Nucl. Med. Blol. Vol. 16, No. 4, pp. 323-336, 1989 Int. J. Radiat. Appi. Instrum. Part B Printed in Great Britain. All rights reserved
Radionuclide T. J. RUTH,’
0883-2897/89 33.00 + 0.00 Copyright 0 1989 Pergamon Press plc
Production
B. D. PATE,’
for the Biosciences
R. ROBERTSON2
and J. K. PORTER3
‘TRIUMF, University of British Columbia, Vancouver, B.C., *BeequerelLaboratories, Mississauga, Ontario, Canada and Nordion International Inc., at TRIUMF, University of British Columbia, Vancouver, B.C., Canada V6T 2A3 (Receiued
18 March
1. Introduction
to those whose favourite nuclide or reaction have been omitted, and would appreciate receiving corrective information,
For the 20 or 25 years which followed the 1939-1945 war, radionuclide production for biomedical applications was mostly centred on major nuclear reactor installations.“-3’ The last 15 years have, however, witnessed a rapid growth in the use of particle accelerators for this purpose(“) following from the favourable characteristics of accelerator-produced, neutron-deficient radionuclides in these applications. Both commercial radionuclide producers and research workers have added accelerators to their armamentarium. The machines have mostly been cyclotrons,‘O’ of compact “industrial” or “medical” design. (“,‘*’ In addition, major accelerator installations, such as BLIP’“’ and LAMPP14’ in the U.S., TRIUMF in Canada,“” and SIN in Switzerland,(16’ have significant programs for radionuclide production. The present review has been written with the aim of providing the researcher with (a) a listing of radionuclides which have been used or proposed for use in biomedical research, (b) data on their major decay modes and how the nuclides are produced, with pertinent literature references, and (c) an overview of production techniques. The data place the emphasis on accelerator-produced radionuclides, and have been organized in tabular form; what was included and in which table reflects the authors’ arbitrary choice. On production methods, it was tried, where possible, to list all proton-induced reactions (reflecting certain trends in the field) together with such different, more efficient methods as may exist. Some nuclides have been arbitrarily omitted, i.e. those which have fallen from usage or have not enjoyed wide-spread exploitation up to the present. On the other hand, others have been included (especially in the table of positron emitters) which show promise for applications in the future. The authors apologize N M.S.
lb!&*
1988)
2. Organization of Tables The data have been grouped as follows: in Table 1 are listed y-ray emitters suitable for measurement via standard y-cameras or by SPECT. Table 2 contains radionuclides which decay by positron emission. With the needs of positron emission tomography in mind, the authors have generally excluded nuclides with half-lives greater than 3 h (except for S2Fe, 76Br, and *9Zr), or with positron emission in less than 60% of their decays (except for *9Zr and 93Tc). Table 3 lists those particularly useful nuclides which are produced via generators.(‘7-‘9) Generally, data on production of the parent nuclide are included, and for relatively new generator systems references are given on how they have been implemented. Table 4 contains miscellaneous data on, for example, nuclides with very long half-lives, or which decay without y-emission. Table 5 lists the most important commercially available radionuclides, and trends in their usage over the last few years. It is worth noting the dramatic increases in the use of 3H, “‘Tl and in particular ‘*‘I. This latter increase reflects the more reliable production of ultra-pure l*‘I with relatively low energy protons (~30 MeV; see Table 1). In the tables, the yields for the acceleratorproduced radionuclides are expressed as mCi/pA at saturation where possible. Otherwise they are designated by “1,” for the integrated dose of a p A-h. For radionuclides produced by reactors, the crosssection is given in barns (b) for thermal neutrons (t) or for reactor spectrum neutrons (s). Other symbols used are e (for enriched), f.p. (for fission product), g (for generator), D (for y-transition, due to decay of a daughter radionuclide), N.D. (for no dataj, and 323
T.J. RUTH et al.
324
Table I. Radionuclides used in single photon emission studies Principal decav mode
Nuclide
es.
“Ml3
53.3 d 20.9 h
*Al “Cl
2.2 min 37.2 min
;I
‘3K
22.3 h
LJ-
‘Be
8-
E(I) [Me+%)] 0.477( 10) O/&01(36) 1.779(100) 1.642(31) 2.167(42) 0.373(88) 0.617(78)
‘%c ‘SCr
3.34 d 23.0 h
8-
e.c.
0.159(68) 0.308(99)
Wr
27.7 d
es.
0.320(10)
YMn s2Fe sFe
312d 8.3 h 44.5 d
e.c.
‘JCO
17.5 h
0.835(100) 0.169(99) 1.099(57) 1.292(43) 0.477(20) 0.931(75) 0.122(86) 0.136(11) 1.173(0.3) 1.346(0.5)
S’CO
272 d
8’ 88’ e.c.
%I %I
9.7 min 12.7 h
8’
6’Cu
61.9 h
B-
0.185(49) 0.093( 16)
8’
0.597(26) 0.548( 15) 0.439(95) 1.039(38) 0.093(37) 0.185(20)
62Zn
9.26 h
B+.B-
+ F”
69”Zn “Ga 6’Ga
13.8 h 9.4 h 78.2 h
e.c.
‘IAs
26h
8’
“As
17.8 d
P-38’
%e “Se ‘JSe ,,I%&
8.4 d 7.15 h 120d
e.c.
B’ e.c.
“Br
17.5 s 57.1 h
IT e.c.
‘R”Kr s’mKr 8h”Kr
SOS 13s 4.5h
IT
“Rb
4.6 h
fiT_,IT B’
*‘Sr ‘%r mY *Nb =Tc
64.8 d 2.8 h 16.1 s 18.8 s 2Oh
wmTc -Tc 9’Ru
89d 6.0 h 2.9 d
CC.
56 min 39.6 s 2.83 d
IT IT e.c.
1.66h 4.5h 13.6 d
IT IT IT
l13m~n
“h”In “l”Sn
e.c. IT IT IT CC.
IT IT
0.834(80) 0.630(8) 0.596(60) 0.635(15) 0.046(59) 0.067(70) 0.361(97) 0.136(59) 0.265(59) 0.162(52) 0.239(24) 0.521(23)
0.130(28) 0.190(67) 0.151(75) 0.305( 14) O&6(23) 0.457(3)
0.514(99) 0.388(82) 0.909(99) 0.122(64) 0.766(94) 1.074(4) 0.096(0.3) 0.140(88) 0.216(86) 0.324(10) 0.040(0.07) 0.088(3.6) 0.171(90) 0.245(94) 0.392(64) 0.336(46) 0.159(81)
Yield (Ej . I [mCi/A (MeV)]
Reaction
‘Li (p. n)
Refs
O.l66/h(20) O.ISS/h(l40)0.3/h e O.O2i).Ci4/h&%O) See above 0.5/h (20)
86 87,88
0.1/h (25) 0.3/h(90) O.l2/h(30) See Table 4 O.O04/h(4%40)’ 0.217/h(9@-85) O.O35/h(36) 16b (t) 0.6/h(l7) O.OOl/h(15)
90-92 93
l.lb (t)
1.2
1l/h(22) 1.7/h(l2) O.O09/h(l5) O.l/h(27) e See below 4.4b (t)
98,99
O.O2/h@lO-30). O.O3/h(SOO)’ O.Ol/h(SOMeV brem. on Ig e target)* 2.3/h(22-16)
103-107
109 26,103,104,109
“Ge(P, n)
l.S/h(la-10) 4.5/h(2618) 4.7’9/h(26-i5)e 3.75/h(l66)e 2.l/h(22) lO/h(l>14) e O.l7/h(lS)
‘%%(a, 2n) “*‘Ge(a, xn)
O.O37/h(34-20) 0.22/h(26)
111,113 114
“Se@, Y)
50b (t)
“Br g “As(a, xn) m’Se(p, xn) 79Br(p, 3n) “Kr -‘Mo(p, spall) ‘%r(p, n) *‘Rb g “Kr(d, P)
See below 0.9/h(WlS) 1.2/h(20-2) 0.36/h(5&30) 0.3/min @ 175 mL/min see below 0.79(15)
119
“Br(or, 2n) ““Kr@, xn) s2Kr(p, 2n) ““Kr(p, xn) *‘Rb(p, n) *‘Rb(p, n) @Zr g wMo g %Mo(p, 2n)
2/h(30-14) 11.6/h(32-16)
121-123
26Mg(a, 2~) 27Al(~,3p) =Mg g “Cl(d, P)
40‘w%P) JIV(d, Zxpn) “Ca g WP,
W
““Ti(‘He, xn) Wr(n, i ) W(P, n) ‘*Fe(d, a) See Table 2 ‘*Fe@, a) ‘*Fe(p, 2n) “Fe(d, n) %Fe(d, n) ‘sNi(p, 2~) 62Zn g 63Cu(n, Y) @Zn(n, P) @Zn(p, 2~) 6*Zn(a, P) Wu(p, 2n) @Ga(n, P) %Zn(d, 2n) 6BZn(p,2n) %n(p, n) ‘2Ge(p, n)
89
94,95 96 1,2,97 86
77,86 100 1,2,100-103
108
110 99,111 86,111,112
11~118
120
I 5/d(22-34) i
WW9-40) O.O6/h(22) 16/h(22) See Table 4 See Table 4 7/h(2&15)*
9’.98M~(p,xn) @MOg %Ru(n, Y) M’M~(a, xn) ‘“Rh@, 013n) ““Pd g jwCd g “*Cd@, Zn)
0.01 I/h (22) See Table 4 0.25 (t) 0.069-0.075/h(30) 0.74/h(56-35) See Table 4 See Table 4 6/h(26-18)
“‘Sn g “‘Cd g “%b(p, Ipxn)
See Table 4 See Table 4 O.O15/h(6&27)
124 99 99
125 126 127,128 129
77,130-l 33
325
Radionuclide production for the biosciences Table I-continued
Nuclide “‘Sb “‘Sb ‘*‘Te ‘21rnTe ‘ZI
1112 2.8 h 3.6 min 17 d 120d 13.2 h
Principal decay mode
0. I58(86)
1.230(3) e.c.
IT cc.
8.0 d 2.3 h
mmxe
“‘Xe
’ WS
16’Tm ‘69yb
36.4 d
es.
69 s
IT
5.3 d 3.9 min 32.1 h 38.9 h 2.6 min 6.5 min 138d 3.4 min 17.3 min 8.1 h
9.2 d 32 d
E(I) [MeV(%)]
;r cc. IT IT 8’ cc. e.c. Bcc.
e.c. es.
“2LU “‘xi 18,rnW
6.7 d 9.3 min 5.2 s
e.c. e.c. IT
‘P’“Ir iwnlpt
4.9 s 4.0 d
IT IT
IPklA” 19klAu
30.5 s 7.8 s
IT IT
‘98AU
2.7 d
B_
191rnHg
23.8 h
IT
mjHg ‘941
46.6 d 7.4 h
8e.c.
