Recent Progress in Fourier Analysis I. Peral and J.-L.Rubio de Francia (Editors)
0 Elsevier Science Publishers B.V.(North-Holland), 1985
RADIAL FOURIER hlU1,TIPLIERS AND ASSOCIATED h1AXIMAL FUNCTl ONS
Anthony C a r b e r y * C a l i f o r n i a I n s t i t u t of Technology
I n t h i s t a l k we i n t e n d t o show how a c e r t a i n s q u a r e f u n c t i o n ill
1.
t r o d u c e d by E . M . S t e i n c 3 n b e u s e d t o o b t a i n " g e n e r a l " m u l t i p l i e r and maximal m u l t i p l i e r t h e o r e m s Cor r a d i a l F o u r i e r m u l t i p l i e r s . T h e m u l t i p l i e r t h e o r e m e x t e n d s t h e t h e o r e m o f C a r l e s o n a n d S j a l i n , [5] t o r a d i a l m u l t i p l i e r s o f R 2 w h i c h a r e n o t s m o o t h away f r o m a o n e dimensional " s i n g u l a r i t y " (as a r e t h e Bochner-Riesz m u l t i p l i e r s (1 - 151 '):, u > 0 ) a n d t h e maximal t h e o r e m g e n e r a l i z e s t h e r e s u l t o f [l] c o n c e r n i n g a l m o s t - e v e r y w h e r e c o n v e r g e n c e o f B o c h n e r - R i e s z means on R 2 t o a w i d e r c l a s s o f f u n c t i o n s , a s well a s p r o v i d i n g a u n i f i e d a p p r o a c h t o c e r t a i n o t h e r o p e r t o r s a s s o c i a t e d t o maximal a n d p o i n t w i s e c o n v e r g e n c e p r o b l e m s , i n c l u d i n g S t e i n ' s s p h e r i c a l maximal f u n c t i o n , "41 and t h e s o l u t i o n o p e r a t o r t o t h e l i n e a r i s e d SchrGd i n g e r e q u a t i o n Au = i a u / a t , u ( x , 0 ) = f . Let us begin with t h e square f u n c t i o n .
P(5) =
=(lo
15 ( 1 5 1 - 1 1 y - l
m
*
10;
duced
G"
t h e maxima
f ( x ) I 2 dt/t)"2 i n [12]
and l e t
G"(f)(x)
For
let
a > 1/2,
=
( w h e r e $J,(x) = t - n $ ( x / t ) ) .
where he used i t t o s t u d y t h e
L2
Stein intrg
behaviour of
Bochner-Riesz o p e r a t o r . In f a c t , t h e easy r e s u l t about
a > 1/2, t h e n I G a ( f ) 1 2 5 Ca I f 1 2 . Sunouchi n + 1 t h e n c;" b e h a v e s a s a v e c t o r - v a l u e d a > -, 2 < Calder6n-Zygmund s i n g u l a r i n t e g r a l o p e r a t o r , a n d s o I G " ( f ) l P < C i f l p f o r 1 < p < a. T h i s seems t o b e a l l t h a t was known P,",U a b o u t G" u n t i l f a i r l y r e c e n t l y . However w e now h a v e f u r t h e r linow-
on
[18]
L'
is that i f
observed t h a t i f
ledge of G u t s Lp(Rn)
*
r a n g e s o f b o u n d e d n e s s when
n = 1
or
R e s e a r c h s u p p o r t e d i n p a r t b y NSF G r a n t MCS 8 2 0 - 3 3 1 9 . 49
2.
50 A. Carbery
Theorem 1. Let IGa(f)lp
n
=
1
5 Cp,n,alflp
-'
2 , a > 1/2, and 1 < p < 2n 2 n > P > n+2u-1'
m.
