Vistas in Astronomy, Voi.25, pp.79-85, 1 9 8 1 . Printed in Great Britain. All rights reserved.
0083-6656/81/020079-07500.50
per page/O Copyright©f981 Pergamon Press Ltd.
RADIO PROPERTIES OF SS 433 E. R.
Seaquist
David Dunlap Observatory, Toronto, Ontario, Canada
The object SS ~33 is a c o m p a r i t i v e l y intense radio star (L~I032 ergs -I) e x h i b i t i n g v a r i a b l e n o n - t h e r m a l radio e m i s s i o n (Seaquist et al. 1979).
The
c e n t r o i d of the radio e m i s s i o n coincides with the optical p o s i $ i o n to w i t h i n 0~3, w h i c h is w i t h i n t h e
measurement
error (Kaplan et al. 1980).
Fi6~zre 1
shows the radio s p e c t r u m o b t a i n e d w i t h the V L A * and the C u l g o o r a R a d i o h e l i o g r a p h on 1979 J u l y 20 (Seaquist et al. 1980). frequencies
the spectral i n d e x i s ~ - 0 . 6
(~),
law p a r t i c l e energy spectrum w i t h an i n d e x of -2.2. t u r n o v e r or f l a t t e n i n g in the s p e c t r u m a t e 0 . 3 one or m o r e of several mechanisms.
At the h i g h e r
c o r r e s p o n d i n g to a power T h e r e is a d i s t i n c t
GHz~ w h i c h m a y be caused b y
The possible m e c h a n i s m s include the
effects of a low energy cutoff in the r a d i a t i n g p a r t i c l e spectrum~
the
R a z i n Effect~
s y n c h r o t r o n self-absorption~
and f r e e - f r e e a b s o r p t i o n b y
i o n i z e d gas.
An a t t r a c t i v e p o s s i b i l i t y is the last one since there is
abundant evidence from optical e m i s s i o n lines and i n f r a r e d studies that the object is s u r r o u n d e d b y an extensive cloud of ionized gas. This gas m a y result f r o m a stellar wind w i t h a mass loss rate o f ~ 1 0 -5 M@ yr -I or more and a v e l o c i t y of 1 0 0 0 - 2 0 0 0 kms -I (van den Heuvel, 1980).
0strikerp
and P e t t e r s o n
A stellar w i n d could also confine the r e l a t i v i s t i c gas s u f f i c i e n t l y
long to p r o v i d e the steady component of the s y n c h r o t r o n e m i s s i o n (see below). If such a stellar wind has a i/r 2 radial d e n s i t y d e p e n d e n c e then the freefree optical d e p t h w o u l d be u n i t y at 0.3 GHz for a d e p t h c o r r e s p o n d i n g to r~5 x 1015 cm. S y n c h r o t r o n e m i s s i o n from r e l a t i v i s t i c electrons e m b e d d e d in the wind in this r e g i o n w o u l d exhibit a radio s p e c t r u m similar to the one observed. The time d e p e n d e n c e of the radio e m i s s i o n from SS ~33 indicates that t
ro
co°
onoo
c o m p o n e n t w i t h comparable to weeks.
w .
=y
. 0
s t r e n g t h w h i c h is v a r i a b l e on a time scale of days
T h e r e are o c c a s i o n a l cha~ges on a time scale of hours
(Seaquist
et al. 1979). K e n J o h n s t o n has d e s c r i b e d in this c o n f e r e n c e extensive d a t a on variability. T h e r e f o r e l shall not dwell f u r t h e r on the statistics of the v a r i a b i l i t y but r a t h e r look at i n d i v i d u a l i n t e r e s t i n g examples and their
The V L A is a r e s e a r c h f a c i l i t y of the N a t i o n a l Radio A s t r o n o m y ObserVatory,
w h i c h is o p e r a t e d by A s s o c i a t e d U n i v e r s i t i e s Inc. t u n d e r
c o n t r a c t w i t h the N a t i o n a l
Science Foundation. 79
80
E.R. Seaqulst
implication. as part
Figure
of a c o l l a b o r a t i v e
radio v a r i a b i l i t y
10
2 shows
of the p r o f i l e ~ a n
study
(Seaquist
of this object
'''I
I
I
.2
.3
outburst et al.,
in p r e p a r a t i o n )
at 10.9 GHz w i t h
~
I
1 ~ i~
i
i
lllll
I
~
I
i
1.0
2
3
m e a s u r e d b y A.R.
the 46 m e t e r
~
~
I
~ ~ ~ i I
i
i
i
Taylor
of
telescope
[
of
~
7 5 4 3 A
>, --j
t~
t-
C~ x u.
