V01ume 216, num6er 3,4
PHY51C5 LE77ER5 8
12 January 1989
RAD1A71VE F E R M 1 0 N M A 5 5 E 5 F R 0 M N E W PHY51C5 A7 7eV 5CALE ¢~ 8.5. 8ALAKR15HNA and R.N. M 0 H A P A 7 R A Departrnent 0f Phy51c5and A5tr0n0my, Un1ver511y0f Mary1and, C011e9ePark. MD 20742, U5A
Rece1ved 24 0ct06er 1988
We 5h0w h0w the 5ma11ne550f neutr1n0 ma55e5 and the 065erved ma55 h1erarchy am0n9 char9ed 1ept0n5 can 6e under5t00d w1th1n a 5cheme recent1y pr0p05ed t0 under5tand the 4uark ma55 and m1x1n9h1erarch1e5. 7he 5ca1e0f new phy51c51nth15 m0de1 151nthe 7eV ran9e and c0u1dtheref0re 6e exper1menta11yacce55161e.
Under5tand1n9 the pattern 0f ferm10n ma55e5 and m1x1n95 c0n5t1tute5 a maj0r pu221e 0f the 5tandard m0de1. 1t 15 6e11eved that a re501ut10n 0f th15 ••ferm10n pu221e•• may h01d the key t0 phy51c5 6ey0nd the 5tandard m0de1.1t 15 an 01d 5u99e5t10n [ 1 ] that the 065erved h1erarchy 0f ferm10n ma55e5 may re5u1t fr0m rad1at1ve c0rrect10n5 1n a 5u1ta61e exten510n 0f the 5tandard m0de1. M0re recent1y, an 1ntere5t1n9 5cheme ha5 6een pr0p05ed [ 2 ] t0 rea112e th151dea 1n the 4uark 5ect0r. 1n th15 5cheme, the ma55 0f the heav1e5t 9enerat10n ar15e5 at the tree 1eve1 fr0m a ••5ee-5aw•• m0de1 [ 3,4], wherea5 the ma55e5 0f the 5ec0nd and the f1r5t 9enerat10n5 ar15e at 0ne- and tw0-100p 1eve15 re5pect1ve1y, exp1a1n1n9 the h1erarch1ca1 pattern. 1t ha5 6een 5u65e4uent1y n0ted [ 5 ] that th15 m0de1 a150 exp1a1n5 the 1nverted ma55 pattern 0f the f1r5t 9enerat10n 4uark5 (1.e. mu < m d a5 a9a1n5t mc> m5 and m t > m6). A further exten510n 0f th15 m0de1 [5] he1p5 t0 exp1a1n the 065erved pattern 0fthe 4uark m1x1n9 an91e5 (1.e. Vu~, Vc8>> Vu6). An added v1rtue 15 that, n0 fam11y 5ymmetr1e5 are needed t0 9et the5e re5u1t5. A cruc1a1 1n9red1ent 1n the a60ve m0de1 15 the ex15tence 0f a new 9au9e 5ymmetry 5 U ( 2 ) R a60ve a 5ca1e vR and a 5et 0f new vect0r-11ke ferm10n5 w1th ma55e5 M n0t far fr0m the r19ht-handed 5ca1e. 1n the d15cu5510n 0 f 4 u a r k ma55e5, 1t 15 the rat10 vR/Mwh1ch e n t e r 5 . 7 h e 5ee-5aw p1cture f0r the th1rd 9enerat10n determ1ne5 v~/M~- ~-v6, 1 1f a11 the Yukawa c0up11n95 are 0 f 0 r d e r un1ty. 7he a6501ute va1ue 0fth15 5ca1e, 15, h0wever, 1eft free. 1f th15 5ca1e 15 1n the 7eV re910n,
