Radiation chemistry related to nuclear power technology

Radiation chemistry related to nuclear power technology

Radiation Physics Chemt3try Vol. 22 No, 1/2, pp. 119-129, 1983 0146-5724/83/07119-11503.00/0 © 1983 Pergamon Press Ltd. Printed in Great Britain RA...

467KB Sizes 0 Downloads 34 Views

Radiation Physics Chemt3try Vol. 22 No, 1/2, pp. 119-129, 1983

0146-5724/83/07119-11503.00/0 © 1983 Pergamon Press Ltd.

Printed in Great Britain

RADIATION

CHEMISTRY

RELATED

Kenkichi

TO

NUCLEAR

POWER

TECHNOLOGY

Ishigure

Department of N u c l e a r E n g i n e e r i n g , F a c u l t y of E n g i n e e r i n g , University of T o k y o , Tokyo, J a p a n

ABSTRACT A b r i e f r e v i e w is g i v e n to the r a d i a t i o n c h e m i c a l p r o b l e m s , e s p e c i a l l y w i t h the e m p h a s i s on w a t e r r a d i o l y s i s , in the n u c l e a r p o w e r t e c h n o l o g y . Radiation chemi stry in a q u e o u s s y s t e m is p o i n t e d out to be c l o s e l y r e l a t e d to the p r o b l e m s s u c h as c o r r o s i o n of Z i r c a l o y , the f o r m a t i o n of i n s o l u b l e c o r r o s i o n p r o d u c t s or crud, s t r e s s c o r r o s i o n c r a c k i n g of s t a i n l e s s s t e e l in B W R and the r a d i o a c t i v e waste managements. The r e s u l t s of the c o n s t a n t e x t e n t i o n r a t e t e s t s on s e n s i t i z e d 304 s t a i n l e s s s t e e l u n d e r i r r a d i a t i o n are s h o w n , and the c o m p u t e r c a l c u l a tions w e r e c a r r i e d out to s i m u l a t e the m o d e l e x p e r i m e n t s on the r e l e a s e of crud f r o m the c o r r o d i n g s u r f a c e s u n d e r i r r a d i a t i o n and a l s o the w a t e r r a d i o l y sis in c o r e of BWR. KEYWORDS Radiolysis of w a t e r , w a t e r stress corrosion cracking,

chemistry, crud, decontamination,

hydrogen peroxide, dissolved oxygen, radioactive waste management.

Currently, r a d i a t i o n c h e m i s t r y s e e m s to i n c r e a s e its i m p o r t a n c e in m a n y a s p e s t s of n u c l e a r p o w e r t e c h n o l o g y . T h e r e are m a n y r a d i a t i o n r e l a t e d p r o b l e m s , for w h i c h the r a d i a t i o n c h e m i c a l a p p r o a c h e s are i n d i s p e n s a b l e , in the f i e l d s s u c h as the r e a c t o r w a t e r c o n t r o l or the r a d i o a c t i v e w a s t e m a n a g e m e n t . In this p a p e r , a b r i e f r e v i e w is g i v e n in the n e x t s e c t i o n to the r a d i a t i o n c h e m i c a l p r o b l e m s in r e l a t i o n to w a t e r r a d i o l y s i s in the n u c l e a r p o w e r t e c h n o l o g y , and then the r e c e n t w o r k f r o m the a u t h o r ' s l a b o r a t o r y is p r e s e n t e d in m o r e d e t a i l .

Radiation

Chemistry

Related

Problems

It is w e l l k n o w n that a s i g n i f i c a n t p r o g r e s s has h e e n m a d e in the r a d i a t i o n c h e m i s t r y of the a q u e o u s s y s t e m s s i n c e the a p p e a r a n c e of the n u c l e a r r e a c t o r s w h e r e w a t e r is u s e d as c o o l a n t . Water radiolysis is s t i l l n o w a c o n t r o v e r s i a l p r o b l e m in r e l a t i o n to w a t e r c h e m i s t r y of the p r i m a r y c o o l a n t s y s t e m s in LWR, especially in BWR. W a t e r c h e m i s t r y is d e e p l y c o n c e r n e d w i t h the c o r r o s i o n of materials in the p r i m a r y s y s t e m s . It is k n o w n that the c o r r o s i o n r a t e of Z i r c a l o y is c o n s i d e r a b l y e n h a n c e d by the i n - r e a c t o r irradiation and C o x I) p o i n t e d out that b o t h of the a n o d e and the c a t h o d e r e a c t i o n s h a v e to be p r o m o t e d by the i r r a d i a t i o n . Christensen a l r e a d y r e v i e w e d 2) this p r o b l e m s and s u g g e s t e d that the r a d i a t i o n c h e m i c a l p r o d u c t s of w a t e r s u c h as 02 - m a y be involved in the c a t h o d e r e a c t i o n s of the Z i r c a l o y c o r r o s i o n . H o w e v e r , this Z i r c a l o y c o r r o s i o n p r o b l e m h a s b e e n r e c e n t l y o n c e a g a i n c o n c e r n e d in r e l a t i o n w i t h the load f o l l o w i n g o p e r a t i o n s on the n u c l e a r r e a c t o r s and the h i g h b u r n - u p u t i l i z a t i o n of the f u e l s in the r e a c t o r s 3) 4).