‘O’Tl
73 h
es.
=“Pb
51.8 d
e.c.
*“Bi
11.2h
e.c.
lwBi
6.2 d
e.c.
0.573(80) 0.508(18) 0.159@4) 0.159(83) 0.529(l)
0.364(81) 0.637(7) 0.668(99) 0.773(76) 0.203(68) 0.172(26) 0.125(69) 0.173(38) 0.081(36) 0.443(26) 0.372(31) 0.27q18) 0.662(90) 0.605(S) 0.166(80) 1.596(0.5) 0.69q1.3) 0.326(93)
0.208-D(41) 0.063(45) 0.198(36) I .094(64) 0.09316) 0.108(18) 0.099(9) 0.129(26) 0.130(3) 0.099( 1I) 0.262(68) 0.279(71) 0.130(3) 0.41 l(96) 0.676( 1) 0.134(34) 0.279(5) 0.279(82) 0.455(12) 0.208(12) 0.167(11) 0.135(3) 0.279(80) 0.401(3) 0.899(99) 0.375(94) 0.803(99) 0.881(66)
Yield (E)
[ma/A (MeV)]
Reaction
Refs 136
“‘Sn(p, n) “*Te g ‘zWp, n) ‘*‘Sb(d, 2n) “‘Wp, n) ‘?e(p, 2n) “‘I(p, 5n)12’Xe ‘“Cs(p, spall)‘23Xe ‘*‘Xe(p, 2n)‘23Cs’23Xe ‘24Xe(p, pn) 12’Xe ‘qe(n, y)‘“Te f.p. ‘32Teg
I .q7-5). See Table 4 O.O81/h(22) 0.25/h(22) O.O18/h(22) 20/h(26.5-21). 20/h(65-50) lO/h(SoO) 27/h(30-21)e
“‘Cs (p, spall) “‘I(P, n) “‘Cs(p, 2pSn) 1*‘I(P,n)
O.O7/h(500) O.O7/h(20) 0.1 l/h(l74-77) 0.4/min @ 250 mL/min
145
Cp. “*Ba g ‘*‘I(a, 2n) “‘Cs(d, 2n) ws g ‘39Ceg “WP, n) ‘“Nb g ‘&Ce a Y) ‘?b(p, 3n) “‘Gd(a, 2n) ‘“Er(p, 2n) ‘6+fm(p, n)
38b (t) See Table 4 0.7/h(45) l.l/h(16) See Table 4 See Table 4 O.O06/h(l5) See Table 4 See Table 4 36b (t) O.O23/h(30) O.O8/h(30) 0.3/h(22) O.O8/h(22)
146,147
“‘Hf g ‘“W g la3Ta g
See Table 4 See Table 4 See Table 4
‘9’0sg 19’Au(p, 3n) ‘vt(li-, y) ‘9smHgg 19”“Hgg
See Table 4 N.D. 1.2b (t) See Table 4 See below
‘“Au@, y)
IOOb (t)
“‘Au(p, n) ‘%Hg(n. Y) 2”Hg(n, Y) *“Hg(p. 2n)
0.23/h(l8) 500b (1)
““Tl(p, 3n)Pb 20’Pb(p, 7n) 703Tl(p,n) 2”w(P, 3w ‘wPb(p, 3n)
1.5/h(29-21)e 5.14(65-52) e 0.22/h(22) 3.5/h(28) 2/h(32)
158,159 151
m’Pb(P, 2n) M’Pb(p, xn)
0.7/h(22) 1.7/h(42-20)
161 162
‘56Dy~,
+ (for yields calculated by the authors from crosssection data in the literature). Some of the references in the tables are not directly connected with the tabulated physical production data, but rather with potentially useful radiochemical separations. 3. Production Techniques (a) General The researcher seldom has direct interest in radionuclide production via reactors, since most of the
0.2b It) 17b(ij See Table 4
137 99.137 138-142
143-144,245 245 1.2
148 149
86
15&152
99 99
5b(0 6.6/h(22)
products are available from commercial suppliers. On the other hand, techniques reviewed below for production via accelerators will be of interest to research staff with their own in-house cyclotron. A cyclotron for radionuclide production may be chosen with low projectile energy (typically 10-16 MeV protons and deuterons of about half that energy) if a limited range of positron emitters at low cost is the objective, or be chosen to produce higher energy projectiles (proton energies (say) from 26 to 65 MeV) if the objective is a wider range of medical radionuclides. All such cyclotrons, however, share
326
T. J. RUTHet al. Table 2. Positron emitting radionuclida,
Nuclide “C
‘I/Z 20.4 min
“N
9.96 min
‘0 ISO
70.8 s 2.03 min
‘OF
‘We
Mp
109.8 min
17.2 s
2.50 min
Branch %+
E(I) [MeV(%)]
99.8
No
99.8
No
loo 100
96.9
2.3 13(99) No
No
100
No
100
2.235(0.06)
*Cl
32.0 min
55.5
2.127(43)
“K
7.6 min
99.5
2.168(99)
‘qi ‘PCr “Mn
3.08 h 42.0 min 462 min
;: 97.2
0.720(0.2) 0.091(54) 0.749(26)
sb”Mn
21.1 min
98.5
1.434(98)
8.3 h
56.5
0.169(99)
wu WI
23.2 min 3.4 h
91.7 62.2
1.332(88) 0.283(13)
Ql *Zn 68Ga ‘JBr
9.8 min 38.1 min 68.1 min 97 min
97.8 93 89.1 72
1.173(0.33) 0.67q8.4) 1.077(2.9) 0.285(92)
Yield (E) [mCi/A(MeV)]
Reaction “B(d, “Wp, “N(P, “C(d, “C(P,
n) n) 01) n) n)
:$$
“n;
“N(d: n) “N(P, n) ‘Q(P, pn) ‘tiCHe, p) ‘6G(K,pn) ‘*O(P, n) ‘?Je(d, K) ““Ne(p, x) ‘“G@, n) 19F(p,n) *e(d, dn) “Al(a, n) “P(p, pn) “P(a, n) "WP, pn)
JzFe
“Cl(Or, n) “‘Ar(p, pn) ‘WP, n) "V(p,W MWd,n)
5”Cr(p, 2n) >‘Fe g “Cr(p, n) %(K, 2n) “Mn(p, 4n) -‘Ni(p, spall) @Wp, n) *‘Ni(p, n) 6*Zn(p,a)
‘6Br “Kr “Rb s’Zr aZr
19
0.559(72) 0.13q80) 0.77ql3) 1.228(3) 0.909(99) 1.5lqlOO) 1.36(66) 0.871(100) 0.658(98)
1.35 h
81
0.560(73)
3.6 min
76
0.564(18)
92TC TC VC "OIn
16h 1.24h 1.25 min 1.6h 78.5 h 4.44 min 2.7 h 52 min 69 min
'=l ltq
57 87 95.5 ;9 94 13
@Zn g WU(P, n) @&g “As(K, 4n) ‘5As(3He, 3n) ‘WP, 2n) “WP, 3n) ““Br(d, xn)“Kr nBr(p, 5n) “Kr ‘*Kr(p, a) ‘6Se(p, n) “Br(p, 3n) 82Srg *Wp, 3n) *V(P, n) P2Mo(~,n) 92Mo(d, n) %Mo(P, 3n) ““Cd(d, 2n) “‘Cd(d, 3n) IwAg@, 3n) “‘I(p, 811)‘~xe ’Ws(p,spall) ‘20Xe ‘22Xeg
one characteristic which sets them apart from the previous generation of accelerators built for physics research, namely production of much higher beam intensities (in the range from 50 to 200pA). This high beam intensity, coupled with the substantial reaction cross-sections characteristic of lowenergy nuclear reactions, leads to the radionuclide production capacity necessary for biomedical applications; it does so at the expense of the high target power-densities and attendant problems described below.
Refs
lo(7.0)
163-167
50(7) 155(15) 65(23) 2.4(10-7) 27w) 47(8-6) 25(26.s25) 105(30-26) 6/h(23) 27w 180(1l-4) 82(14-2) 8q40-34) I .2/min @ 2L/min 0.6/min @ 0.8L/min l/min @ lLjmin(l49) 4.74(28-10) 18.7(3>19) N.D. 0.9/h(20) 0.58(15-6) 4.4(32-29.8) 48( 11J-9.0) 37(45-3oy N.D. 35/h(26) see below 50/h(12.3)e O.O03/h(30) O.l6/h(65) 8.3 Ci (0.5 sat) (800, 1 mA) 16(12-IO)* 25(12-IO)* 10(18-12). See Table 1 125(15-4)* See Table 4 7.5(6&54) 6(34-24) 118(28-22) e 50(38-28) e 0.21(90-68) N.D. 2(15_12)e 8/h(l6-10) e 48-75(45-25) See Table 4’ 50(45-35)’ Uh(13)
167-170
46(35-27)’ 29(2&l 1)* io(28-21 j* 1.5(40-30). N.D.( > 100 MeV) N.D. See Table 4
171,172 40,167,171,173-176 177 38,178,179 18 177 181,182 183 184
185,186 187 94 39,186 186,188 107,188-190
84 84,85 100 100,191 192,193 194
195 7,183 5-118 196 197 198 198 125 199 200 201 202,203
The four major intermediate-energy accelerator installations, referred to above, also have the characteristics of high beam intensity. At their proton beam energies (ranging from 200 to 8OOMeV) the reaction cross-sections are smaller by about an order of magnitude; however, this is more than compensated for by the larger thickness of target material which can be penetrated by the beam, and hence from which radionuclide production takes place. Thus, these accelerators are, in principle, copious sources of radionuclides, via the spallation
321
Radionuclide production for the biosciences Table 3. Generator svstems Daughter nuclide
_.
412
Priocipal decay mode
-21
2.2min 37.2min
/?b-
“SC
3.3 d
8’ b-
2’Al
S2mMn 21.1min 62CU ‘Ga
9.7min 68.1 min
fl+ 8’
“AS
26 h
8’
17.5s 13s 1.86h 1.25min
IT IT IT j?+
2.80 h 16.1 s
IT IT
18.8 6.0 hs 56 min 39.6 s 48.6min
:T IT IT IT
1.66 h 4.49 h 3.6min
IT IT fi+
3.6min
fl+
2.30 h
8-
3.9 min
8’
2.55min 6.5min
IT fi*
3.4min
fi+
122,
WS
‘OPr ‘“Pr
l7.3min
“jLU
6.7 d
“‘At 2,'Bi
bC.C.
9.3 min 5.2 s 4.9 s 30.6 s 7.8 s
KC.