there 15 a p05516111tyt0 te5t th151dea w1th exper1ment5 1n the next few year5. 7he next 06v10u5 4ue5t10n 15, h0w th15 5cheme ••p1ay5•• 1n the 1ept0n 5ect0r, that 15 whether the 119htne55 0f neutr1n05 can 6e under5t00d a10n9 w1th the h1erarchy 0f char9ed 1ept0n ma55e5. A recent ana1y515 [6] 0f th15 4ue5t10n 1ead5 t0 the c0nc1u510n that M 5h0u1d 6e 9reater than ~ 10 7 6 e V t0 have a 5at15fact0ry under5tand1n9 0f the 5ma11ne55 0f neutr1n0 ma55e5. 7h15 w0u1d n0t 0n1y pu5h the 5ca1e 0f new phy51c5 t0 exper1menta11y 1nacce55161e re910n, 6ut a150 ra15e the the0ret1ca1 4ue5t10n 0f 9au9e h1erarchy (1.e. why mw << M). 1n th15 paper, we pre5ent a m0de1 t0 exp1a1n 60th the h1erarchy 0f char9ed 1ept0n ma55e5 and the 119htne55 0f neutr1n05 where the neutr1n05 are D1rac part1c1e5 and the1r 5ma11 ma55e5 can 6e under5t00d a5 a h19her 100p effect w1th the new 5ca1e (vR and M ) 6e1n9 1n the 7eV re910n (2-10 7eV). We, theref0re, n0t 0n1y av01d the f1netun1n9 pr061em, 6ut a150 1ncrea5e the chance5 that th15 1dea may 6e te5ta61e 1n the near future. De5cr1pt10n 0f the m0de1. 7he 9au9e 9r0up 0f the m0de1 15 5 U ( 2 ) L ~ 5 U ( 2 ) R ~ U ( 1 ) t ~ L [71 w1th 4uark5 Q=- (u, d) and 1ept0n5 ~-= (v, e) a5519ned a5 f0110w5:
~ W0rk 5upp0rted 6y the Nat10na1 5c1enceF0undat10n.
1n add1t10n t0 ch0051n9 three 9enerat10n5 0f 119ht
0 3 7 0 - 2 6 9 3 / 8 9 / $ 03.50 • E15ev1er 5c1ence Pu6115her5 8.V. ( N0rth-H011and Phy51c5 Pu6115h1n9 D1v1510n )
QL=-(~,0, ~ ) , ~L-(~,0,-1),
QRm (0, ~, -~), ~R-(0,~,-1).
349
V01ume 216. num6er 3,4
PHY51C5 LE77ER5 8
12 January. 1989
4Uark5 and 1ept0n5 a5 a60Ve, We Ch005e 0ne 5et 0f heavy veCt0r-11ke ferm10n5: /
P-=(0,0,~),
N~(0,0,-]),
E - (0, 0, - 2 ) .
/
/
/
"x •
1
xX
•++ /
7he H1995 5ect0r 0f the m0de1 c0n515t5 0f the f0110w1n9:
• •++
1
e~L H ejL
2,~(~, 0, 1)~2R(0, ~, 1), AL(1, 0, 2)•AR(0,
L
•
Ea
EL
R
ekR He1n
F19. 1.7he ••0ne-100p•• 9raph 1nduced 6y Ae++ -AR++ m1x1n9that 1ead5t0 a n0nvan15h1n9mu0n ma55.
1, 2 ) ,
a par1ty-0dd f1e1d ~(0, 0, 0) and a c010r-tr1p1et H1995 6050n m(0, 0, - 2 ). (51nce we w111n0t 6e d15cu551n9 f1av0r m1x1n9, we 19n0re the u p - d 0 w n 5ymmetry needed [5] f0r th15 purp05e. We c0mment 0n th15 1ater 0n 1n th15 paper. ) 7he m05t 9enera1 9au9e-1nvar1ant Yukawa c0up11n95 1nv01v1n9 the5e f1e1d5 are 91ven 6y
61nat10n 0rth090na1 t0 Jh) and P1Hh) (that c0rre5p0nd5 t0 the e1ectr0n) 6ec0me5 ma551ve. An 1mp0rtant p01nt t0 n0te here 15that the 0ne-100p 9raph 1nv01ve5 m1x1n9 6etween A{- + and 2x~ + wh1ch 15 a65ent at the tree 1eve1, 6ut ar15e5 at the 0ne-100p 1eve1 fr0m the d1a9ram 5h0wn 1n f19. 2. We can e5t1mate th15 m1x1n9 t0 6e
~-~= E hyQ~LP~+ E hfQL2LNR 1
1
8M~x++~-,~,,, m~1n m2J
+ h~ 9tL,XLER+ f p 7 C - •c0NL +
2 U
4 7 -~2 7 H~jQL1C 1r2{0QLj+ ~ H,)9tL1C-1~ALt¢Lj
+ (L ~ R ) + h . c . +
U
~
F=P,N.E
ff(MF + 1~f5cy)F.