Then
The case a > n+ 1 of the theorem is Sunouchi's result, and the case a > 1/2, p = 2 is Stein's. The case a > n ,p 2 seems to be due to CBrdoba [7] when n = 1 , and is possibly new in general*. The case a > 1/2, 2 5 p 5 4 , n = 2 is a consequence of (This is the only "critical" case which does not at Carbery, [ l ] . present generalise to all dimensions). The remaining positive cases follow by complex interpolation using Stein's theorem (see [17]) for analytically varying families of operators. (Unfortunately we have to complicate G" a little by letting a take on complex values; but using the formula (1) below and arguing as in [17] we see
z-
that IGa(f)lp Re B > 0 and theorem).
5 Clflp * IGa+@(f)lp 5 C(r(Re B1/Ir(@)[)lflp when R, which is good enough for us to apply Stein's
Than G" cannot be bounded unless p > 2n/n+2a-1 is a corollary of theorem 4 (see application 3 below), and the necessity of the condition p < 2n/n-2a follows from applying theorem 2 below to the Bochner-Riesz means. (These statements remain valid in all dimensions). Before proceeding to state and prove our main theorems, we need a variant of the formula
(valid when Re a > 11 + 1/2) which appears in the works of Stein on the maximal Bochner-Riesz and spherical maximal operators, [12] and [14]. This variant is contained in the following well-known RiemannLiouville formula:
*
Details will appear elsewhere.
Radial Fourier multipliers 51
Proof. For € , a > 0, h in the hypothesis of the lemma and f f: L2(R), introduce {(d/dt)z h}-(v) = (E-iv)a ;(v) and
1
m
I:
f(x)
=
X
c
(E-iv)-'
h
=
a
(t-x)a-' e-E(t-x) f(t)dt.
Notice that since is the Fourier transform of the L 1 function (-x):-'
ca I a€ (d/dt)z h
and moreover
(d/dt)z h
eEX,
=
= Ca(d/dt)Lalt1 I1-at[a]h. E Thus supp (d/dt): h C (--,a[, and an application of the dominated convergence theorem shows that (d/dt)" h + (d/dt)" h, and that for each -ESt-X) (t)(d/dt)z .+ x[~,-) (t)(=) d a h in L 2 as E 0. x, e X[x,m) Therefore, since the function (t-x)a-' X[,,~] (t) belongs to L2 when a > 1/2, we have for almost every x that -+
=
ca
[ (t-x)'-l
e-E(t-x)(d/dt):
h(t)dt
j
ca
(t-x)a-'(d/dt)
h(t)dt,
EO '
concluding the proof of the lemma. 11. We are now in a position to state the main inequality from which
-
multiplier theorems may be deduced. Let I$ be a fixed nonnegative smooth bump function supported in [1,2]. For 1 < q < and a > 1/q let R(q,a) = Im e Lm(O,-)l 1 . 1 R(q,a)
Theorem 2. Let = m(IcI) 1 ( 6 1 .
a >
1/2 and suppose t h a t
m
E
R(2,a).
Let Tf(6)
=
hen
Corollary 3. ( [ 2 ] ) . Let n = 2 , a > l/q and suppose that m E R(q,a). Then m(lS1) is an Lp(R 2) multiplier when
Remarks 1 . The most interesting special case of the corollary is the case q = 2,a > 1/2. It then states that a radial function, which, when regarded as a function on ( 0 , ~ ) belongs to R(2,a), a > 1/2, 2 is an Lp(R ) multiplier for 4 / 3 5 p 5 4. This extends the
52 A. Carbery
C a r l e s o n - S j 6 l i n t h e o r e m b e c a u s e ( 1 - t 2 ) A+ E R ( q , a ) when T h i s s p e c i a l c a s e f o l l o w s from t h e o r e m 2 , t h e c a s e Ig(Tf o f t h e o r e m 1 and t h e i n e q u a l i t y [ T f l < C P - P," which i s a s t a n d a r d r e s u l t from s i n g u l a r i n t e g r a l s
a <
+ l/q.