;20

K. ISHIGURE

Another a s p e c t of the w a t e r c h e m i s t r y is t h e s t r e s s c o r r o s i o n cracking of the stainless steel pipings in BWR. Intergranular stress corrosion cracking is affected to l a r g e e x t e n t by the o x y g e n c o n t e n t in the e n v i r o n m e n t a l water. In t h e u s u a l o p e r a t i o n of B W R the r e a c t o r w a t e r c o n t a i n s 200 to 3 0 0 ppb o x y g e n arising f r o m the r a d i o l y s i s of the r e a c t o r of w a t e r in c o r e . The corrosion potential is d e p e n d e n t on the o x y g e n c o n t e n t as s h o w n in Fig. i, a n d it w a s concluded by I n d i g 5) et al t h a t the c o r r o s i o n potential s h o u l d be l e s s t h a n - 4 0 0 m V to s u p p r e s s the i n t e r g r a n u l a r stress corrosion potential. This means t h a t the o x y g e n c o n t e n t s h o u l d be l o w e r t h a n 50 ppb as s e e n in F i g . i. To meet this requirement the r a d i o l y s i s of w a t e r in c o r e h a s to be c o n t r o l l e d to k e e p the o x y g e n l e v e l l o w e n o u g h . The successful example of the h y d r o g e n injection t e s t in the O s k a r s h a m n reactor (BWR) in 1 9 7 9 w a s a l r e a d y s h o w n by C h r i s t e n s e n 2 ) . In t h i s t e s t , h y d r o g e n was injected o n l y for v e r y s h o r t t i m e , s e v e r a l h o u r s . In 1 9 8 1 the s e c o n d h y d r o g e n injection test was performed for s e v e r a l d a y s at O s k a r s h a m n r e a c t o r w i t h the successful r e s u l t . 6) This success attracted a wide attention, a n d the h y d r o gen injection m a y be t a k e n as o n e of t h e p o s s i b l e countermeasures for the I G S C C in BWR. In c o n n e c t i o n with the hydrogen injection in BWR, it is v e r y i m p o r t a n t to k n o w the d i s t r i b u t i o n of the o x y g e n a n d the o t h e r o x d i s i n g species in each portion of the p r i m a r y s y s t e m of B W R i n c l u d i n g the r e c i r c u l a t i o n lines, the r e a c t o r core and the the sampling lines. Our k n o w l e d g e on the r e a c t o r w a t e r is a l w a y s c o l l e c t e d through the l o n g s a m p l i n g l i n e s of B W R a n d t h i s m a y not reflect the a c t u a l s i t u a t i o n s in the p r i m a r y l i n e s o w i n g to the c h e m i c a l reactions w h i c h m a y o c c u r in the l o n g s a m p l i n g lines. Thus, a computer simulation was carried in the a u t h o r ' s laboratory to k n o w t h e d i s t r i b u t i o n of o x y gen, h y d r o g e n peroxide and other chemical species involved at e a c h p o r t i o n of the primary l i n e s of BWR. The preliminary r e s u l t s h o w s t h a t the t h e r m a l decomposition reaction of h y d r o g e n peroxide is v e r y i m p o r t a n t since this react i o n y i e l d s OH r a d i c a l s even without radiation. kI H202

~

20H

(i)