2
1.0 .7
.5 .4 .3 .2
.1 l l l l .06 .08 .1
~
.4 .5
.7
4 5
l
[111
7
10
I
I
30 40 50
20
Frequency (GHz)
Fig. i. The radio s p e c t r u m of SS 433 o b s e r v e d on 1980 J u l y 20. T h e d a t a w e r e o b t a i n e d w i t h the V L A and the Culgoora radioheliograph. The arrows a t t a c h e d to the d a t a point at 408 M H z (Spencer, 1979) i n d i c a t e the r a n g e of f l u x d e n s i t y o b s e r v e d d u r i n g the p e r i o d 1979 J u n e to August 12.
the A l g o n q u i n the v e r y time
ar~ent
than about remains when
Radio
indicates 1015
cm.
active. myself,
is high,
observed
of this
the v e r y
of several
the i n i t i a l spectrum
the
indicative spectral
combined
interferometer
sharp rise w i t h i n
days.
size during
spectral
Be
these
i n d e x does
flattening
one d a y and
light
episodes flatten
travel is less
of v a r i a b i l i t y considerably
at c e n t i m e t e r
is shown in F i g u r e s
5-9 w h e n the
from V L A o b s e r v a t i o n s (Green Bank)
usual
of the f l a r i n g r e g i o n
of some o p a c i t y
d u r i n g 1979 O c t o b e r
T h e d a t a were and N R L
that
although
An example
for a flare
Note
a period
T h e radio
non-thermal
the i n t e n s i t y
lengths.
Observatory.
slow d e c a y over
source was b y W.S.
observations
wave3 and 4
especially
Gilmore
and
b y K e n Johnston.
A
Radio Properties of SS 433
similar
flare was o b s e r v e d
through
the
spectra
tron s e l f - a b s o r b e d above
(Seaquist
l a t e r in O c t o b e r
are least component
et al.
squares plus
81
as well.
The
fits of a m o d e l
the o p t i c a l l y
curves d r a w n
containing
thin s t e a d y
a synchro-
component
shown
1980).
0.5'
0.7
0.6
I
h
m
0.5
I ¢_
0.4
m
t o.3
SS
~33
O. 9 GHz
0.2
I
0.1
......I
l
I
DARE. ( J ~ 7 ~ ) Fig. 2. A radio flare at 10.9 GHz in 1979 A u g u s t s h o w i n g a v e r y short rise time. The o b s e r v a t i o n was m a d e b y A.R. T a y l o r w i t h the 46 m e t e r t e l e s c o p e of the A l g o n q u i n Radio Observatory. There
is a s u p e r f i c i a l
van d e r L a a n m o d e l a noteable increases
difference
however.
at a g i v e n f r e q u e n c y
that frequency~ thin regime. optically
The
electrons
into
The o p a c i t y m e c h a n i s m or p o s s i b l y
free-free
a consideration
magnetic
field
signature
the r a d i a t i n g v o l u m e could be
either
by ionized
field.
and the There
t h i c k at
in the o p t i c a l l y
for an i n c r e a s e
as the flare
synchrotron
is
the flux d e n s i t y
of i n j e c t i o n
in the
of progresses.
self-absorption
gas in a s t e l l a r wind.
self-absorption
cm) for ~he size a f
05 1 m i l l i g a u s s .
to the a s s u m e d m a g n e t i c
declines
show cl e a r e v i d e n c e
of s y n c h r o t r o n
sec (~ x 1013
source.
source is o p t i c a l l y
invariably
is a c l e a r
absorption
10 -3 arc
the flare b e h a v i o u r
synchrotron
In the v a n der L a a n model~
SS 433 flares This
expanding
only w h e n the
and the flux d e n s i t y
thin regime.
relativistic
case
similarity between
for an adiabatic
In any
sets a l o w e r limit of
the e m i t t i n g
r e g i o n for a
The c o m p u t e d
size is r a t h e r
If the o p a c i t y
is f r e e - f r e e
insensitive absorption
by
a
82
E.R. Seaquist
I
I
A
I
Oct 5.21
.-t4
m
1.0--
--
k. 0
I.~ 7
OI
_-.1
0.01 ~-I
-I
1.0
I
~.0
I0.0
(GHz)
FREQUENCY" Fig.
3.
Radio
spectra
(displaced
ordinates)
which eccured on 1979 October 5-9. obtained with the Bank. The curves m o d e l f i t to t h e on each spectrum
for
a flare
The data were
V L A a n d t h e N R L i n t e r f e r o m e t e r at G r e e n f i t t e d to t h e d a t a c o r r e s p o n d to a spectra. (see text). The horizontal bar c o r r e s p o n d s to a f l u x d e n s i t y l e v e l o f 1 . 0 Jy.