7.2 h 60.5 min
01,cc. a, B-
IT IT IT IT
E(I) [MeV(%)] 1.78(100) 2.17(42). l&(32) 0.159(68) 0.511(193) 1.43(98) 0.511(196) 0.511(178) 1.08(3) 0.511(175) 0.834(80) 0.162(52) 0.190(67) 0.009(5) 0.511(191) 0.777(13.4) 0.388(82) 0.909(99) 0.122(64) 0.140(88) 0.040(0.07) 0.088(3.6) 0.151(30) 0.245(94) 0.392(64) 0.336(46) 0.511(148) 1.23(3) 0.511(152) 0.564(18) 0.668(99) 0.773(76) 0.511(137) O&43(26) 0.662(90) O.SIl(l26) 0.605(s) 0.511(102) 1.60(0.5) 0.69q1.3) 2.18qO.7) 1.094(69) 0.901(33) 0.093(7) 0.108(18) 0.129(26) 0.261(68) 0.130(3) 0.279(71) 0.569(0.3) 0.5830(32)
reaction. They do, though, produce a wider spectrum of product (and hence impurity) nuclides, distributed through a larger target mass. To cope with this, the separation and purification chemistry tends to be complex, large scale and slow. The total beam power from these machines is an order of magnitude greater than that from the low-energy cyclotrons described above. On the other hand, this power is distributed at lower density through the larger mass of target material, and this is reflected in the details of the target engineering. (‘3*20~2’) Radionuclide production at these machines is generally parasitic on the physics program for which they were built. This often leads to scheduling, reliability and other problems for routine supply. They do, however, provide access to a wider range of radionuclides of demonstrated and potential usefulness in biomedical research.
Reaction PaEttt **Mg
$2
(see Tabk)
Refs
20.9 h 2.8 h
I 4
‘*Fe
4.56 8.3 h
4 2
62Zn “Ge
9.3 h 271 d
1 4
108,204
‘2Se
8.4 d
1
113
“Br *‘Rb *?Rb 82Sr
57 h 4.6 h 83d 26d
I I
205,206
4 4
206 207-2 I 1
8’Y s9Zr wMo “MO ‘OsPd ‘“Cd “‘In
3.3 d 78.5 h 5.7 h 2.75 d 17.0 d 462 d 2.83 d
4 4 4 4 4 4
212-214
“‘Sn “*Cd “*Te
115d 53.5 h 6.0 d
4 4 4
206 215
l”Xe
20.1 h
4
202
38,s -
%a
188
206 206
I
“‘Te
3.26 d
4
216
12*Ba
2.43 d
4
216,217
4 4
216
“‘CS ‘“Ce ‘“Nd ‘We “2Hf
2”Rn “‘Pb
30Y 73 h 3.4 d
4 4
218
4
219
21.7d 5.1 d 15.4 d 41.6h 23.8 d
4 4 4 4 1
220
14.6 h (10.6 h)
4 4
223 224,225
285 d 1.87 y
221 206,222 216
(b) Target design problems
In principle, the beam from a cyclotron is available in two locations. The circulating beam is available to targets inserted into the vacuum tank of the cyclotron itself, while the external beam is available following its extraction into an external beam line system. Utilization of the circulating beam poses a number of difficulties. In addition to the obvious ones of producing a target system which can be introduced through a vacuum lock and which can withstand irradiation without degrading the machine vacuum, strategies must be adopted to reduce the power density deposited in the target material to a value that the target structure can dissipate. Rotating target systems or targets which are oriented so that the beam strikes them at an oblique angle may be employed.02,23)
328
T. J. RUTH er al. Table 4. Miscellaneous radionuclides Principal decay mode
Nuclide ‘H
1%
*Na “Na
12.3 y 5730 y 2.6 y 1Sh
‘ZP “S “S
14.3 d 87.2 d 2.84 h
“Cl “Ca
3 x IOJy 4.54 d
“Fe =co
2.7 y 70.9 d
MC0 65Zn we
5.3 y 2444 271 d
E(I) meV(%)J
No
b8-
;’ $1 88-98’ 8-
1.27$0) 1.368(100) 2.75(W) No 1.942:)
1.297;) 0.808(7)
e.c.
4-
0.811:)
8-
1.173(100) 1.332(100) 1.115(51) 1.077-D(3)
e.c. C.C.
Reaction 6Li(n, a) “NW, P) “M&d, a) “Na(n, Y)
940b (t) 1.8b(s) O.O02/h(lS) 0.43b (t)
“S(n,P)
0.07b (s) 0.49b (t) N.D. N.D. 43b (t) 0.7b (t)
Wl(n, “‘Cl(a, aAr(~. ‘5Cl(n,
P) 3p) 3~) yj
%h
Y)
8’ B-
“Rb
86d
cc.
?k
25.6 d
cc.
0.261(12.7) 0.776(83) O.SS4(71) 0.521(46) 0.530(30) 0.776-D(13)
s’Y
3.3 d
es.
0.485(92)
9oy @Zr
2.67 d 78.5 h 5.7 h
cc.
2.75 d
B-
9oMO
*MO llllrn~
‘@I’d “‘Pd
’QCd
’ “Cd “)Sn
’ ‘sTe ““Te ‘%I
4.34 d 3.63 d 17.0d 462 d
53.5 h IlSd 6.0 d 3.26 d 4.2 d 6Od 25 min 20.1 h
“‘CS ,*sga ‘“Ce ‘&‘ce ““Nd ‘6SEr ‘“Hf ‘7pTa ‘s’Ta
30Y 2.43 d 73 h 285 d 3.4 d 10.4 h 1.87~ 1.82~ 5.1 d 21.7 d 121 d 90.7 h 15.4d 41.6h 7.2 h 14.6 h
“‘Pb
10.6 h
5.
0.307(86) O.O84(lGu) o&40-D(O.07) 0.088-D(3.6)
c..c. cc. e.c. C.C.
Be.c. cc. 8C.C.
z; 8CC. CC.
BCC. CC. CC. CC. I!-
CC. CC. 88-
IT, CC. 8-
0.909&9) 0.257(78) 0.203(6) 0.140-D(91)
C.C.
0.336-D(S0) 0.392~D(64) 0.255(2) 1.229-D(3) 0.228(88) 0.603(61) 1.691(11) 0.035(7) O&3(16) 0.564-D(18) 0.350(8) O&2(85) 0.273(15) 0.605-D(S) 0.134(11) 1.596-D(O.5) 0.182$23) 0.246;;) 0.354(11) 0.093-D(7) Ta x-rays 0.137(9) 0.129-D(26) 0.262(33) 0.569(0.3) 0.674(46) I .363(33) 0.239(e))
Refs 226 99
1,2 1.2
‘sMn@, n) “Co(p, pn) @Wp, 2pn) J9Co(n, Y)
O.O14/h(ZO) O.O66/h(3&20)* O.O28/h(40-30). 37b (t)
wu(p,
O.OlS/h(20) O.O12/h(19) O.O28/h(26) O.O09/h(SS-10) O.O04/h(sOO) O.O02/h(SOO) O.O48/h(6.+28) 14.9/h(4S-O) 2.7b (1)
86 229
““Kr(p, xn)
O.O07/h(22)
231
“‘Mo(p, spall) ““Rb@, xn) “‘Rb@, spall) *‘Sr(p, n) +WP, 2n) NLRbftx.xnl *Sr gj*(n, y) WP, o) 9wP, 4n)
O.O6O/h(SOO) O.l8/h(60) 0.3/h(84-51) O.O08/h(23) 2.7/h(26-20) O.O59/h(35) 1.3b (t) 0.8/h(21-IO)* N.D.
206-209
%Wn, Y1
0.14b (t) 3Sb (t) 2.28(56-55) 0.89(35-23) 0.52/h(22) 1.2b (1) O.O08/h(16) O.O18/h(SOO) O.O2S/h(20&177) 0.3b (t) lb(t)
192
n)
69Ga(p,2n) Gab, xn)
35.0 h 35.3 h
Yield (E) [mCi/A(MeV)]
As(P, spall) RbBr (p, spall) nWe@. pxn) “Wp, *‘Br(n,
xn) Y)
f .PRh(p, 3@‘Pd lo Wh(p, 4n) ‘O’Rh(P, a) lwCd(n, y) e ‘OpAg(d,2n) In@, spall) “‘In(p, 2pSn) “‘Cd@, y ) “‘Sn(n, y)
;:7,228
230 119
211, 232, 233 212,213 214 234 235
129 129 235 236
1,2
“‘Sb(p, 4n) f.p. ‘Wp, n)
N.D O.O93/h(2612)
139
“‘Xe(n, y)12$Xe ‘271(n,Y 1 12’I(p, 6n)
120b (t) 6b (t) l/h(70-53) 3.7/h(6S-43)
132
f.g I3 Cs(p, 6n) ‘39La(p, 6n) f.p. “‘Pr(p, 2n) ‘6JHo(p, n) “‘Ta(p, spall) ‘“Hf(p, 2n) “‘Ta(nn, y) “‘Ta(p, 4n) “‘Ta(d, 2n) 18’Re(n, y) ‘“WP, n) ‘wWb
Y)
“‘Au(p, 3n) 20PBi(a,2n) z09Bi(Li,Sn) *Ra (decay-f.p.) z8Th (decay-f.p.)
202 203
3.1/h(67-54) N.D.
217,235
3.4/h(33-12) N.D.
237 238 219 99
?&,h(22) N.D O.O4S/h(38-3 I) O.OOS/h(lS) 1lob(t) 0.05/h@-10) I I b (1) 4/h(28-17) 0.4/h(28-26) 0.26/h(6&38)
220 86,239 240 244 222 241-243 223 224 225
Radionuclide production for the biosciences Table 5. Main commercial radioouclides Life-science retail consumption (_ Ci/ycar, time of cod-use) Nuciide
$2
‘H “C ‘IF Wr “Ga %gppmTc
12.3 y 5730 y 14.3 d 27.7 d 78.3 h 66h/6h 68h “3Sn/“3mIn 115 d/99 min ,231 13.2h 1251 6Od ,,‘I 8.0 d “‘Xe 36.4 d 5.2d ‘33Xe w‘Tl 73h
see Table 4 4 4 I : 1 4 1 4 I I 1
1
1982
1987
>lOOQ 600 700 150 800 100,000 ~Mo) 150 40 Q’fSo) 75 1500 10,000 100 25,000
> 10,000 600 700 75 800 l20,Ooa 160 40 1250
so0
2500 10,000 too 25,000
2500
In the case of irradiation with an external beam, the power density can be manipulated by beam defocusing or scanning. An external beam is easier to steer and generally much more convenient to work with. These advantages may, however, be offset by a lower available external beam intensity, at least from a cyclotron accelerating positive ions. In the case of a linear accelerator or of a negative ion cyclotron, the efficiency with which a beam can be brought out of the machine into an external beam line is close to 100°%?.(u”*bl Thus, there is no advantage in using the internal beam, and irradiations for isotope production are generally conducted external to the accelerator. (c) Power dissipation Beam energies of tens of MeV, coupled with beam intensities of the order of 100 PA, lead to power dissipations in target structures of several kilowatts. Even with a defocused beam incident on a few square centimeters of target surface, the power dissipation will take place in a few cubic centimeters. Thus, elaborate target cooling is required to avoid melting of target structures. In addition, the target material must be chosen to resist radiolytic decomposition, evaporation and other processes leading to gas evolution or target disintegration. For safety, the target material may be separated from the machine or beam line vacuum by means of a “window”, consisting of a metal foil thick enough to resist the pressure differentials which may arise (for example) during target recovery. The passage of the beam through such a window also leads to heat deposition, and measures may be needed to remove this heat. At the highest beam currents, two windows with a helium gas coolant flow between them may be required.(25a) (d) Solid targets
Target materials are most commonly irradiated as solids and all or a major part of the target structure needs to be subsequently transported to the radiochemistry laboratory, to permit extraction and purification of the product radionuclide.