However, the reliable d a t a on t h e r a t e c o n s t a n t of r e a c t i o n (I) a r e n o t a v a i l able from literature. So, a m e a s u r e m e n t w a s m a d e at h i g h t e m p e r a t u r e to determine the decomposition r a t e of h y d r o g e n peroxide. The results are given in t h e f o l l o w i n g section. If o x y g e n p l a y s an i m p o r t a n t r o l e as an o x i d i s i n g a g e n t in t h e i n t e r g r a n u l a r stress corrosion cracking, then other chemical species produced by r a d i o l y s i s of w a t e r s u c h as H 2 0 2 , H O 2 , 0 2 - a n d OH m a y a l s o a f f e c t t h e I G S C C . Hence, the constant elongation rate test (CERT) experiment was conducted to e x a m i n e the e f f e c t of r a d i a t i o n on the I G S C C of 304 t y p e s t a i n l e s s steel. It w a s f o u n d 7) that radiation accelerates the I G S C C at h i g h e r o x y g e n c o n c e n t r a t i o n but rather r e t a r d t h e I G S C C at l o w e r o x y g e n l e v e l . Water chemistry is c l o s e l y c o n n e c t e d with the behaviors of the c o r r o s i o n prod u c t s or c r u d in the p r i m a r y systems. C r u d is c o n s i d e r e d to p l a y an i m p o r t a n t r o l e in the a c c u m u l a t i o n processes of the r a d i o a c t i v e nuclides, s u c h as 60Co,58Co or 5 4 M n , on t h e s u r f a c e s of the p r i m a r y piping. It w a s f o u n d I0) that radiation has significant e f f e c t on t h e r e l e a s e of c o r r o s i o n products from stainless s t e e l a n d c a r b o n s t e e l in h i g h t e m p e r a t u r e water ; gamma-irradiation enhances t h e r e l e a s e of c r u d or i n s o l u b l e oxide particulates, w h i l e it h a s no appreciable e f f e c t on the r e l e a s e of s o l u b l e ions. This effect was explained by t h e h y p o t h e s i s that ferrous ion r e l e a s e d as a r e s u l t of the c o r r o s i o n is o x d i s e d by w a t e r r a d i o l y s i s products to f e r r i c ion l e a d i n g to h e m a t i t e (~-Fe203) through the hydrolysis reactions. A computer simulation w a s c a r r i e d o u t to confirm that the above processes actually take place under the experimental conditions. The redox reactions of m e t a l i o n s by r a d i a t i o n are excellently utilized in o n e of the c h e m i c a l decontamination methods of t h e p r i m a r y systems in n u c l e a r reactors.8) LOMI (low oxidation s t a t e m e t a l ion) r e a g e n t s a r e n e w t y p e of

Radiation chemistry related to nuclear power technology

]21

chemical solvents recently developed for the c h e m i c a l d e c o n t a m i n a t i o n by C E G B in UK. The s o l v e n t s d i s s o l v e the o x i d e l a y e r s on the s u r f a c e s of the p i p i n g by r e d u c t i o n of f e r r i c to f e r r o u s ions and are c o m p o s e d of a p o w e r f u l r e d u c i n g r e a g e n t s u c h as V ( I I ) or C r ( I I ) , a c o m p l e x i n g r e a g e n t and a b u f f e r . W h e n the decontamination is p e r f o r m e d i m m e d i a t e l y a f t e r the s h u t d o w n of the r e a c t o r , the r a d i a t i o n f i e l d in the s h u t d o w n c o r e d e c o m p o s e s the r e d u c i n g r e a g e n t s . The r a d i o l y s i s p r o d u c t s , H, OH and H202 o x i d i s e V ( I I ) ions to V ( I I I ) , w h i l e some of V ( I I I ) ions are r e d u c e d to V(II) as s h o w n by r e a c t i o n (5). H+ H + V(II)

=

H 2 + V(III)

(2)

OH + V ( I I )

m

OH-

(3)

H202

+ V(II)

m

OH + OH-

e-aq

+ V(III)

~

V(II)

+ V(III) + V(III)

(4) (5)

The a b o v e o x i d a t i o n r e a c t i o n s , (2), (3) and (4) i n d u c e the d e t e r i o r a t i o n s o l v e n t s and r e d u c e its life time. H o w e v e r , if f o r m a t e ions are a d d e d s y s t e m s , t h e y s c a v e n g e H and OH to give the c a r b o x y r a d i c a l s CO2-.

H C O 2- + OH

m

H20

H C O 2- + H

m

H 2 + CO 2-

This r a d i c a l r e d u c e s reaction product.