(1) A5 d15cu55ed 1n ref. [ 2 ], the ma55 h1erarchy 1n the 4uark 5ect0r ar15e5 fr0m 100p5 1nv01v1n9 the exchan9e 0f the c010r tr1p1et H1995 6050n c0. 1n th15 art1c1e, we f0cu5 0n the 1ept0n 5ect0r. 7 h e c0up11n95 1n e4. ( 1 ) re5pect an add1t10na1 9106a1 U ( 1 ) 5ymmetry (wh1ch w1116e 1mp05ed 0n the re5t 0 f t h e 1a9ran91an) w1th the char9e a5519nment5 Q ( 4 ) = Q (E) = 1, and Q(ALR ) = - 2, the re5t 6e1n9 2er0. After 5p0ntane0u5 5ymmetry 6reak1n9 1nduced 6y ( ~ ) ¢ 0 , ( ~ 0 ) = v L and (2°~) = vR, a 11near c0m61nat10n 0f th15 U ( 1 ) 5ymmetry and 10ca1 8 - L 5urv1ve5 a5 a 9106a1 1ept0n num6er 5ymmetry. 7h15 1mp11e5 that neutr1n0 1n th15 m0de1 w1116e a D1rac part1c1e. 1n the char9ed 1ept0n 5ect0r the h1erarchy ar15e5 1n a manner 51m11ar t0 that 0f ref. [2]. At the tree 1eve1, the 5tate X,h,e~ (0r 51mp1y ] h ) ) c0rre5p0nd1n9 t0 tau1ept0n p1ck5 up ma55 ~t. At the 0ne-100p 1eve1 (f19. 1 ), the e19en5tate 91ven 6y P1Hh ) (where the pr0ject10n 0perat0r P 5at15f1e5 P1 h ) = 0 ) repre5ent1n9 mu0n 9et5 ma55. At the tw0-100p 1eve1, the rema1n1n9 c0m"~ Hencef0rth, we dr0p the 5uper5cr1pt 0n h * and H ~. 350
~h1h) J •
(2)
where m~- (vLvR/ME) (h[h) 15 the tau ma55. We a55ume the parameter5 0f 0ur m0de1 t0 6e 5uch that 6M2++ ~ m 2. 7h15 15 p055161e w1th ME 1n the 7eV re910n and a typ1ca1 e1ement 0f H 6e1n9, 5ay, ~ 3 . 0 n e then expect5 the mu0n t0 tau ma55 rat10 t0 6e (f0r M2~<< ME) rn~
1
5M2++
rn-~-16n 2 M 2
1n
( M 2 ~ M2 / (h1h)
(3)
1f, further, M~ 15 a few 6eV, we expect t0 9et rn,/rn~ 0f the r19ht 0rder 0f ma9n1tude. 51m11ar1y, we 9et a 5ma11 num6er f0r m~/rn~ at the tw0-100p 1eve1. 0 u r ma1n p01nt here 15 n0t 50 much pred1ct1n9 the exact num6er, 6ut rather t0 5h0w that the 4ua11tat1ve pattern emer9e5 natura11y. Let u5 n0w turn t0 neutr1n0 ma55e5.7he f1r5t p01nt t0 n0te 15 that m,,, = 0 at the tree 1eve1. 5ec0nd1y, a5 E
E F19. 2.7he 9raph that 1ead5t0 A~ +-A+ + m1x1n9at the 0ne-100p 1eve1.
V01ume 216, num6er 3,4
PHY51C5 LE77ER5 8
a
m,,,••-
/
1
1
•
•
/
~tA+R
A L ,
1
9L
(5
10-mm~ .
0 n the 0ther hand, f19. 36 (e5t1mated 1n ref. [8] 91ve5
X•k
+ 11
12 January 1989
~. X
EX
)( 7# • ~7R"
m,,, ~
47r 5m-0w
~7-M~v, ]
~ m, M~vR)
-~10-7m~.