2. The c a s e q = 2 , a > 1 o f t h e c o r o l l a r y i s a v e r s i o n o f 11Grm a n d e r ' s m u l t i p l i e r theorem f o r r a d i a l f u n c t i o n s , a n d f o l l o w s from t h e c a s e n = 2 , a > 1 , p L 2 of theorem 1 .
The r e m a i n i n g c a s e s f o l l o w from embedding a n d i n t e r p o l a t i o n p r o p e r t i e s o f R(q,a) s p a c e s . (For t h e s e p r o p e r t i e s and a comparis o n w i t h WBV s p a c e s , see [ 3 ] ) . 3 . The c o r o l l a r y i s b e s t p o s s i b l e i n t h e s e n s e t h a t i n d e x 1 1 a p p e a r i n g i n i t s s t a t e m e n t cannot be i n c r e a s e d . 1 / 2 ( a - (- 9 T h i s may b e s e e n i n t h e c a s e q 5 2 by e x a m i n i n g t h e B o c h n e r - R i e s z m u l t i p l i e r s , and i n t h e c a s e q 2 2 smooth m u l t i p l i e r s o f t h e form eilEla/lclaa, (large l c l ) , 0 c a < 1 which b e l o n g t o R ( q , a ) f o r 1 < q < m . The p r e c i s e r a n g e o f p ' s f o r w h i c h t h e s e i a t t e r m u l t i p l i e r s g i v e bounded o p e r a t o r s on Lp was d e t e r m i n e d i n [lo].
z)+)
1
P r o o f o f Theorem 2 . Apply t h e lemma w i t h @(SUI m
(5) =
ca
a
S
(t-s)a-l(-&)a
by t h e a s s u m p t i o n on =
m.
h(s)
=
[@(tu) m ( t ) ] d t ,
Therefore,
$(Su) m
supp ( d / d t ) a [ @ ( u t ) m ( f ) ] C_ ( - - , 2 / u l .
5 'a as r e q u i r e d .
lmlR(2,a) Ga(f)*(x)
which i s v a l i d
(lCl)?(EI
I E / u @ ( I c I u m) ( 6 )
since
@(su) m (s) :
Thus
=
Radial Fourier m u l t i p l i e r s
53
W e t u r n now t o t h e maximal o p e r a t o r a s s o c i a t e d t o a r a d i a l F o u r i e r m u l t i p l i e r m( 15 I ) . If 111.
T* f ( x ) =
sup
ITtf(x)
O
1.
We s e e k " g e n e r a l " c o n d i t i o n s o n a m u l t i p l i e r a s s e r t an i n e q u a l i t y of t h e form
ITx fl
p r i a t e d i l a t i o n invariant spaces
X
m
t h a t a l l o w us t o
L p ( R n ) 5 C p , n l m l X l f l LP(R") f o r a n a p p r o p r i a t e Banach s p a c e X o f b o u n d e d f u n c t i o n s d e f i n e d on (0,~). S i n c e I T f ( x ) I 5 T b f ( x ) , o n e i s l e d t o b e l i e v e t h e a p p r o -
R(q,a)
t o c o n s i d e r a r e embedded i n
- i n f a c t we n e e d p o t e n t i a l s p a c e s o f w h i c h t h e 2 l e t La b e t h e coma r e l o c a l i z e d v e r s i o n s . For a > 1 / 2 ,
the spaces
R(q,a)
pletion of the
Cm
t h e norm
=
[ml:2
{*}2I$.
f u n c t i o n s o f compact s u p p o r t i n
I, I a+' s
(d/ds)a
(0,m)
under
A simple computation
at1 ( d / d s ) "
shows t h a t t h e a M e l l i n t r a n s f o r m o f s t i a l l y ( i t + l ) a times t h e h l e l l i n t r a n s f o r m o f
{q}
is essenand so t h e 2 L,(R), (as
m, 1; is j u s t the usual Bessel p o t e n t i a l space f o u n d f o r e x a m p l e i n S t e i n [ I 3 1 Ch. 5 ) u n d e r t h e c h a n g e o f v a r i a b l e s s + exps. space
Theorem 4 . S u p p o s e
m
E
L2
a
f o r some
a
>
1/2.