V(III)

ion

CO 2- + V ( I I I )

=

and

of the in the

+ CO 2-

regenerates

V(II)

(6) (7)

the

reagents,

giving

CO 2 as

+ CO 2

the

(8)

The t h i r d a s p e c t of the r a d i a t i o n c h e m i s t r y of w a t e r is the h y d r o g e n g e n e r a t i o n f o l l o w i n g a loss of c o o l a n t a c c i d e n t . W h e n the e m e r g e n c y c o r e c o o l i n g s y s t e m (ECCS) is o p e r a t e d , the m a i n s o u r c e of h y d r o g e n is the r a d i o l y s i s of w a t e r in c o r e and in the sump. It is v e r y i m p o r t a n t to d e t e r m i n e the c a p a c i t y of the hydrogen recombiner to stop h y d r o g e n r e a c h i n g the e x p l o s i o n l i m i t (4%). Thus, r e l i a b l e r e a c t i o n r a t e s of the r e l e v a n t c h e m i c a l s p e c i e s are e s s e n t i a l to s i m u l a t e the h y d r o g e n e v o l u t i o n a r i s i n g f r o m r a d i o l y s i s of w a t e r . Finally, it s h o u l d be r e f e r r e d that w a t e r r a d i o l y s i s has a m a r k e d e f f e c t on l e a c h i n g p r o c e s s of n u c l e a r w a s t e f o r m s in t h e i r land d i s p o s a l . At p r e s e n t , borosilicate g l a s s e s m a y be one of the m o s t p r o b a b l e w a s t e f o r m in the m a n a g e m e n t of h i g h l e v e l r a d i o a c t i v e w a s t e s g e n e r a t e d f r o m s p e n t f u e l s in n u c l e a r p o w e r plants. R a d i a t i o n d a m a g e has b e e n a g r e a t c o n c e r n for the g l a s s w a s t e form, and l a r g e e f f o r t has b e e n d e v o t e d to the s t u d i e s in this a s p e c t . Many works s e e m to s h o w that the e f f e c t of the r a d i a t i o n d a m a g e on the p h y s i c a l p r o p e r t i e s of the g l a s s w a s t e s m a y not be so s e r i o u s t h r o u g h a w h o l e l i f e time of the w a s t e form. H o w e v e r , r e c e n t l y M c V a y et al 9) f o u n d that g a m m a r a d i a t i o n enh a n c e s the l e a c h i n g of zinc and l a n t h a n i d e s from simulated waste glasses. The m e c h a n i s m for the e n h a n c e m e n t is not w e l l u n d e r s t o o d at the m o m e n t , b u t it w a s c o n f i r m e d that the r a d i o l y s i s of the l e a c h a t e , w a t e r i n c l u d i n g s o m e i m p u r i ties, is i n v o l v e d in the p r o c e s s . It is i n f e r r e d that some r a d i o l y s i s products, for i n s t a n c e n i t r i c acid, a c c e l e r a t e the d i s s o l u t i o n of some e l e m e n t s d e p o s i t e d on the g l a s s s u r f a c e s .

Formation It w a s

of

Crud

already

under

reported

Gamma-Irradiation by

the

present

a u t h o r l O ) -12)

that

gamma

radiation

122

K. I SHIGURE

enhances the c r u d

the r e l e a s e of i r o n (~-Fe203) formation

Fe

+

1/2

2 F e 2+ + Fe 2 +

OH

3Fe 3+

+

02

+

2H +

crud from mechanism

stainless steel and carbon was considered as f o l l o w s .

2H +

1/2

Fe 2+

02

--

= 3H20

+ H20

2Fe 3+

"

Fe203

(9) (i0)

OH-

(ii)

3Fe(OH) 3 +

2Fe(OH)3

and

+ H20

Fe 3+ + ~

steel,

+

3H+

(12)

3H20

(13)

