~r&la fdr the model hamiltonian up to the.fcqrth ordei, I-fRS = g$

f R&j,

- ._

xRS = @‘!! ‘,; ,.gwO

..

:

‘.

(23a)

.’

,.’ 1-PO 1 !f&l~J)kE(oj H N&(or) 0 0 y- 0

pd-I1 &)_;-;$p~~ a Lo!.

‘.

: :

where the non-hermite&

(23b)

IF@ is BIOCII’s moael hamiltonian generalized for the quasigdegeneiate theory hamiltonian may be constructed by a simple symmetrization [like (23a)] of Bloch’s model hamiltonian c&y up to the third order., Starting from the fourth order there are appearjng such terms which cznilot b&43ained in -the framework of this symm&ization proce.dure. .In tht degenerate theory, as was explicitly’shown by,Soliverqz [2l],.such symmetritition is -true up to the fourth ordq. Soliverez also noted, that these new terms are tiutually.cticelled for .tie non-degenerate perkrbaiioh t@j. The present m&hod has been applied in sotie ruditientary for&to a direct diagrammatic calculatiorI &f thejonization potentials [263 as ., well .& excita$on energies 1273 .. operator

1221.Thus,ourhem&sapmodel

,’

‘.

.

[1] C. Blbch and ;. Horowitz, Nucl. Phyi 8 (1958) 911”.’ [2] P.-O.Lowdin, J. Math. whys:3 (1962) 969_ [3] T: Kato, Rogr. Theoret whys. 4 (1949) ISP. .. [4]‘G. Spiesman, F’hys Rev. 107 (1957) 1180. [5]-C. Bloch, NucL F%ys:6 (1958) 329. [6] J. Dei C!oi&w, Nud. Phyr 20 (1960) 321., [7] .H.Primaq’Rev. Mail. Phys, 35 (i963) 710. ‘..’ is] B. Brandow, Reu. M& Phys. 39 (lYG7) 771;. (P] G. Oberlechner,‘F- Owono-$-Guema and J. Richter, Noovo Cimento 869 (1970) 23, [lo] M. Johnson and hi. Baranger, Ann. Fhys. 62 (1971) 172.

[ll] T.T.S. Kuo, S.Y. ke,and K.F. R~tcliff~ Nucl..E?~ys. A176 (1971) 65. 1121 P.G.H. Sandak, Advti. Chem. Fhys. 14 (1969).36S. ,, ‘. ; i Teor..@iz. ST (1966)‘230; Soviet Phyn J&P [14].v. Kvasnii and 1. Hub$, J..Chem. phys 60 (1974) 4483. .’ ‘.[15] J.O. Hirs-chfelder,~ntent Jr Quantum Chem. 3 (1969).731; .-

.:. (161 H.J. Silverstotie, J; ahem. fiys.54 (197lj 2325. [!7] EJ; Silverstone and T.T.,Hol&wtiy, whys Rev.-+ (1971) 2191.

..

%rid ?. Huba;; $cm;,Phys;

_.

,:- .,__- ,.. -.: I,,. ,,.’ : :_. ., .-.:.

..’ . ..‘. . I . ... ‘,’ ,, ._

_:

,..

‘.,.’

,-

‘,

: -.

‘. ,.

:

_, ,. ,’ .. - “- .

,_ ., _,

,, ,”

,. ,, :.:,

:,,‘.I .,.,:.

! _.’.. ., :.,

...

.’ -

_’

:

-’

:.,

: : ..

Le’lters 24.(1974)-36&y

,‘.

..

:, .:. ..

,.

-’ ‘.’ ;’ .. -I ;.I.. .’ ‘, ., .. :,.f. ‘. [24] D.1. K$in,_J. Cl-&n._I’hy~ 51 (1974) 786. : -‘.-, ‘.[25] F. Jdfgetingld T. Pedersen, MqL l%y$. 2+.‘(1974) 33,954;: _. [26] I. Hhba*c,V. Kvasniia and A. Ho!ubec, Cheti. Phyk L;??teis 2! (19731’3BL. ‘A. ,Hol&/c

. :-

24 (19$7)‘lS4.

... (19I.P.p. Cer@in&d J.O. I$r&feider’, J. Chem. Whys; 5i[i970) 5977. (201 J.O. Hirschfelder andP.R. Certain, J. Chhem. whys 60 (1974) 1118., -[21] C.E. Soliverez. J. phy&‘C 2 (1969),2161.

~~~[27~:V.,l&snii~

.’

;”

’ [18] J.H. Choi, J. Math;F%ys. 10(1969)2141.

18. ..

.’

:

[ 13) LN. &laevgki, Zh. Eksperiti.

[22] V. Kvakiiiki, Czech, J, Phys, B 23 (1974) 605. [23] V. ~ratiiFka;-Czech, I, Phys, B, to be published.

,’

:

: -1 _’‘, .. :

;.I’. ‘. ,‘-_I _:,; .:,

._‘. ‘.._.., I,‘.,

__ : I’. ,. ..c._,,,

“.. ‘:..

_ ,, :

: .,

: ”

j’

‘, ,.. ;’ : _,’ .,_,:: y : .:.‘_;.;

..