With
T*
as above
L
a 2 o r 2 , a > 1 / 2 a n d s u p p o s e t h a t m E La. Then t h e maximal o p e r a t o r a s s o c i a t e d w i t h m i s b o u n d e d on Lp(Rn) when 2n 2n n-2cr > p > -n + 2 a - 1 C o r o l l a r y 5 . Let
n = 1
Remarks 1 . The c o r o l l a r y f o l l o w s d i r e c t l y f r o m Theorems 1 a n d 4 . By c o n s i d e r i n g t h e Bochner-Riesz means, w e see t h a t t h e i n d e x 2n/(n-2a) cannot b e r a i s e d ; t o see t h a t 2n/(n+2a-1) cannot be lowered, s e e a p p l i c a t i o n 3 below.
2.
If
D s f ( 5 ) = 161'
?(S)
ITtf(x)l
5
for Ca t S
s E R
w e see i m m e d i a t e l y t h a t
I q l 1 . 1 La
Ga ( D s f ) ( x ) .
A c o r r e s p o n d i n g s i m p l e maximal i n e q u a l i t y ( v a l i d i n a l l d i m e n s i o n s
54 A. Carbery
and not reflecting the full '!Bochner-Riesz" characteristics of
where
a >
112
and
2n-2 n-20. < P
<
Ga)
2n
n+2a-1*
Proof of Theorem 4. We proceed as in the proof of Theorem 2. Let and apply the lemma: m e C:(O,m)
Finally, applying the Cauchy-Schwarz inequality, we obtain
T, f(x) 5
ca
ImI
L Za 161 ):,
~"(f)(x).
2 a > 0, 6 e R . Applications 1 . Let M ( E ) = (1 4 2 corresponding maximal operator is bounded on L (R ) . [l]
Then the
2. Let I$ be a Cm bump function supported on the annulus 16 e R2 : I 151 - 1 I < 6). Then for small 6 , the corresponding maximal operator T, satisfies IT: fl 5 cE ( 1 / 6 I E lfI4 for all anklysis (see the lecture of C62 E > 0. In fact, a slightly finer doba in these proceedings) gives a power of log(1/6) in place of O((l/6)E)
VE > 0 .
mB (51,
-n/2 < B 5 0, be a smooth multiplier vanishing n+ 1 T+ 8 near zero and of the form C B ei 151 for 161 2 1, and let TB f(6) = mB(c) I t s ) . Modulo a term belonging to S , the kernels of the multiplier operators TB are the characteristic function of the unit ball when f3 = 0 and the uniform surface measure on the unit sphere in Rn (n F 2) when B = - 1 respectively and s o we are considering the Hardy-Littlewood maximal function and Stein's spherical maximal function [14] in these special c a s e s . Combining remark 2 with the obvious L" estimate when B = - 1 3.
Let
yields that
IT* flLp(Rn)
'
I cg,n
max{~, *I < - < ~n n+B for 1 2+B o < - < 7 for - 1 < B 5 0).
P
when LP -n/2 < B < 0 . (When n = 2 , read When - 1 5 B 5 0 , it is known 1161
Radial Fourier m u l t i p l i e r s 55
t h a t t h e range o f p a r a m e t e r s n/(n+B) < p c a n n o t b e improved - con2n s e q u e n t l y G" c a n n o t b e bounded o n Lp(Rn) u n l e s s p > n+2a-1. L
Let m(6) = e i l s I . Then t h e l i n e a r i s e d S c h r a d i n g e r e q u a t i o n A u ( x , t ) = i au / a t ( x , t ) , t > 0 , u ( x , O ) = f ( x ) , has a s o l u t i o n o p e r a t o r u ( x , t ) = TJF. f ( x ) . C o n d i t i o n s o n f s u f f i c i e n t t o i m p l y a s t -+ 0 h a v e b e e n s t u d i e d b y C a r l e s o n , that u(x.t) + f(x) a.e. [ 4 ] , D a h l b e r g a n d K e n i g , [9] a n d Kenig a n d R u i z [ l l ] The r e s u l t s 2 n) , a o f t h e s e p a p e r s show t h a t i f f e L,(R n/4, then s u p I T t f ( x ) I i s l o c a l l y i n L 2 ( R n ) , ( [ l l ] ) . Here we show t h a t O 1 . sup ITt f ( x ) I O
.