W+ 4
u~L
~
7L7
E
7~
+ R
urR
F19. 3. (a) 7he h19her 100p 9raph 1nduced 6y A~--A+ m1x1n9that 9enerate5 D1rac ma55 f0r v,. (h) 7he c0ntr16ut10n 0f wL-wR m1x1n9 (wh1ch ar15e5at the 0ne-100p 1eve1 [31 ) t0 D1rac ma55 f0r V~.
we 5ee fr0m f195. 3a and 36, there are tw0 c0ntr16ut10n5 t0 neutr1n0 ma55e5: 0ne 1nv01v1n9 A~- - A ~ m1x1n9 and an0ther 1nv01v1n9 WL-WR m1x1n9 [ 3 ]. F r 0 m ana109y w1th char9ed 1ept0n ma55e5 0ne m19ht expect, at f1r5t 519ht, the v~ ma55 t0 6e 0 f t h e 5ame 0rder a5 rn~ wh1ch w0u1d c0nf11ct w1th c05m01091ca1 c0n5tra1nt5 a n d theref0re 6e unaccepta61e. Luck11y, h0wever, A~+ - A + m1x1n9 ar15e5 at the three-100p 1eve1 a5 c 0 m p a r e d t0 the 0ne-100p 1eve1 f0r A~-+-2X~ + m1x1n9. 7 h e re1evant d1a9ram 15 91ven 1n f19. 4. We e5t1mate 8M/x + t0 6e
MV~ R
Here, 9 15 the 5 U ( 2 ) L c0up11n9 c0n5tant. 7hu5, 6M~+ ~ 10-~°~M2++ a n d theref0re we expect the c0ntr16ut10n 0f f19. 3a t0 6e 0f 0rder
(6
7h15 1mp11e5 that mv~ 15 1n the 100 eV re910n f0r a rea50na61e Ch01Ce 0 f p a r a m e t e r 5 . 7 h e e19enveCt0r de5cr161n9 v~ 15 91ven 6y ] h >. A5 f0r v~, 1t5 ma55 ar15e5 at the next-100p 1eve1 (f19. 5) and we expect 1t t0 6e 0f 0rder m,,,,-~ 10-7m~-~ 10 eV. 51m11ar1y we expect mv,.-~ 10 -1 eV. 7hu5, a11 neutr1n0 ma55e5 are expected t0 6e c0n515tent w1th c05m01091ca1 c0n5tra1nt5. Further, m,,~ m a y p1ay a r01e 1n 9a1axy f0rmat10n. Let u5 n0w c 0 m m e n t 0n the effect 0f 1nc1ud1n9 the u p - d 0 w n 5ymmetry needed t0 make 4uark-m1x1n95 ca1cu1a61e. C1ear1y, 51nce we d0 n0t 1nc1ude the neutra1 1ept0n (ca11 1t N 0) 1n the heavy vect0r-11ke 5ect0r, there 15 n0 u p - d 0 w n 5ymmetry f0r 1ept0n5 at 10w ener91e5. 7h15 1mp11e5 that e1ther ( a ) N ° 15 5uperheavy 50 that a11 1t5 effect5 dec0up1e at 10w ener91e5 0r ( 6 ) there 15 n0 N ° and a new pa1r 0f H1995 d0u61et5 (2L and 2R) are 1ntr0duced f0r the 1ept0n 5ect0r. 70 5ummar15e, we have pr0p05ed a m0de1 f0r 1ept0n ma55e5 extend1n9 the rad1at1ve ma55 h1erarchy mechan15m 1ntr0duced t0 under5tand 4uark ma55e5 and m1x1n95 t0 1nc1ude the 1ept0n 5ect0r. 7 h e new phy51c5 5ca1e (WR and vect0r-11ke ferm10n ma55e5) can 6e 1n the 1-10 7eV ran9e and can theref0re 6e pr06ed 1n the next 9enerat10n 0fmach1ne5. A part1cu1ar1y 1ntere5t1n9 feature 0f 0ur m0de1 15 the m a n n e r 1n wh1ch the 150tr1p1et H1995 6050n 1ead5 t0 natura11y 119ht neutr1n0 ma55e5 de5p1te a 10w WR 5ca1e. We thank K . 5 . 8 a 6 U f0r d15CU5510n5.