329
Many metals, particularly of intermediate melting point, are electroplated onto a copper backing providing good heat contact to the cooling system.tM) The front surface of a metallic target material, such as Tl, Cd or Zn, may be exposed directly to the beam within the accelerator vacuum system. This system is convenient, since no target de-encapsulation is subsequently required, and there is no beam energy loss in target windows. Glassy materials (such as TeO) can likewise be fused to a backing,‘*‘) while salts and powders are commonly compressed to pellet form and irradiated within appropriate metallic encapsulation.“‘) Alloys such as Cu,As sometimes offer particular advantages. oR)If the target material is of natural isotopic composition, economy of material during target preparation and recovery during the processing of an irradiated target is not a problem. The reverse is true if expensive isotopically-enriched material is being used. (e) Liquid targets Liquids can be irradiated by charged particle cyclotron beams, to the limit permitted by power dissipation and radiolytic decomposition. Currents of up to 25 PA of 10 MeV protons can be delivered to (e.g.) water volumes of a fraction of a millilitre(29j without boiling becoming a problem. Water of natural isotopic composition is a source of *‘N via the i60(p, a) reaction,(30) while water enriched in ‘*O is a source of “F by means of the (p, n) reaction, the radiofluorine being recovered as fluoride.(29*3i)Molten metals, inorganic and organic compounds have also been used as radionuclide production targets, sometimes in special systems permitting a vertical target orientation.(32) For example, molten NaI has been used in the production of ‘23Ivia 123Xeproduced by the 1271(p,Sn) reaction,(33j while iodine mixed with diiodomethane is used in a similar application at Harwell.(34) Likewise, molten cesium metal in a heat-pipe target system has been used in the production of 123Iand 12’Xevia the spallation reaction. (“) In each case, the reaction product activity is conveniently recovered by sparging the voiume above the liquid target material with a suitable sweep gas, usually helium. The use of a slurry of a target powder in a water medium has also been found effective for the production of i3N with 10 MeV protons.t3@ (J) Gus targets Perhaps the most extensive use of gaseous target materials has been in the production of radionuclides of carbon, nitrogen, oxygen and fluorine for positron emission tomography. Centres well known for work on this topic are Hammersmith Hospital in the U.K. (which produced a textbook, Ref. 37), Washington University in St Louis,(51 Brookhaven National Laboratory(‘Q and the University of Wisconsin,‘39) all in the U.S. Gas target systems have certain unique advantages and disadvantages to the chemist. The loading and
330
T. J. RUTH et ul.
unloading of target materials are easily accomplished under remote control, and the recovered material may be subjected to gas chemistry processing en route to the laboratory. Thus, radioactivity in a desired chemical form may be available very shortly after the end of bombardment.(qO’ Manipulation of the target gas mixture itself also permits some control over the radionuclide product chemistry.(4’) There are, however, two significant problems. First, in order to have enough target material in the beam to produce enough radionuclide product, it is often necessary to use long target chambers or elevated gas pressures. The latter in turn necessitate windows strong enough to withstand the pressure differentials with some reliability, in the face of beam irradiation. Increased window thickness increases power deposition in the window material, with degradation and straggling of the beam energy reaching the target material. Secondly, there is the phenomenon of the reduction of the gas density in the target region traversed by the beam, due to “beam heating”.‘42’ In a sealed target of fixed volume, the heat deposited causes a general increase in target gas pressure; however, there are also generated gas density inhomogeneities, and a gas target thick enough to stop a beam completely at low beam currents may fail to do so at higher beam currents, even though the beam energy remains unchanged. (‘j) Such effects reduce product yields below those calculated, or extrapolated from low current values. However, careful target design can promote recoveries up to 85% of theoretical values, even at beam currents above 20pA.@‘9”)
the desired product) being present only in minor proportions, if the incident projectile energy is properly controlled. This is particularly true if halflife differences or parent-daughter activity relationships can be exploited, in addition, to minimize the yield of such impurities. On the other hand, the products of the spallation reaction at intermediate energies will produce larger quantities of a wider range of impurity nuclides, for all except the lightest target nuclides. The procedures used for the separation and purification of radionuclides are generally adaptations of classical techniques. Thorough, useful compilations have been published.(‘,2*57-T9)
4.
Acknowledgements-The authors wish to thank June Lively and Diane Mellor for their tireless efforts in producing many versions of this review.
References Manual of RadioisotopeProduction.Technical
(g) Chemical separations The variety of radiochemical procedures employed to separate the product nuclide from the residual target material is as wide as the diversity of chemical species dealt with. The procedures do, however, have some characteristics in common. (i) Shielding and some degree of remote control are often needed.“**) The production of patient doses of 10mCi and more at the end of synthetic organic chemistry and radiopharmaceutical procedures may necessitate the separation of radionuclide quantities ranging from 100 mCi to 1 Ci or more from the irradiated target. Quantities at the lower end of this activity scale may be handled in a radiochemical fume hood with demountable lead brick shielding. In general, quantities more than about 1 Ci require proper hot cell facilities with substantial shielding, and remote manipulation facilities.@@ Semi-automated or automated (“robotics”) chemical systems for the production of radiogases in particular chemical forms, or for the synthesis of routine scanning agents, continue to be developed.‘47-56’ (ii) The radionuclide mixture produced by low energy nuclear reactions generally will contain the desired product as the dominant component, with impurity nuclides (particularly those isotopic with
Other Data
For further data on nuclear reactions, the interested reader is referred to the BNL compilation,(@‘) and for more data on radioisotope production to the compilation by Christman and Karlstrom.@‘) References (6,7,25 [a, b, c] and 62-83) contain information on nuclear decay data, medical cyclotrons, reaction compilations, and other information that may prove useful to the researcher on medical isotopes.
5.
6.
7.
8.
9. 10. 11. 12.
Report Series No. 63. Vienna: IAEA; 1966. RadioisotopeProductionand QualityControl. Technical Report Series No. 128. Vienna: IAEA; 1971. Poggenburg, J. K. The nuclear reactor and its products. Semin. Nucl. Med. 4: 229-243; 1974. Silvester, D. J.; Waters, S. L. Radionuclide Production. Radiopharmaceuticals II: Proc. Second. Int. Symp. Radiopharm., Seattle, Wash. Society of Nuclear Medicine; 1979: 727-744. Welch, M. J.; Ter-Pogossian, M. M. Preparation of short half-lived radioactive gases for medical studies. Radial. Res. 36: 580-587: 1968. Qaim, S. M. Nuclear dara relevant to cyclotron produced short-lived medical radioisotopes. JZudiochim. Acta 30: 147-162; 1982. Qaim, S. M.; Stocklin, G. Production of some medically important short-lived neutron-deficient radioisotopes of halogens. Radiochim.Acta 34: 25-40,1983. Vandecasteele, C.; Strijckmans, K. Targetry for the cyclotron production of short-lived radionuclides for medical use. Nucl. Instrum. Meth. Phys. Res. A236: 558-562; 1985. Crouxel, C.; Comar, D. Carbon-11, nitrogen-13 and oxygen-15-labelled molecules. Nucl. Med. Eiol. 13: 119-126; 1986. Martin, J. A. Cyclotrons-1978. Proc. Eighth Int. Conf. on Cyclotrons -and their Applications- IEEE Trans. Nucl. Sci. NS-26: 2443-2651: 1979. Wolf, A. P.; Jones, W. B. Cyclotrons for biomedical radioisotope production. Radiochim. Acta 34: l-7; 1983. Wolf, A. P. Cyclotrons, radionuclides, precursors, and demands for routine versus research compounds. Ann. Neural. 15 (Suppl.): Sl9-S24; 1984.
331
Radionuclide production for the biosciences 13. Mausner, L. F.; Mirxadeh, S.; Srivastava, S. C. BLIP II: A new spallation radionuclide research and production facility. J. Labelled Compd. Radiopharm. 23: 1386-1388; 1986. 14. Grant, P. M.; Miller, D. A.; Gilmore, J. S.; O’Brien, H. A. Jr. Medium-energy spallation cross sections. I. RbBr irradiation with 800-MeV protons. Int. J. Appl. Radiat. Isot. 33: 415-417;
1982.
15. Pate, B. D. Medical Radioisotope Production at TRIUMF. Proc. 27th Conf on Remote Systems Tech., Am. Nucl. Sot.; 1979: 283-284. 16. Huszar, I.; Loepfe, E. Production of Cyclotron Isotopes for Medical Purposes at SINIEIR. SIN Physics Report No. 3 (April 1981). 5234 Villigen, Switzerland: Swiss Inst. for Nuclear Research. 17. Lambrecht, R. M. Radionuclide generators. Radiochim. Acta 34: _~ 924, _..
1983. -_
_
18. Guillaume, M.; Brihaye, C. Generators for short-lived gamma and positron emitting radionuclides: current status and prospects. Nucl. Med. Biol. 13: 89-100, 1986. 19. Radionuclide Generator Technology. Special Issue. Radiochim. Acta 41: 57-130; 1987. 20. Cummings, C. E.; Ogard, A. E.; Shaw, R. H. Target insertion and handling system for the LAMPF isotope production facility. Proc. 26th Conf on Remote Systems Tech. Am. Nucl. Sot.; 1978: 210-206. 21. Burgerjon, J. J.; Pate, B. D.; Blaby, R. E.; Page, E. G.; Lenz, J.; Trevitt, B. T.; Wilson, A. D. The TRIUMF 500-MeV, IOO-Microampere Isotope Production Facilitv. Proc. 27th Conf. on Remote Svstems Tech. Am. I&cl. Sot.; 1979: 285-291. ’ 22. Krasnov, N. N.; Dmitriyev, P. P.; Konrtantinov, I. 0.; Konjakin, N. A.; Ponomarev, A. A.; Ognev, A. A.; Romanchenkov, A. E.; Tuyev, V. M. Radioisotope Production in the 1.Ph.P.E. Cyclotron. Proc. Conf. on the Uses of Cyclotrons in Chemistry, Metallurgy and Biology. London: Butterworths; 1970: 159-167.