The oxidation reaction of f e r r o u s i o n ( F e 2+) w a s a s s u m e d to be r a t e - d e t e r m i n i n g at the l o w d i s s o l v e d o x y g e n l e v e l in o r d e r to be e x p l a i n the e x p e r m e n t a l results. In the a b o v e r e a c t i o n mechanism, only a typical oxidation reaction is s h o w n , though the actual oxidation reactions are more complicated, involving other chemical species. In Fig. 2 is s h o w n the d e p e n d e n c e of the i r o n r e l e a s e levels on the r e s i d e n c e t i m e or f l o w r a t e in the l o o p e x p e r i m e n t under gamma-irradiation. As s e e n in Fig. 2, the c o n c e n t r a t i o n of the f e r r o u s ion r e l e a s e d from the c o r r o d i n g surfaces is r a t h e r low, a n d it m i g h t be d o u b t f u l t h a t the o x i d a tion reactions a r e so r a p i d to o c c u r u n d e r the e x p e r i m e n t a l conditions. Thus, a computer simulation was carried out to e x a m i n e the r e a c t i o n s of f e r r o u s ion at h i g h t e m p e r a t u r e under gamma-irradiation. 13) T h e r e s u l t is s h o w n in Fig. 3. In t h i s c a l c u l a t i o n 40 p p b of f e r r o u s ion is g i v e n as i n i t i a l condition. It is s e e n t h a t a p p r o x i m a t e l y i00 s e c o n d s a f t e r t h e e n t r a n c e of f e r r o u s i o n s to the r e a c t o r , the s y s t e m r e a c h e s the s t e a d y s t a t e a n d a l m o s t all of f e r r o u s ion is o x i d i s e d to f e r r i c ion. This redox reaction is l a r g e l y d e p e n d e n t on the i n i t i a l c o n d i t i o n , and w h e n I00 ppb of h y d r o g e n is a d d e d in the r e a c t o r , the o x i d a t i o n of f e r r o u s ion is m a r k e d l y retarded a n d a b o u t a h a l f of f e r r o u s ion is o x i d i s e d in the s t e a d y s t a t e . T h e r e w e r e two i m p o r t a n t parameters in these calculations which included some ambiguity at p r e s e n t . O n e w a s the rate constant of t h e r m a l d e c o m p o s i t i o n reaction (i) of h y d r o g e n peroxide as already mentioned earier. So t h i s r e a c t i o n rate was measured in t h e e x p e r i m e n t at 1 5 0 ~ 2 5 0 ° C by the p r e s e n t a u t h o r s l 3 ) a n d the r e s u l t is as f o l l o w s .

k I = 6.4

x

105exp

(-

17000RT )

(14)

T h i s l e a d s to the r e a c t i o n r a t e of 5.0 x 1 0 - 2 (s-l) at 2 5 0 ° C , w h i c h is u s e d in the above simulation. The second important parameters are initial G values of w a t e r r a d i o l y s i s . The reliable data are available on t h e s e G v a l u e s at ambient temperature from literatures. However, B u r n s et a l l 4 ) 15) r e p o r t e d recently t h a t the i n i t i a l G v a l u e s of w a t e r r a d i o l y s i s at h i g h t e m p e r a t u r e are somewhat different f r o m the o n e s at a m b i e n t temperature. T h e s e two k i n d s of G values are compared in T a b l e i. The calculation u s i n g the G v a l u e s at h i g h temperature is s h o w n in Fig. 3. It is n o t e d t h a t L E T e f f e c t d i s a p p e a r s at high temperature. The simulations were also conducted u s i n g t h e G v a l u e s at low temperature, and compared w i t h t h e r e s u l t s h o w n in F i g . 3. The ferrousferric oxidation reaction w a s f o u n d to be a f f e c t e d little by this variation in t h e G v a l u e u n d e r the p r e s e n t experimental condition.

Stress

Corrosion

Cracking

of

304

Stainless

Steel

under

Gamma-Irradiation

Constant extention rate testing was carried out on s e n s i t i z e d t y p e 304 s t a i n l e s s s t e e l in a h i g h t e m p e r a t u r e w a t e r l o o p s h o w n in F i g . 4. 6 ) In the t e s t loop five test specimens were mounted at o n e t i m e on the t e n s i l e m a c h i n e s , two of w h i c h w e r e i r r a d i a t e d w i t h the 6 0 C o s o u r c e at the d o s e r a t e of 4.5 x 104 R / h r , while the others were not irradiated. The tests were carried out with varying the o x y g e n c o n c e n t r a t i o n and temperature. In F i g . 5 a r e s h o w n t h e f r a c t u r e

Radiation chemistry related to nuclear power technology

123

strains with and without gamma-radiation at v a r i o u s oxygen concentrations. In T a b l e 2 a r e i n d i c a t e d the f r a c t u r e m o d e s in the f r a c t u r e faces observed by SEM. T h e e f f e c t of the g a m m a i r r a d i a t i o n on S C C s e e m s to be r a t h e r c o m p l i c a t e d It a p p a r e n t l y accelerates t h e I G S C C at 2 5 0 ° C in the p r e s e n c e of 8 p p m o x y g e n , whereas it g i v e s the s u p p r e s s i n g or p r o t e c t i v e environment to the I G S C C u n d e r the o t h e r c o n d i t i o n s . S i n c e t h e a m o u n t of o x y g e n f o r m e d by the r a d i o l y s i s of w a t e r is r a t h e r s m a l l as s h o w n in F i g . 3, the e f f e c t is n o t a t t r i b u t e d to the increase in the o x y g e n c o n c e n t r a t i o n . T h e t h r e e e f f e c t s m a y be c o n s i d e r e d : (i) the p a r t i c i p a t i o n of o x i d i s i n g species in the c a t h o d e reactions (2) the oxidation of f e r r o u s i o n s by o x i d i s i n g species leading to the f o r m a t i o n of oxide film (3) t h e c h a n g e of the m o r p h o l o g y of the o x i d e s . However, it s e e m s rather difficult at t h e m o m e n t to e x p l a i n the e x p e r i m e n t a l results reasonably.