w; •
t
/
52 F19. 4.7he 1hree-100p9raph that 1ead5t0 A+-2~ m1x1n9.
~1L e7L e]L E
%-R e~R ~5R
F19. 5.7he h19her-100p9raph 91v1n9D1rac ma55 t0 v,. 351
V01ume 216, num6er 3,4
PHY51C5 LE77ER5 8
N 0 t e added. 7 h e d0u61y char9ed H1995 6050n A + +, pre5ent 1n the m0de1, 1ead5 t0 W-*3e d e c a y at a rate pr0p0rt10na1 t0 1 / M ~ ++. 7 h e pre5ent exper1menta1 60und5 1mp1y that MA+ + -~ 10 4 6 e V 0r 50 f0r H-~ 1 -
~. 1n th15 ca5e, A~- + - Aff + m1x1n9 mu5t 6e 9 e n e r a t e d 6y a n e w 9 r a p h 0 t h e r t h a n that 0 f f19. 2. A5 an e x a m p1e 0 f a m0de1 w1th e n h a n c e d A~- + - A f f + m1x1n9 ar151n9 f r 0 m the H1995 5ect0r, c0n51der add1n9 t0 the m0de1 an 5 U ( 2 ) L• 5 U ( 2 ) R-51n91et d0u61y char9ed H1995 6050n r1+ + w1th 8 - L = 4 . 7 h e n 0ne ha5 a n e w c0up11n9 2 2 ~ 2 2 ~ A L 2 L 0 - - + (L ~ R ) wh1ch at the tree 1eve1 1nduce5 A~ + - A ~ + m1x1n9 0 f 0 r d e r 22v~ 2 / M ~ 2 wh1ch can 6e ar61trar11y 1ar9e. N 0 t e that × vR A ~ - - A ~ c0up11n9 15 5t111 f0r61dden at the tree 1eve1 a n d ar15e5 f r 0 m f19. 4, wh1ch n 0 w 6 e c 0 m e 5 a tw0-100p d1a9ram. 7h15 1ead5 t0 8 M 2 + << 8 M 2 . + a5 re4u1red t0 u n d e r 5 t a n d the 5ma11ne55 0 f neutr1n0 ma55e5.
Reference5 [ 1] 5. We1n6er9, Phy5. Rev. Lett. 29 (1972) 388; H. 6e0r91 and 5.L. 61a5h0w, Phy5. Rev. D 6 (1972) 2977; D7 (1973) 2457; R.N. M0hapatra, Phy5. Rev. D 9 (1974) 3461;
352
12 January 1989
5.M. 8arr and A. 2ee, Phy5. Rev. D 15 (1977) 2652; D 17 (1978) 1854; 5.M.8arr, Phy5. Rev. D21 (1980) 1424;D24 (1981) 1895; D31 (1985) 2979; R. 8ar61er1 and D.V. Nan0p0u105, Phy5. Lett. 8 91 (1980) 369; 8 95 (1980) 43; R. 8ar61er1, D.V. Nan0p0u105 and A. Ma51er0, Phy5. Lett. 8 104 (1981) 194; R. 8ar61er1, D.V. Nan0p0u105 and D. Wy1er, Phy5. Let1. 8 106 (1981) 303; M. 80w1ck and P. Ram0nd, Phy5. Lett. 8 103 ( 1981 ) 338. [2] 8.5.8a1akr15hna, Phy5. Rev. Lett. 60 (1988) 1602. [ 3 ] D. Chan9 and R.N. M0hapatra, Phy5. Rev. Lett. 58 ( 1987 ) 1600. [4] A. Dav1d50n and K.C. Wa11, Phy5. Rev. Len. 59 (1987) 393; 5. Rajp00t, Phy5. Lett. 8 191 (1987) 122; R.N. M0hapatra, Phy5. Lett. 8201 (1988) 517. [ 5 } 8.5. 8a1akr15hna, A.L. Ka9an and R.N. M0hapa1ra, Phy5. Len. 8 205 (1988) 345. [6] 8.5.8a1akr15hna, Phy5. Let1.8 214 (1988) 267. [7] J.C. Pat1 and A. 5a1am, Phy5. Rev. D 10 (1974) 275; R.N. M0hapatra and J.C. Pa11, Phy5. Rev. D 11 ( 1975 ) 566, 2558; R.N. M0hapatra and 6.5enjan0v1~, Phy5. Rev. D 12 ( 1975 ) 1502. [8] K.5.8a6u and X.6. He, M0d. Phy5. Len. A, t0 6e pu6115hed
(1988).