23. Pinto, G.; Straatmann, M.; Schlyer, D.; Currin, J.; Hendry, G. Target systems for radioisotope production. IEEE NS-30: 1797-1800, 1983. 24. (a) Rickey, M. E.; Smythe, R.; The acceleration and extraction of negative hydrogen ions in the C.U. cyclotron. Nucl. Instrum. Metho& 18-19: 66-69; 1962. (b) Burgerjon, J. J. H- Cyclotrons for radioisotope production. Nucl. Instrum. Methods Phvs. Res. BlO/ll: 951-956; 1985. 25. (a) Helus, F., editor. Radionuclide Production. Boca Raton. Fla.: CRC Press: 1983: Vols I and II. (b) Ruth, T.; Helus, F., editors. Proc. First Workshop on Targetry and Target Chemistry. Heidelberg, F.R.D.: DKFZ Press; 1987. (c) Helus, F.; McQuarrie, S.; Ruth, T., editors. Proc. Second Workshop on Targetry and Target Chemistry.
Heidelberg, F.R.D: DKFZ Press; 1988. 26. Neirinckx, R. D. High-yield production method of gallium-67 using an electroplated natural zinc or enriched zinc-66 target. Int. J. Appl. Radiat. Isot. 27: 1-4; 1976. 27. Assmus, K.;
Jager, K.; Schutz, R.; Schulz, F.; Schweickert, H. Routine production of iodine-123 at the karlsruhe isochronous cyclotron. IEEE Trans.
Nuci. Sci. NS-26: 2265-2268; 1979. 28. Blessing, G.; Qaim, S. M. An improved
internal Cu,As-alloy cyclotron target for the production of 75Br and “Br and separation of the by-product “Ga from the matrix activity. Int. J. Appi. Radiat. Isot. 35:
927-931; 1984. 29. Wieland, B. W.; Hendry,
G. 0.; Schmidt, D. G.; Bida, G.; Ruth, T. J. Efficient small-volume O-18 water targets for producing F-18 fluoride with low energy protons. J. Labelled Compd. Radiopharm. 23: 1205-1207;
1986.
30. Tilbury, R. S.; Dahl, J. R. “N Species formed by proton irradiation of water. Radiat. Res. 79: 22-33; 1979. 31. Kilboum, M. R.; Jerabek, P. A.; Welch, M. J. An improved [‘*O]water target for [‘*Flfluoride production. In; J.-Appl. Bad&. Isof. 36: 327-328; 1985. 32. Helus. F.: Wolber. G.: Mahtmka. I.: Laver. K.: MaierBorst,’ W. Vertical target syst& ‘for- the cyclotron production of positron emitters from melted targets. J. Labelled Compd. Radiopharm. 23: 1193-l 194; 1986. 33. Jungerman, J. A.; Lagunas-Solar, M. C. Cyclotron production of high-purity iodine-123 for medical applications. J. Radioanal. Chem. 65: 3145; 1981. 34. Cuninghame, J. G.; Morris, B.; Nichols, A. L.; Taylor, N. K. Large scale production of ‘u1 from a flowing liquid target using the (p, Sn) reaction. Int. J. Appl. Radial. Isot. 27: 597-603;
1976.
35. Vincent, J. S.; Dougan, A. H.; Lyster, D. M.; Blue, J. W. A facility for the production of iodine-123 by the spallation of caesium. J. Radioanal. Chem. 65: 17-29; 1981. 36. Bida, G.; Wieland, B. W.; Ruth, T. J.; Schmidt, D. G.; Hendry, G. 0.; Keen, R. E. An economical target for nitrogen-13 production by proton bombardment of a slurry of C-13 powder in 16-O water. J. Labelled Cornid. Radioph&m. 23: 1217-1218; 1986. 37. Clark. J. C.: Buckinaham. P. D. Short-Lived Radioactive’ Gases’for C&al Gse. London: Buttenvorths; 1975. 38. Casella, V.; Ido, T.; Wolf, A. P.; Fowler, J. S.; MacGregor, R. R.; Ruth, T. J. Anhydrous F-18 labelled elemental fluorine for radiopharmaceutical preparation. J. Nucl. Med. 21: 750-757; 1980. 39. Hichwa, R. D.; Nickles, R. J. Targetry for the production of medical isotopes. IEEE NS-28: 1924-1927; 1981. 40. Beaver, J. E.; Finn, R. D.; Hupf, H. B. A new method for the production of high concentration oxygen-15 labelled carbon dioxide with protons. Znt. J. Appl. Radiat. Isot. 27: 195-197;
1976.
41. Christman, D. R.; Finn, R. D.; Karlstrom, K. J.; Wolf, A. P. The production of ultra high activity “C-1abelled hydrogen cyanide, carbon dioxide, carbon monoxide and methane via the “N(p, a)“C reaction (XV). Int. J. Appl. Radial. Isot. 26: 435-442;
1975.
42. Heselius, S-J.; Malmborg, P.; Solin, 0.; Langstrom, B. Studies of proton beam penetration in nitrogen-gas targets with respect to production and specific radioactivity of carbon-11. Appl. Radiat. Isot. 38: 49-57; 1987.
43. Wieland, B. W.; Schlyer, D. J.; Wolf, A. P. Charged particle penetration in gas targets designed for accelerator production of radionuclides used in nuclear medicine. Int. J. Appl. Radiat. Isot. 35: 387-396; 1984. 44. Vandervalle, T.; Vandecasteele, C. Optimisation of the production of “CO, by proton irradiation of nitrogen gas. Int. J. Appl. Rhdiat. Isot. 34: 1459-1464; 1983. 45. Wieland, B. W.; Hendry, G. 0.; Schmidt, D. G. Design and performance of targets for producing C- 11, N- 13, O-15 and F-18 with 11 MeV protons. J. Labelled Compd. Radiopharm. 23: 1187-1189; 1986. 46. Fowler. J. S.: Karlstrom. K.: Koehler. C.: Lambrecht. R. M.; ‘MacGregor, R. R.; Ruth, T. J.; Sceviour, W.; Wolf, A. P. A hot cell for the synthesis of lab&d organic compounds. Proc. 27th. C&f. Remote Systems Tech. Am. Nucl. Sot.; 1979: 310-313. 47. Fowler, J. S.; MacGregor, R. R.; Wolf, A. P.; Farrell. A. A.: Karlstrom. K. I.: Ruth. T. J. A shielded synthesis system for production of i-deoxy-2[‘*FJfluoro-D-glucose. J. Nucl. Med. 22: 376380; 1981. 48. Berger, G.; Maxiere, M.; Knipper, R.; Prenant, C.; Comar, D. Automated synthesis of “C-1abelled radiopharmaceuticals: imipramine, chlorpromazine,
332
T. J. RUTH er al. nicotine and methione. ht. J. Appl. Zkdiat. Zsot. 30: 393-399;
1979.
49. Barrio, J. R.; MacDonald,
N. S.; Robinson, G. D. Jr; Najafi, A; Cook, J. S.; Kuhl, D. E. Remote, semiautomated production of F-l&labelled 2deoxy-2-
flUOrO-D-ghCOSe.J. Nucl. Med. 22: 372-375; 1981. 50. Roeda, D.; Crouzel, C.; van der Jagt, P. J.; van Zanten,
51.
52.
53.
54.
55.
56.
57.
58. 59. 60.
61.
B.: Comar. D. Svnthesis of “C-urea for medical use. In;. J. Appi. Rad&. Zsot. 31: 549-551; 1980. Ruth, T. J., Adam, M. J.; Morris, D.; Jivan, S. Microprocessor controlled system for automatic and semi-automatic syntheses of radiopharmaceuticals. J. Labelled Compd. Radiopharm. 23: 1185-l 186; 1986. Brodack, J. W.; Kilbourn, M. R.; Welch, M. J.; Katxenellenbogen, J. A. Robotics for the production of several short-lived positron-emitting radiopharmaceuticals. J. Lubelled Compd. Radiopharm. 23: 1183-1184; 1986. Pike, V. W.; Palmer, A. J.; Horlock, P. L.; Perun, T. J.; Freiberg, L. A.; Dunnigan, D. A.; Liss, R. H. Semi-automated preparation of a “C-labelled antibiotic-[N-methyl-“CJerythromycin A lactobionate. Znt. J. Appl. Radiat. Zsot. 35: 103-109; 1984. Davis, J.i Yano, Y.; Cahoon, J.; Budinger, T. F. Preoaration of “C-methvl iodide and L-IS-methyl-“Clmeihionine by an automated continuous flow process. Znt. J. Appl. Radiat. Zsot. 33: 363-369; 1982. Frisbee, A. R.; Nantz, M. H.; Kramer, G. W.; Fuchs, P. L. Robotic orchestration of organic reactions: yield optimization via an automated system with operatorspecified reaction sequences. J. Am. Chem. Sot. 106: 7143-7145, 1984. Ropchan, J. R.; Ricci, A. R.; Low, G. C.; Phelps, M. E.: Barrio. J. R. An automated hiah nressure reaction vessel for routine preparation of shortlived radiopharmaceuticals. Appl. Radiut. Zsot. 37: 1063-1068. 1986. Radiochemistry Monographs. Nuclear Science Series NAS-NS 3001-3058, 3101-3104, 3106 and 3108 (NAS-NRC Subcommittee on Radiochemistry, W. W. Menike, Chairman 1960 et suq.). 5285 Port Royal Road, Springfield, VA 22161: National Technical Information Service, U.S. Department of Commerce. Radiochemistry Related to Life Science--Part I. Radioehim. Acta 30: 123-184; 1982. Radiochemistry Related to Life Science-Part II. Radiochim. Acta 34: l-91; 1983. Burrows, T. W.; Dempsey, P. Bibliography of Integral Charged Particle Nuclear Data. Archival Edition BNL-NCS-50640 Parts 1 and 2. 5285 Port Royal Road, Springfield, VA 22161: National Technical Information Service, U.S. Department of Commerce. Christman, D. R.; Karlstrom, K. I. Accelerator Produced Nucliaks for Use in Biology and Medicine: A Bibliography, Vol. I 19391973. Vol. II January
62.
63. 64.
65.
66.
1974June 1976. BNL-50448. 5285 Port Royal Road, Springfield, VA 22161: National Information Service, U.S. Department of Commerce. Reus, V.; Westmeier, W.; Warnecke, I. GSI Report 79-2, Darmstadt, F.R.G.: Gesellschaft fuer Schwerionenforschung; 1979. Lederer, C. M.; Shirley, V. S., editors. Table of Isotopes. New York: Wiley; 1978: 7th edn. Lambrecht, R. M. Positron-emitting radionuclidespresent and future status. Radiopharmaceuticals II: Proc. Second Znt. Symp. Radiopharm. Seattle: Wash.; 1979: 753-766. Chaudhri, M. A. The yields of cyclotron produced medical isotopes. 9th Znt. Conf. Cyclotrons and their Applications. 1981: 683-692. Chaudhri, M. A. Yields of cyclotron produced medical isotopes: a comparison of theoretical potential and experimental results. IEEE NS-26: 2281-2286; 1979.