2.0--
~,
--
1.4-65 GHz ~'3
~
/
L5
-
\,
,,"
F
",
{
--
", I
"' 1.0
~,'"
@885GHz
"-,,,
×~
__
-.~.
•-~
,
0.5 -- I"
15.035 GHz
91
"-
....~ .....
--
--~
00 0ci50
I
g0 DATE
I
I
70 80 (197.9 U.'I:,)
I
90
Fig. 4. T h e r a d i o f l u x d e n s i t y vs. t i m e at 1 . 4 6 5 , a n d 1 5 . 0 3 5 G H z f o r t h e f l a r e s h o w n i n F i g u r e 3.
4.885,
Radio Properties of SS 433
s t e l l a r w i n d w i t h i/r 2 d e n s i t y dependence~ declining
o p a c i t y w i t h time m a y i n d i c a t e
relativistic to n o t e
electrons
outward
that if the mass
through
83
as m e n t i o n e d
rapid movement
loss rate and o u t f l o w
particles
near
outward
We n o w turn 5 shows
to h i g h r e s o l u t i o n
the r e s u l t s
maps
earlier
speeds
to e x p l a i n
of d e c l i n e of the opacity. The m e c h a n i s m for t r a n s p o r t i n g t h e r e f o r e be the Jets or b e a m s well k n o w n to be a s s o c i a t e d
Figure
It is i n t e r e s t i n g
speed d i s c u s s e d
105 Fun s -I are r e q u i r e d
then the
of a cloud of
the stellar wind.
(M = 10 -5 M S y r - I , v = i000 k m s -1,~ is applicable, relativistic
earlier,
for these
the rate
the clouds could w i t h this object.
of SS 433 m a d e w i t h the VLA.
of two o b s e r v i n g
runs t one on 1980 Feb.
20
(epoch I) and the other on 1980 M a y 19 (epoch 2) at 4.9 GHz. These o b s e r v a t i o n s were made b y G i l m o r e et al. (1980), B o t h epochs fall w i t h i n I0 Se"
lllll
III0
Io
ER '
•
,,
, ~
MAY
11
/
,U
ER $ / " / " "
,
/
mOs4"~js2"SS' E~ ~:. [~JE #!..... .":, b
,..-
, ~
[
i ./
/
,U
• o4" s," sz"
1ffo¢~.4
2~2 R
A
is' o¢~4
2¢2
1 9BO
Fig. 5. V L A 4°9 GHz radio maps of SS 433 for epochs 1980 Feb. 20 and 1980 H a y 19. Each m a p is shown four times t each s h o w i n g a p o s s i b l e c o n f i g u r a t i o n for the h e l i c a l form of the p r e c e s s i n g jet (see text). Contours for Feb. 20 are 1.5 x ( - i , i t 2 , 4 , 6 , 8 , 1 0 ~ 2 0 , 4 0 , 6 0 , 8 0 , i 0 0 ) mJy. C o n t o u r s for M a y 19 are 1,0 x ( - i , I , 2 , 4 , 6 , 8 , 1 0 , 2 0 , 4 0 , 6 0 p 8 0 ~ i 0 0 ) mJy. The last two maps show the d i s t r i b u t i o n of p o l a r i z e d emission. T h e v e r t i c a l bars to the left o f each p o l a r i z a t i o n m a p give the p o l a r i z e d f l u x scale. The k e y
to the f i g u r e
labels
is:
ER: East R e c e d i n g WR= West R e c e d i n g Cz C l o c k w i s e r o t a t i o n of Jetp seen f r o m West CC: C o u n t e r c l o c k w i s e r o t a t i o n of Jet~ seen from West.
84
E.R. Seaquist
a quiescent
period
for the radio
~ a c h m a p is r e p e a t e d brightness plus
distribution
a clearly
20-3~
several
emission
The
is d e t e c t e d
ations
for
moving
away from
were u s e d
two jets on average that
these
that the epochs
an e x p a n s i o n
(Gi l m o r e
The r e s u l t
activity
in F i g u r e structure
i and 2.
given by Margon ambiguity
comparison
corresponding
is not
inter-
synchrotron
configur-
gas
streams
et al. exists
(1980) for each
is k n o w n n o r w h i c h in F i g u r e
absolutely
of the
5
to the case w h e r e
and the p r e c e s s i o n
the
scale b y
flux b y about
e~t a._~l. 1980)
which
includes
terminated of f i x e d
The polarization polarized,
u~
to i ~
magnetic
field.