Computer

Simulation

of

Water

Radiolysis

in

Core

of

BWR

As a l r e a d y m e n t i o n e d , a simulation w a s c a r r i e d o u t 16) to k n o w w h e t h e r the a c t u a l water chemistry in e a c h p o r t i o n of p r i m a r y l i n e s of B W R is or n o t d e v i a t e d from the o n e s we o b s e r v e at the s a m p l i n g points. T h e r a t e s of t h e r e a c t i o n s involved in the r a d i o l y s i s at 2 8 0 ° C a r e e s t i m a t e d by B u r n s et a 1 1 3 ) as s h o w n in T a b l e 3. A m o n g t h e s e the r a t e s of t h e two k e y r e a c t i o n s are somewhat modified to h a v e a g o o d a g r e e m e n t between the calculated results and observed values,as stated below. The calculations were carried out u s i n g b o t h t h e i n i t i a l G v a l u e s at l o w a n d h i g h t e m p e r a t u r e s a n d the r e s u l t s s h o w t h a t t h e G v a l u e s at high temperature g i v e the b e t t e r f i t t i n g . T h u s , the r e s u l t s obtained using the h i g h t e m p e r a t u r e G v a l u e s a r e s h o w n in t h i s p a p e r . The stripping rates of 02 a n d h y d r o g e n in c o r e a r e n o t k n o w n w e l l a n d w e r e d e t e r m i n e d so as to m a k e a good agreement between the c a l c u l a t e d and measured v a l u e s of the o f f - g a s levels. In F i g . 6 is s h o w n a t y p i c a l r e s u l t of the c a l c u l a t e d l e v e l s of 02, H 2 a n d H 2 0 2 at e a c h p o r t i o n of a i i 0 0 M W e BWR. It is s e e n in t h i s f i g u r e t h a t h y d r o g e n peroxide is n o t o b s e r v e d at t h e s a m p l i n g point because of t h e d e c o n t a m i n a t i o n in the l o n g s a m p l i n g l i n e , b u t it is p r e s e n t at a p p r e c i a b l e l e v e l in c o r e a n d the r e c i r c u l a t i o n lines. T h e o x y g e n l e v e l in t h e r e c i r c u l a t i o n l i n e is a little higher t h a n t h e v a l u e at the s a m p l i n g p o i n t a n d l o w e r t h a n t h a t in c o r e . T h e e f f e c t of the h y d r o g e n injection was also calculated and compared with the results obtained at t h e O s k a r s h a m n reactor in S w e d e n . A farely good agreement was obtained as s h o w n in Fig. 7, a l t h o u g h the r e c i r c u l a t i o n s y s t e m s a n d the power outputs are somewhat different between t h e m o d e l a n d the O s k a r s h a m n reactors. W h e n 2 5 0 p p b of h y d r o g e n is i n j e c t e d to the f e e d w a t e r , the o x y g e n a n d hydrogen peroxide l e v e l s at t h e s a m p l i n g line were calculated to r e d u c e to z e r o , w h i l e t h o s e a r e 40 a n d 73 p p b , r e s p e c t i v e l y in t h e r e c i r c u l a t i o n lines and are a l m o s t t h e s a m e as w i t h o u t hydrogen in t h e c o r e . It w a s c a l c u l a t e d that the injection of 5 p p m h y d r o g e n is n e c e s s a r y to r e d u c e the o x y g e n l e v e l in c o r e to z e r o , t h o u g h 70 p p b of h y d r o g e n peroxide is s t i l l p r e s e n t in c o r e u n d e r t h i s condition. In the a b o v e c a l c u l a t i o n it w a s f o u n d t h a t t h e r e s u l t s are rather dependent on the r a t e s of r e a c t i o n s (114) a n d (120) in T a b l e 3. A little more modification gives the better results a n d the f o l l o w i n g v a l u e s w e r e u s e d in t h e p r e s e n t calculations.

kl14

= k120

= 4.82

x 108

~ m o l -I

s e c -I

REFERENCES i)

Cox,B. Plenum

(1976). Advances Press, N.Y. p.173

in

Corrosion

Science

and

Technology.