67. Tilbury, R. S.; Laughlin, J. S. Cyclotron production of radioactive isotopes for medical use. Semin. Nucl. Med. 4: 245-255; 1974. 68. MacDonald, N. S. Cyclotron-produced radionuclides In: Subramanian, G.; Rhodes, B. A.; Cooper, J. F.; Sodd, V. J., editors. Radiopharmaceuticals. New York: Society of Nuclear Medicine; 1975: 165-173. 69. Silvester, D. J. Biomedical cyclotron in a medical centre: capabilities and problems. In: Subramanian, G.; Rhodes, 8. A.; Cooper, J. F.; Sodd, V. J., editors. Radiopharmaceuticals. New York: Society of Nuclear Medicine; 1975: 157-164. 70. Lambmcht, R. M.; Wolf, A. P. Cyclotron and shortlived halogen isotopes for radiopharmaceutical applications. Radiopharm. Labelled Compd. Vol. I: 275-290; 1973. 71. Conxett, H. E.; Harvey, B. G. Role of the modem cyclotron in nuclear research. Nucleonics 24: 48-57; 1966. 72. Ter-Pogossian, M. M.; Wagner, H. N. Jr. A new look at the cyclotron for making short-lived isotopes. Nucleonics 24: 5@-6% 1966. 73. Glass, H. I.; Silvester, D. J. Cyclotrons in nuclear medicine. Br. J. Radiol. 43: 589601: 1970. 74. Nowotny, R. Calculation of proton-induced radioisotope production yields with a statistical-model based code. Znt. J. Appl. Radiat. Zsot. 32: 73-78; 1981. 75. Welch, M. J.; Ter-Pogossian, M. M. Preparation of short half-lived radioactive gases for medical studies. Radial. Res. 36: 580-587; 1968. 76. Beaver, J. E.; Bolomey, L.; Nash, N.; FemandezRubio. F. Radionuclide oroduction asnects of a CS-30 cyclotron. Prog. Nucl. ked. 4: 2833, 1978. 77. Tilbury, R. S.; Gelbard, A. S.; McDonald, J. M.; Benua, R. S.; Laughlin, J. S. A compact in-house multi-particle cyclotron for production of radionuclides and labelled compounds for medical use. IEEE NS-26: 17291732; 1979. 78. Brinkman, G. A.; Helmer, J.; Lindner, L. Nickel and copper foils as monitors for cyclotron beam intensities. Radiochem. Radioanal. Lett. 28: 920: 1977. 79. Oselka, M.; Gindler, J. E.; Friedman, A. M. Nonlinear behaviour of gas targets for isotope production. Int. J. Appl. Radial: Zsot. 28: 804-805;-1977. 80. Knit&t. E. A.: Arthur. R. G.: Macaulev. M. W. S.; Sin&al, R. P.‘Recovery systems for enri;hed gaseous isotopes. Nucl. Znstrum. Methods 151: 525-527; 1978. 81. Strang, R. M.; Ritter, R. C. Cryogenic pumping gas target systems. Nucl. Znstrum. Methods 93: 221-226; 1971. 82. Jarmie, N.; Morrison, L. J.; Martin, J. C. Thin metal windows for gas targets. Nucl. Znstrum. Methods 116: 45 l-452; 1974. 83. Haight, R. C.; Rambo, C.; Cormier, J.; Garibaldi, J. L. A high-presure thin window gas cell. Nucl. - _ Znstrum. Methods 164: 613614; 1979.84. Blosser. H. G.: Handlev. T. H. Survev of CD.n) reactions at 12Me’V. Phys.*Rev. 100: 13&13& 1955. 85. Cohen, B. L.; Newman, E.; Charpie, R. A.; Handley, T. H. (p, pn) and (p, an) Excitation functions. Phys. Rev. 94: 620-625; 1954. 86. Gruverman, I. J.; Kruger, P. Cyclotron-produced carrier-free radioisotopes: thick target yield data and carrier-free separation procedures. Znt. J. Appl. Radial. Zsot. 5: 21-31; 1959. 87. Probst, H. J.; Qaim, S. M.; Weinreich, R. Excitation functions of high-energy a particle induced nuclear reactions on aluminium and magnesium: production of zsMg. Znt. J. Appl. Radiat. Zsot. 27: 43141; 1976. 88. Schult, 0. W. B. Anplied nuclear physics for life sciences. Nucl. Znstruk Methods 146:-3dl-306; 1977. 89. Zatolokin, B. V.; Konstantinov, I. 0.; Krasnov, N. N. Thick target yields of MmC1and 38C1produced by
333
Radionuclide production for the biosciences various charged particles on phosphorus, sulfur and chlorine targets. Inr. J. Appl. Radial. Isot. 27: 159-161; 1976. 90 Guillaume, M. Production en routine par cyclotron de Ruor-18 et potassium-43 a usage medical au moyen dune cible gazeuse t&commandb. Nucl. Instrum. Methods 136: 185-195;
1972.
92. Waters, S. L.; Watson, I. A.; Downey, S. The production of 43K using an argon gas target. J. Labeled Compd. Radiopharm. 23: 13831385; 1986. 93. Qaim, S. M.; Probst, H. J. Excitation function of deuteron induced nuclear reactions on vanadium with special reference to the production of “K: systematics of (d, xn) reaction cross sections relevant to the formation of highly neutron deficient radioisotopes. Radiochim. Acta 35: 11-14; 1984. 94. Michel, R.; Brinkman, G.; Weigel, H.; Herr, W. Measurement and hybrid-model analysis of protoninduced reactions with V, Fe and Co. Nucl. Phys. A322: 4&60; 1979. 95. Weinreich, R.; Qaim, S. M.; Stocklin, G. Production of ‘Cr for medical use. J. Labeled Compd. Radiopharm. 16: 131; 1979. 96. Kanza-Kanxa, L.; Cogneau, M.; Mahieu, B.; Apcrs, D. J. Simultaneous preparation of carrier-free “Cr, 45Ti and Sc isotopes from cyclotron-irradiated vanadium targets. Radiochem. Radioanal. Let?. 54: 7-16; 1982.
97. Gleason, G. I.; Gruverman, I. J.; Need, J. L. Practical production yields of radionuclides with 17 and 21 MeV protons. Int. J. Appl. Radial. Isot. 13: 224-228;
1962.
98. Sharma, H.; Zweit, J.; Smith, A. M.; Downey, S. Production of cobalt-55, a short-lived positron emitting radiolabel for bleomycin. Appl. Radiat. Isot. 37: 105-109;
1986.
99. Martin, J. A.; Livingston, R. S.; Murray, R. L.; Rankin, M. Radioisotope production rates in a 22 MeV cyclotron. Nucleonics 13: 28-32; 1955. 100. Colle, R.; Kishore, R.; Cumming, J. B. Excitation functions for (p, n) reactions to 25 MeV on “01, @Cu and io7Ag. Phys. Reo. C9: 1819-1830; 1974. 101. Fritze, K. The preparation of high specific activity copper 64. Radiochim. Acta 3: 166167; 1964. 102. O’Brien, H. Jr. The preparation of 67Cufrom 67Zn in a nuclear reactor. Int. J. Appl. Radiat. Isot. 20: 121-124;
1977.
104. McGee, T.; Rao, C. L.; Saha, G. B.; Yaffe, L. Nuclear interactions of 45Sc and “Zn with protons of medium energy. Nucl. Phys. A150: 11-29; 1970. 105. Yagi, M.; Kondo, K. Preparation of carrier-free 6’Cu by the “Zn(y, p) reaction. Int. J. Appl. Radiat. Isot. 29: 1978.
106. Mirzadeh, S.; Mausner, L. F., Srivastava, S. C. Production of no carrier added 67Cu. Int. J. Appl. Radiat. Isot. 37: 29-36;
pharm. 16: 212-213;
1979.
108. Robinson, G. D.; Jr, Zielinski, F. W.; Lee, A. W. The zinc-62/topper-62 generator: a convenient source of copper-62 for radiopharmaceuticals. Int. J. Appl. Radial. Isot. 31: 11 l-116;
1980.
34: 631637;
1983.
Radiat. Isot. 32: 403-410;
1981.
112. Terry, J. W. Production of radioisotopes in the ORNL 86-inch cyclotron. IEEE NS-28: 1597-l 598; 198 1. 113. Al-Kouraishi, S. H.; Boswell, G. G. J. An isotope generator for 72As. Int. J. Appl. Radiat. Isot. 29: 607609;
1978.
114. Guillaume, M.; Lambrecht, R. M.; Christiaens, L.; Wolf, A. P.; Renson, M. Carrier-free selenium-73 cyclotron production and seleno-radiopharmaceuticals synthesis. J. Labeled Compd. Radiopharm. 16: 126: 1979. 115. Nozaki, T.; Iwamoto, M.; Itoh, Y. Production of “Br by various nuclear reactions. Int. J. Appl. Radial. Isot. 30: 7983;
1979.
116. de Jong, D.; Brinkman, G. A.; Lindner, L. Excitation functions for the production of 76Kr and “Kr. Int. J. Appl. Radiat. Isot. 30: 188-190;
1979.
117. D&sic, M.; Galinier, J.-L.; Marshall, H.; Yaffe, L. Preparation of carrier-free “Kr by @, xn) reactions on natural bromine. Int. J. Appl. __ Radial. Isot. 28: 885-888; 1977. 118. Grant, P. M.; Whipple, R. E.; Barnes, J. W.; Bentley, G. E.: Wanek. P. M.: O’Brien. H. A. Jr. The nroduction and recovery of “Br at Los Alamos for nuclear medicine studies. J. Inorg. Nucl. Chem. 43: 2217-2222; 1981.
119. Weinreich, R.; Knieper, J. Production of “Kr and 79Kr for medical applications via proton irradiation of bromine: excitation functions, yields and separation procedures. Int. J. Appl. Radiat. Isot. 34: 1335-1338; 1983.
120. Glass, H. I.; Amot, R. N.; Clark, J. C.; Allan, R. N. The Use of a New Cyclotron Produced Isotope, Krypton-Hm, for the Measurement of Cerebral Blood Plow. Heidelberg: Springer Verlag; 1969: 63-65.
121. Homma, Y.; Kurata, K. Excitation functions for the production of *iRb-*‘K?” via the x’Br(a, 2n)s’Rb and the *‘Br(‘He, 3n)s’Rb reactions. Int. J. Appl. Radiat. 1979.