pattern,
the
is c o u n t e r c l o c k w i s e
convincing, verify
but
is at
the h e l i c a l
This
end if this
information
maps
The
about
Faraday rotation In summary,
1979.
at the b o t t o m There
field
There
t u r n o v e r b o t h in the q u i e s c e n t
synthesis
maps
the lobes
on the SNR WSO.
an u n r e s o l v e d
core
a moderately
Definite be r e l a t e d
changes
a
will
by
clearly
radio
source w i t h a for a low component.
a "jet"
VLA
aligned with
occur in the jet on a time
to the f l a r i n g
o f 5 . 5 kpo was u s e d i n t h e s e c o m p u t a t i o n s .
give
as yet no u n a m b i g u o u s
evidence
plus
ordered
the h e l i x
depolarized
vectors
and the f l a r i n g (®40~2)
suggests
5 s h o w that the jet is
but
non-thermal
frequency
*A d i s t a n c e
also
of flare
represents
w o u l d be ~ a r t i a l l y
is d e f i n i t e
an e x p a n d i n g
the jet.
therefore
alignment,
is available. SS 433 is a v a r i a b l e
which may
which
of F i g u r e
exists
of f l a r i n g
the p r o d u c t
is that the field follows
is so the signal
i n d e x n e a r ~ = -0.6.
of m o n t h s
through
analysis
~a~
analysis
aligTunent of the p o l a r i z a t i o n
the m a g u e t i c
show
suggests
The
shown)
data indicate
w i t h the periods
analysis
(not
and a d e c r e a s e
A detailed
and f l u x is p r e s e n t
gas o u t w a r d
or more.
data
significantly
of two,
w h i c h is p r o b a b l y
in D e c e m b e r size
a factor
of 1.4.
a comparison
(1980).
visibility
expended
fit to the v i s i b i l i t y
a factor
One p o s s i b i l i t y
smearing.
jet has
about
( w i t h v ~ 0.3 o) is p r e s e n t
a component
spectral
5 and the a s s o c i a t e d within
Simple m o d e l s
s t e a d y f l o w of r e l a t i v i s t i c
scale
in o t h e r
the star.
f u r t h e r maps m a y c o l l e c t i v e l y
the d a t a of J o h n s t o n
component
beam
fit,
same as that of the found
for twin p r o c e s s i n g
The
~0~2)
jet c o n t a i n s
one of four p o s s i b l e
A four-fold
to the w e s t
in the a n g u l a r
in the i n t e g r a t e d
that
cm from
core
This
Therefore,
the sense of the p r e c e s s i o n
the west.
B o t h the maps
from
1017
one.
The
in the jets.
indicate between
curves*.
to that 1980).
expected
is the r e c e d i n g
that
I05°~5 °.
et al.
The parameters
(c) is the b e s t
suggestive
pattern
pattern
axis r e c e d e s
as seen from
Walker
to at least
the star.
to c o m p u t e
precession
(cf.
six months.
below.
of an u n r e s o l v e d
of the jet is the
for each e p o c h shows
epo c h b e c a u s e n e i t h e r
indicates
alignment
out
the h e l i c a l
indicated
a l o n g p.a.
SNR WS0 and s i m i l a r
observations
E a c h of the maps
least
jet e x t e n d e d
on the a s s o c i a t e d
ferometric
lasted for about
for r e a s o n s
at each e p o c h c o n s i s t s
resolved
of the flux.
lobes
source which
times
activity.
85
Radio Properties of SS 433
REFER/~NCES Gilmore,W.S., Seaquist E.R., Stocks J.S. and Crane P.C. Johnston,K. 1980 : private communication. Kaplan G.H., Kallarkal V.V.,Harrington
(1980),
AoJ.
8.,.,~, 64.
Margon B.,Grandi
S.A. and Downes R.A.
(1980):
R.S., Johnston K.J. (1980):
submitted
Seaquist E.R., Garrison R.F., Gregory P.C.,Taylor
A.R.
in preparation
and Spencer J.H.,
to Ap.J. and Crane P.C.
(1979),
A.J. 84, 1037. Seaquist E.R.,Gilmore W.S., Nelson G.J., Payten W.J. and Slee 0.B. (1980): Ap.J.Letters, in the press. Seaquist E.R.,Gilmore W.S.,Seward F.S.,and Grindlay J. (1980): submitted to Na Spencer R.e. 1979
Nature 282, 483.
Van den Heuvel E.P.J., Walker R.C. et al.,
0striker J.P.,and Petterson J.A.
1980, in press.
(1980):A and A,81, LT.