Vol.5.

124

2 3

5 6) 7) 8) 9) i0 Ii 12 13 14 15 16

K. ISHIGURE

Christensen,H. (1981). Radiat. Phys. Chem., 18, 147. G a r z a r o l l i , F . , D. Jorde, R. Manzel, G.W. Parry and P.G. Smerd. (1980). EPRI report NP-1472. IAEA S p e c i a l i s t M e e t i n g on Influence of Water C h e m i s t r y on C l a d d i n g Reliablility. (1980). San Miniato. Indig. M.E., R.L. Cowan. (1980). Water C h e m i s t r y of Nuclear R e a c t o r Systems 2. p.105. Fejes.P. Private Communication. Muroi.M., N. Fujita, K. Ishigure, M. A k i y a m a and T. Tamura. (1982). C o r r o s i o n / 8 2 . Paper 223. Houston. Wood,C.J. (1982). Ann. Nucl. Energy., 9. 195. M c V a y , G . L . , W.J. Weber and L.P. Penderson. (1981). Nuel. Chem. Waste M a n a g e m e n t . , 2, 103. Ishigure,K., N. Fujita, T. Tamura and K. Oshima. (1981). Nucl. Tech., 50, 169. K a w a g u c h i , M . , K. Ishigure, N. Fujita and K. Oshima. (1981). Radiat. Phys Chem., 18, 733. Ishlgure,K., N. Fujita, s. Ono, H. Ikuse and K. Oshima. Radiat. Phys. Chem., in press. Takagi,J., K. Ishigure., to be published. Burns,W.G., W.R. Marsh. (1981) J. Chem. Soc., F a r a d . T r a n s . , i, 77, 197. Burns,W.G. (1981) Water C h e m i s t r y of Nuclear Reactor Systems 2. BNES, 373. Ishigure,K., J. Takagi, T . S h i g e t o and N. Fujita. (1982). Paper p r e s e n t e d at IAEA I n t e r n a t i o n a l S y m p o s i u m at Vienna.

•-OSKARSHAMH-2 O A T A 240O(:

0

- -

SCC 0

2OO

~

SCC 8WR





ESHE SCC

(mv|

-200

-400

~

NO SCC

-,lO(f -600

HIGH PURDTY

-600 mOO

STRAINING ELECTtqOOE O~T N Na2,~O4 2)40C

-aoe

I

I

J Itllil

l

I

Llilatl

10

! ~QO

I

I Ilt'tl

l,

~ a,,,ll

IOQO

IO.O00

o~J

Fig.

I.

R e l a t i o n s h i p b e t w e e n d i s s o l v e d oxygen a n d ~ p o t e n t i a l IGSCC of w e l d e d Type-304 stainless steel 5)

to

Radiation

chemistry

related to nuclear power technology

40

3O

R

S

,.=

lon

',\ I

5 10 15 Contact Time (min)

0

Fig. 2. Release of Fe ion and crud from stainless steel specimens under gamma irradiation in high temperature water loop 250°C, 4.5 x 10 ~ R/hr, 02 20 ppb

-4

-5 -6

o

o, -7

~r O

-8

=

-9

HzOz

-,o o

N

.,~ L

"~

-:2 <;/-

Fe 4 0 ppb D.O. 2 0 ppb D.H. 0 ppb

o o /

-14

.el_3

-2

HOz

-1

time(sec)

I

1

2

in

log

I

3

4

scale

Fig. 3. Model calculation of oxidation of ferrous ion under irradiation 250°C, 4.5 x 10 T R/hr

RPC 22-I/2-J

;25

126

K. ISHIGURE

,,

®

~

~ - ~ j ®

Fig. 4. Circulation loop of high temperature water for CERT with and without exposure to 60Co ?-rays: l-test channel with ?-rays 2-test channel without ?-rays 3-pressurizer. 4-circulation pump. 5-preheater. 6-cooler. 7-pump. 8-ion exchanger. 9-deaerater. ]O-water reservoir. ]]-plunger pump.

30

.c o

2c o

Lt. I0

o

o Gamma-rays e N o Gamrno-roys Temperature : 2 5 0 ° C Extension Rate : O . O 0 1 m m / m i n S t r a i n R a t e " 8 . 3 x IO-?sec -I

~

~o ~6o 260 5bo,~oo DO Concentr~ion

56~o

(pob)

Fig. 5. Variation of the fracture strain of sensitized type 304 stainless steel with DO concentration at 250°C

Radiation chemistry related to nuclear power technology

.