122. Ruth, T. J.; Lambrecht, R. M.; Wolf, A. P.; Thakur, M. L. Cyclotron isotopes and radiopharmaceuticalsXXX. Aspects of production, elution and automation of *iRb-*iKr generators. Int. J. Appl. Radiat. Isot. 31: 51-59;
1980.
123. Lamb, J. F. Commercial production of radioisotopes for nuclear medicine, 197&1980. IEEE NS-28: 19161920; 1981. 124. Waters, S. L.; Clark, J. C.; Horlock, P. L.; Brown, C.; Bett, R.; Sims, H. E. Production of *‘Rb using a 60 MeV proton beam: target development and aspects of recovery. J. Labeled Compd. Radiopharm. 23: 1338-1340;
1986.
107. Grant. P. M.: O’Brien. H. A. Jr: Bavhurst, B. P.: Gilmore, J. S.; Prestwood, R. J.; Whipple, R. E.; Wanek. P. M. Snallation vields of Fe-52. Cu-67. Ga-67 and Tl-201 from reactions of 800-MeV protons with Ni, As, Pb and Bi targets. J. Labeled Compd. Radio-
1973.
111. Basile. D.: Birattari. C.: Bonardi. M.; Goetx, L.; Sabbioni, E.; Salomdne, A. Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes. Int. J. Appl.
Isot. 30: 345-348;
1969.
103. Nkrinckx, R. Simultaneous production of 6’Cu, “Cu and @Ga and labelling of bleomycin with 67Cu and 64Cu. Int. J. Appl. Radial. Isot. 28: 802-804,
757-759;
Isot. 24: 369-372;
110. Little, F. E.; Lagunas-Solar, M. C. Cyclotron production of “Ga. Cross sections and thick-target yields for the 6’Zn(p,n) and %n(p,2n) reactions. Int. J. Appl. Radiat-Isot.
1976.
91. Clark, J. C.; Thakur, M. L.; Watson, I. A. The production of potassium-43 for medical use. Int. J. Appl. Radiat. Isot. 23: 329-335;
109. Steyn, J.; Meyer, B. R. Production of 67Ga by deutcron bombardment of natural zinc. Int. J. Appl. Radiat.
1986.
125. Hogan, J. J. Isomer ratios of Tc isotopes produced in 10-65 MeV bombardments of %Mo. J. Inorg. Nucl. Chem. 35: 705712; 1973. 126. Dmitriev, P. P.; hiolin, G. A.; Dmitrieva, Z. P.; Panarin. M. V. Yields of 9JmT~.96Tc and 97mT~from irradiation of molybdenum and niobium. Sov. J. At. Energy 40: 7577;
1976.
127. Gessner, M.; Music, S.; Babarovic, B.; Vlatkovic, M. Investigation of the preparation of 97Ru. Int. J. Appl. Radiat. Isot. 30: 578; 1979.
334
T. J. RUTH er al.
128. Silvester, D. J.; Helus, F.; Maier-Borst, W. Ruthenium-97: half-life, yield measurements and isolation from molybdenum targets. J. Labeled Compd. Rudiopharm. 16: 226-227; 1979. 129. Lagunas-Solar, M. C.; Avila, M. J.; Johnson, P. C. Targetry and .radiochemical methods for the simultaneous cyclotron production of no-carrier-added radiopharmaceutical-quality ‘Oopd,97R~, and ‘OlmRh. Appl. Radiar. Zsot. 38: 151-157; 1987. 130. Brown, L. C.; Beets, A. L. Cyclotron production of carrier-free indium-1 11. Znr. J. Appl. Radiur. Isor. 23: 57-63; 1972. 131. Wood, R. A.; Wakakuwa, S. T.; MacDonald, N. S. The carrier-free isolation of indium from silver and cadmium by liquid-liquid extraction. J. Znorg. Nucl. Chem. 34: 3517-3522; 1972. 132. Levin, V. I.; Kozlova, M. D.; Malinin, A. B.; Sevastianova, A. S.; Potapova, 2. M. The production of carrier-free indium-111. Int. J. Appl. Rudior. Isot. 25: 286-288; 1974. 133. Varma, K. R.; Shah, K. B.; Mani, R. S. Studies on the separation of carrier-free indium from cadmium and copper. Radiochem. Radioanal. Lett. 43: 255-264; 1980. 134. Mausner, L. F.; Mirzadeh, S.; Ward, T. E. Nuclear data for the production of l”*Sn for biomedical applications. Radiat. Eff. 94: 59; 1986. 135. Qaim, S. M.; Dohler, H. Production of carrier-free ““Sn. Inr. J. Appl. Radiar. Isor. 35: 645650; 1984. 136. Johnson, C. H.; Bair, J. K.; Jones, C. M.; Penny, S. K.; Smith, D. W. P-Wave size resonances observed by the @, n) reaction for 2.6- to 7-MeV protons incident on isotopes of Sn. Phys. Rev. Cl5: 196-216; 1977. 137. Dmitriev, P. P.; Panarin, M. V.; Dmitrieva, Z. P.; Molin, G. A. Yields of ‘*lmTe, lz’lTe and ‘z3mTein the bombardment of antimony by protons and deuterons. Sov. J. AI. Enerw. 42: 168-170: 1977. 138. Van Den Bosch, R. Production of I-123, Br-77 and Y-87 with the Eindhoven AVF Cyclotron. Ph.D. Thesis, Technische Hogeschool Eindhoven, The Netherlands (October 1979). 139. Kondo. K.: Lambrecht. R. M.: Norton, E. F.: Wolf, A. P. Cyclotron isotopes and &diophax&aceu&l& XXII: Improved targetry and radiochemistry for the production of 12’1and ‘241,Int. J. Appl. Radiar. Zsot. 28: 765-771; 1977. 140. Kondo, K.; Lambrecht, R. M.; Wolf, A. P. Iodine-123 production for radiopharmaceuticals-XX: Excitation functions of the lz4Te@,2n)‘*~Iand 12vTe(p,n)“? reactions and the effect of target enrichment on radionuclidic purity. ht. J. Appl. Radiar. Isot. 28: 395-401; 1977 __. .
141. Barrall, R. C.; Beaver, J. E.; Hupf, H. B.; Rubio, F. F. Production of curie auantities of high-purity I-123 with 15 MeV protons. Eur. J. Nuel. &d.-6: 4i I-415; 1981. 142. Bievelez, P.; Cogneau, M.; Charlier, R.; Jongen, Y. PreDaration of carrier-free lz31 with a high radionuc-lidic purity. J. Radioanal. Chem. 30: 6729; 1976. 143. Graham, D.; Trevena, I. C.; Webster, B.; Williams, D. Production of high purity iodine-123 using xenon-124. J. Nucl. Med. 26
[OS; i985.
144. Witsenboer. A. J.: de Goeii. J. J. M.: Reiffers. S. Production’ of iodine-123 vii proton irradiation of 99.8% enriched xenon-123. J. Labeled Compd. Radiophurm. 23: 1284-1285; 1986. 145. Hoffer, P. B.; Harper, P. V.; Beck, R. N.; Stark, V.; Krizek, H.; Heck, L.; Lembares, N. Improved xenon images with lz7Xe. J. Nucl. Med. 14: 172-174; 1973. 146. Tachimori, S.; Amano, H. Preliminary study on production of xenon-133 from neutron-irradiated uranium metal and oxides by oxidation. J. Nucl. Sci. Technol. 11: 488494; 1974.
147. Wilson, E. J.; Dibbs, H. P.; Richards, S.; Eakins, J. D. Preparation of xenon-133 radiography sources from spent fuel. Nucleonics 16: 110-114; 1958. 148. Bukshpan, S.; Ten Broek, F. Th.; Hilbrants, W.; Reintsemer, S. S.; De Waard, H. New cyclotron produced sources for Mossbauer spectroscopy. Int. J. AUDI. Radiat. Zsot. 27: 15-17: 1976. 149. I&&in&x, R. D. Productioh of ‘33mBafor medical purposes. Znt. J. Appl. Radial. Zsot. 28: 323-325; 1977. 150. Thakur, M. L.; Waters, S. L. Production and separation of cyclotron produced dysprosium- 157. J. Inorg. Nucl. Chem. 35: li87-1791; i9i3. 151. Lebowitz. E.: Greene. M. W.: Kinslev. M.: Richards. P. Development of new and impro&d isotopes fo; nuclear medicine with the Brookhaven cyclotron15’Dy and mBi. J. Nucl. Med. 12: 376; 1971. 152. Lebowitz, E.; Greene, M. W. The production of IJ7Dy for medical use. Ink J. Appl. Radial. Zsot. 22: 789-793; 1971. 153. Crouzel, C.; Petitjean, F.; Comar, D.; Sastre, J. Production of an injectable lnHg’” solution with a compact cyclotron. Radiochem. Radioanal. Lutt 27: 18s-190; 1976. 154. Lagunas-Solar, M. C.; Jungerman, J. A.; Peek, N. F.; Theus. R. M. Thallium-201 vields and excitation functions for the lead radioacti&es produced by irradiation of natural thallium with 15-60 MeV protons. Znr. J. Appl. Radiat. Isor. 29: 159-165; 1978. 155. Laginas-Solar, M. C.; Jungennan, J. A.; Paulson, D. W. Thallium-201 vields and excitation functions for the lead radioacti&es produced by irradiation of thallium-205 with 34-6OMeV protons. Znl. J. Appl. Radial. Zsot 31: 117-121; 1980. 156. Lagunas-Solar, M. C.; Little, F. E.; Jungerman, J. A. Proton induced reactions on natural Pb targets. A potential new cyclotron method for m’Tl production. Znt. J. Appl. Radiar. Zsot. 32: 817-822; 1981. 157. Adilbish, M.; Fominykh, M. I.; Khalkin, V. A.; Knotek, 0.; Zaitseva, N. G. Cumulative cross-sections of “n, “‘Tl and 202Tlproduction in 660 MeV protoninduced spallation of lead and bismuth. Biochem. Radioanal. Letl. 45: 27-234; 1980. 158. Finn, R.; Campbell, J.; Graser, C.; Smith, P. A novel method for the chemical separation of carrierfree thallium-201 from enriched thallium-203 cyclotron targets. J. Labeled Compd. Radiopharm. 13: 188; 1977. 159. Qaim, S. M.; Weinreich, R.; Ollig, H. Production of *OlTland %‘Pb via proton induced nuclear reactions on natural thallium. Int. J. Appl. Radiar. Zsot 30: 85-95; 1979. 160. Lagunas-Solar, M. C.; Little, F. E.; Waters, S. L.; Jungerman, J. A. Cyclotron production of carrier-free thallium-201 via the Pb-207 (p, 7n) reaction. J. Labeled Compd. Radiopharm. 18: 272-274; 1981. 161. Brown, L. C.; Callahan, A. P. The large-scale production of carrier-free 206Bifor medical application. Znt. J. Appl. Radiar. Isot. 26: 213-217; 1975: 162. Lanunas-Solar, M. C.: Carvacho, 0. F.; Naaahara, L.; MHhra, A.; Parks, k. J. Cyclotron pro&ctiod of no-carrier-added 206Bi(6.24d) and asBi(15.31d) as tracers for biological studies and for the development of alpha-emitting radiotherapeutic agents. Appl. Radiat. Zsot. 38: 129-137; 1987. 163. Brill, 0. D.; Sumin, L. V. Excitation curves for the reactions “B(d, 2n)“C, 9Be(a, Zn)“C, ‘OB(d,n)“C and 12C(d,n)“N. Sov. J. At. Energy 7: 856-858; 1960. 164. Wohlleben, K.; Schuster, E. Activation analysis with deuterons. Total cross sections of the reactions ‘OB(d,n)“C, 14N(d,n)lsO and 160(d,n)“F up to 3.2 MeV. Radiochim. Acra 12: 75-79; 1969.