ISt f ( x ) I 5 Ccr t s l q l when
a > 1/2
when
s > 2a.
1.1
by r e m a r k 2 , ( w h e r e
s
Ga(Dsf)(x) La g(6) = n ( E ) ; ( S ) ) .
Consequently
References C a r b e r y , The B o u n d e d n e s s o f t h e Maximal B o c h n e r - R i e s z o p e r a t o r on L 4 (R 2 ) , Duke Math. J . 50 ( 1 9 8 3 ) , 4 0 9 - 4 1 6 .
[l]
A.
[2]
A. Carbery, G. Gasper and W. T r e b e l s , R a d i a l F o u r i e r M u l t i 2 p l i e r s o f L P ( R 1, p r e p r i n t .
[3]
A.
[4]
L . C a r l e s o n , Some a n a l y t i c p r o b l e m s r e l a t e d t o S t a t i s t i c a l Me-
Carbery, G. Gasper and W. T r e b e l s , Manuscript i n p r e p a r a tion.
c h a n i c s , i n L e c t u r e N o t e s i n M a t h . , 779 ( 1 9 7 9 ) , 5 - 4 5 . [5]
L. Carleson and P. S j o l i n , O s c i l l a t o r y I n t e g r a l s and a M u l t i p l i e r p r o b l e m f o r t h e d i s c , S t u d i a Math. 4 4 , ( 1 9 7 2 ) , 2 8 7 - 2 9 9 .
[6]
A . CBrdoba, A N o t e on B o c h e r - R i e s z O p e r a t o r s , Duke Math. J . 46
( 1 9 7 9 ) , 505-51 1 .
56 A. Carbery
A. CBrdoba, Some Remarks on the Littlewood-Paley Theory, Supplemento ai Rendiconti del Circolo Mat. di Palermo, 11, 1 , (1981), 75-80.
M. Cowling, Pointwise Behaviour of Solutions to SchrEdinger equations, preprint.
B. Dahlberg and C. Kenig, A Note on the Almost everywhere behaviour of Solutions to the Schradinger equation, in Lecture Notes in
Math, 9 0 8 ( 1 9 8 2 ) , 2 0 5 - 2 0 9 . C. Fefferman and E.M. Stein, Hp spaces of several variables, Acta Math., 1 2 9 ( 1 9 7 2 ) , 1 3 7 - 1 9 3 . C . Kenig and A. Ruiz, personal communication.
E. M. Stein, Localisation and Summability of Multiple Fourier Series, Acta Math., 1 0 0 ( 1 9 5 8 ) , 9 2 - 1 4 7 . E . M. Stein, Singular Integrals and Differentiability P r o p e r -
ties of Functions, Princeton U. Press, Princeton N.J. ( 1 9 7 0 ) .
E. M. Stein, Maximal Functions U.S.A.
73,
(1978),
-
Spherical means, P.N.A.S.
2174-5.
E. M. Stein, personal communication via C. Kenig. E. M. Stein and S. Wainger, Problems in Harmonic Analysis related to curvature, BAMS 84, 6 , ( 1 9 7 8 ) , 1 2 3 9 - 1 2 9 5 . Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton U . Press, Princeton, N.J. ( 1 9 7 1 ) .
E . M.
G. Sunouchi, On the Littlewood-Paley Function g* of Multiple Fourier Integrals and Hankel Multiplier Transformation, T8hoku Math. J. 1 9 , 4 , ( 1 9 6 7 ) , 4 9 6 - 5 2 3 .