.

.

.

.

.

]27

ppm

~o 2.5

Feedwo'

Pump

.ine 73 DO DH in ppb H=O=

Fig. 6.

Calculated levels of 02, H 2 and H202 in BWR

~150I ~

DO

,ooI .,\ I00

Fig.

7.

Simulation a ii00 M W e •

the

HeinF.W.(ppb) 200

of 02 l e v e l s m o d e s BWR

results

SO0

400

500

in H 2 i n j e c t i o n

in O s k a r s h a m n

2 reactor.

test

in

128

K. I SHIGURE

TABLE

I. G Values of Initial Products

e aq

y

-rays

H+

in Water Radiolysis

OH

H20

H202

2.7

2.7

0.6

2.9

0.4

0.6

0.93

0.93

0.5

1.09

0.88

0.99

0.4

0.4

0.3

4.7

2.0

y.temp.

neutrons y.temp.

y - r a y s or neutrons 300-400~C

TABLE 2. Fracture Mode Observed

0

in Fracture Faced

by Scanning Electron Micrographs

tem.

pb

20

S0

200

TG

TG

TG

D

D

D

8000

500

°C IG

(88)

IG

(72)

absent TG

TG

250 present

TG

TG

TG

D

D

D

IG

(67)

IG

D

D

D

TG

TG

TG

TG

IG

TG

D

D

TG

D

TG

TG

IG

D

D

D

TG

TG

TG

TG

TG

D

D

D

D

D

TG

TG

TG

TG

TG

D

D

mode.

r l G S C C is

TG TG

absent 19)

IG

(9~

200 TG

present (8)

D

absent 150 present

D denotes

ductile

fracture

given

in

parenthese

Radiation

TABLE

3. Rate

chemistry

Coefficients

related

to n u c l e a r

of R e a c t i o n s

Involved

power

technology

in Water

]29

Radiolysis

at 280°C

I

Rate Constant (£/mol .sed)

Reaction i01

e-aq

ar H 2 0

102

e-aq

+

103

e-aq

104

e-aq

105

H

+

=



=

+

OH

=

+

H202

H

=

H

+

OH-

H OH=

OH

+

OH-

H2

1.65

x

E2

2.48

x

Ell

3.10

x

Eli

1.34

x

Eli

1.03

x

Eli

106

e-aq

+

H O 2 .= H O 2 -

2.06

x

Eli

107

e-aq

+

02

1.96

x

Ell

i08

2H20

+

2e-aq

3.00

x

E7

109

OH

OH

=

H202

4.65

x

El0

ii0

OH-

+

H

=

e-aq

+

H20

6.63

x

E8

iii

H20

+

e-aq

+

H

=

H2

6.22

x

E9

112

H20

+

e-aq

+

HO 2-

8.70

x

E8

+

+

OH

02=

113

H

114

OH

l14r

H

115

H

+

02

116

H

+

H02

=

117

iH

+

02-

= HO2-

+ +

=

=

=

H

H20

=

H2

=

H20

+

119

H

H202

120

OH

+ +

H202

+

HO 2

OH-

122r

HO 2-

+

123

H+

02-

=

123r

HO 2

=

H+

+

124

HO 2

+

02 -

2H20 H02

127

H+

127r

H20

128

OH

+ +

+

= +

2OH-

2.06

x

Ell

4.82

x

E8

OH

8.14

x

E2

02-

=

+

H20

=

HO 2 + 02

+

=

HO 2-

H20

=

OH-

+

OH-

H20

202 =

=

+

=

H20

H+

+

OH-

02 -

=

02

+

+

OH-

Ell

x

Ell

2.06

x

Ell

1.04

x

EIO

1.13

x

E9

4.82

x

E8

1.24

x

Ell

5.97

x

E9

1.89

x

E7

5.16

x

Ell

HO 2-

H202

H202

x

H20

0202

1.96 2.06

H202

+ +

HO 2

=

HO2

HO2-

H20

H202

OH-

+

H20 +

OH =

122

126

+

+

=

OH

125

OH-

OH

H202

121

+

+

=

HO 2

e-aq

+

20H-

H20

H2

118

H2+

+ 02

02

+

20H-

3.40

x

E7

4.97

x

E8

3.27

x

E5

8.95

x

E7

1.49

x

El2

1.33

x

E -I

1.24

x

Ell

at

280°C