335
Radionuclidc production for the biosciences 165. Blaser, J.-P.; Boehm, F.; Marmier, P.; Scherrer, P. Fonctions d’excitation de la reaction (p, n) (III) elements legers. ,Helu. Phys. Acta 24: 465-482; 1951. 166. Bida, G. T.; Ruth, T. J.; Wolf, A. P. Experimentally determined thick target yields for the “N@. a)“C reaction. Radiochrin. Acta 27: 181-185; 1980. 167. Sajjad, M.; Lambrecht, R. M.; Wolf, A. P. Cyclotron isotopes and radiopharmaceuticals-XXXVI: Investigation of some excitation functions for the preparation of “0, “N and “C. Radiochim. Acta 38: 57-63;
1985.
168. Jaszczak, R. J.; Macklin, R. L.; Gibbons, J. H. ‘%(d, n)13N total cross section from 1.2 to 4.5 MeV. Phys. Rev. 181: 1428-1430; 1969. 169. Austin, S. M.; Galonsky, A.; Bortins, J.; Wolk, C. P. A batch process for the production of ‘3N-labelled nitrogen gas. Nucl. Instrum. Methods 126: 373-379; 1975.
170. Lindner, L.; Helmer, J.; Brinkman, G. A. Water “loop’‘-target for the in-cyclotron production of “N by the reaction 160(p, a)“N. Int. J. Appl. Radial. Isot. 30: 506-507;
1979.
171. Hutchins, G. D.; Daube, M. E.; Nickles, R. J.; Wieland, B. W.; MacDonald, N. S.; Bida, G. T.; Wolf, A. P. Production alternatives in oxygen imaging. .- J. Nuci. Med. 23: P107; 1982. 172. Nozaki. T.: Iwamoto. M. Yield of “0 from the reactions liN(1; n)“O “CCHe, n)“O and ‘%(a, 2n)140. Radiochim. Acta 29: 57-59;
1981.
173. Vera Ruiz, H.; Wolf, A. P. Excitation for “0 production via the 14N(d,n)“O reaction. Radiochim. Acra 24: 65-67;
1977.
174. Valentin, L. Reactions (p, n) et (p, pn) induites a moyene energie sur des noyaux legers. Nucl. Whys. 62: 81-102; 1965. 175. SaJjad, M.; Lambrecht, R. M.; Wolf, A. P. Cyclotron isotopes and radiopharmaceuticals-XXXIV. Excitation function of the 15N(p,n)150 reaction. Radiochim. Acta 36: 159-162; 1984. 176. Wieland, B. W.; Schmidt, D. G.; Bida, G.; Ruth, T. J.; Hendry, G. 0. Efficient, economical production of oxyenlabelldd tracers with low energy protons. J. Labeied Compd. Radiopharm. 23: 1214-1216;
1986.
177. Ruth, T. J. The production of 18F-F, and “O-0, sequentially from the same target chamber. Int. J. Appl. Radial. Isot. 36: 107-110;
1985.
178. Fitschen, J.; Beckmann, R.; Hohm, U.; Neuert, H. Yield and production of ‘*F by 3He irradiation of water. Int. J. Appl. Radial. Isot. 28: 781-784; 1977. 179. Nozaki, T.; Iwanoto, M.; Ido, T. Yield of ‘*F for various reactions from oxygen and neon. Int. J. Appl. Radiat. ISOI. 25: 393-399;
1974.
180. Ruth, T. J.; Wolf, A. P. Absolute cross sections for the production of ‘*F via the ‘sO(p, n)‘*F reaction. Radiochim. Acta 26: 21-24;
1979.
181. Crouzel, C.; Guenard, H.; Comar, D.; Soussaline, F.; Loc’h, C.; Plummer, D. A new radioisotope for lung ventilation studies: 19-neon. Eur. J. Nucl. Med. 5: 43 l-434;
1980.
1539-1541;
1982.
188. Ku, T. H.; Richards, P.; Stang, L. G. Jr; Prach, T. Preoaration of s2Fe and its use in a s*Fe/52mMnaenerato;. Radiology 132: 475-477; 1979. 189. Dahl, J. R.; Tilbury, R. S. The use of a compact, multi-particle cyclotron for the production of j*Fe, 67Ga. “‘In and ‘23Ifor medical DUDDOSS. Int. J. ADDI. .. Radiat. Isot. 23: 431-437;
1972:
A
190. Thakur, M. L.; Nunn, A. D.; Waters, S. L. Iron 52: improving its recovery from cyclotron targets. Int. J. Appl. Radiat. Isot. 22: 481-483;
1971.
191. Bigler, R. E.; Dahl, J. R.; Rothman, L. S.; Zanzonico, P. B. Compact cyclotron preparation of 38.1 minute zinc-63 for positron tomography. J. Labeled Compd. Radiopharm. 19: 1429-1430; 1982. 192. Paans, A. M. J.; Welleweerd, -1.; Vaalburg, W.; Reiffers, S.; Woldring, M. G. Excitation functions for the production of bromine-75: A potential nuclide for the labelling of radiopharmaceuticals. Int. J. Appl. Radiat. Isot. 31: 267-273; 1980. 193. Qaim, S. M.; Weinreich, R. Production of 75Brvia the
“Kr precursor: excitation function for the deuteron induced nuclear reaction on bromine. Inr. J. Appl. Radiat. Isot. 32: 823-827; 1981. 194. Kovacs, 2.; Blessing, G.; Qaim, S. M.; Stocklin, G.
Production of “Br via the “Se@, 2n)“Br reaction at a compact cyclotron. Int. J. Appl. Radiat. Isot. 36: 635642;
1985.
195. Friedman, A. M.; DeJesus, 0. J.; Harper, P.; Armstrong, C. Preparation of “Br by the ‘sKr(p, a)7JBr reaction. J. Labeled Compd. Radiopharm. 19: 1427-1428;
1982.
196. Saha, G. B.; Porile, N. T.; Yaffe, L. (p, xn) and (p, pxn) Reactions of yttrium-89 with S-85-MeV protons. Phys. Rat. 144: 962-971; 1966. 197. Link, J. M.; Krohn, K. A.; Eary, J. F.; Kishore, R.; Lewellen, T. K.; Johnson, M. W.; Badger, C. C.; Richter, K. Y.; Nelp, W. B. u’Zr for antibody labelling and positron emission tomography. J. Labeled Compd. Radiopharm. 23: 1297-1298; 1986. 198. Lambrecht, R. M.; Montner, S. M.
Production and radiochemical separation of 92T~ and 9’Tc for PET. J. Labeled Compd. Radiopharm. 19: 1434-1435; 1982. 199. Usher, 0. H.; Maceiras, E.; Saravi, M. C.; Nassiff, S. T. Production cross sections and isomeric ratios for the isomeric pair ““%/“@In formed in Cd(d, xn) reactions. Radiochim. Acta 24: 55-57; 1977. 200. Misaelides, P.; Munzel, H. Excitation functions for -‘He and a-induced reactions with “‘Aa and ‘*An. J. Inorg. Nuci. Chem. 42: 937-948;
182. Ehrenkaufer, R. L. E.; Wolf, A. P. Unpublished results. BNL-1980. Uoton. NY 11973: Brookhaven National Laboratory. * ’ 183. Dal& J. R.; Meyers, W. G.; Graham, M. C. The cyclotron production of short half-lived radioactive noble gases for bio-medical use. J. Labeled Compd. Radiopharm. 23: 1335-1336;
186. Lambrecht, R. M.; Wolf, A. P. The cyclotron production of 3*K s*Mn, sz”Mn and “Kr for positron emission tomography. J. Labeled Compd. Radiopharm. 16: 129-130; 1979. 187. Ishiwata, K.; Ido, T.; Momna, M.; Murakami, M.; Kameyama, M.; Fukuda, H.; Matsuzawa, T. Preparation of ‘%-labelled comwunds and their medical application. J. Labeled Compd. Radiopharm. 19:
1986.
184. Sahakundu, S. M.; Qaim, S. M.; Stocklin, G. Cyclotron production of short-lived MP. Int. J. Appl. Radiat. Isot. 30: 3-5; 1979.
185. Tilbury, R. S.; Dahl, J. R.; Chandra, R.; McDonald, J. M.: Reiman, R. E.: Mvers. W. G. Potassium-38 production with a cyclotronformedical use. J. Labeled Compd. Radiopharm. 16: 127-128; 1979.
1980:
-
201. Ruth, T. J.; Adam, M. J.; Pate, B. D. Unpublished results. 4004 Wesbrook Mall, Vancouver, Canada, V6T 2A3: TRIUMF, 1981. 202. Richards, P.; Ku, T. H. The ***X&**I system: A generator for the 3.62-min positron emitter, ‘**I. Inr. J. Appl. Radiat. Isot. 30: 250-254;
1979.
203. Mathis, C. A.; Lagunas-Solar, M. C.; Sargent III, T.; Yano, Y.; Vuletich, A.; Harris, L. J. A ‘**Xe_‘**I generator for remote radio-iodinations. Appl. Radial. Isot. 37: 258-260; 1986. 204. Ramamoorthy, N.; Pao, P. J.; Watson, I. A. Prepar-
ation of a “Zn-%u generator and of 6’Cu following alpha particle irradiation of a nickel target. Radiothem. Radioanai. Lett. 46: 371-380;
1981.
336
T. J. RUTH et al.
205. Lambrecht, R. M.; Norton, E.; Wolf, A. P.; Treves, S. “Br-‘“Se generator. J. Labeled Compd. Radiopharm. 13: 245-246: 1977. 206. Lebowitz, E.; Richards, P. Radionuclide generator systems. Semin. Nucl. Med. 4: 257-268; 1974. 207. Cogneau, M.; Magoche, R.; Guillaume, M.; Fagard, E. Generateur **Sr-s*Rb pour utilisation en medecine nuclbaire. XXe Collogue de M&&cine Nucl&rire de la Langue Francaise. France: Bordeaux; 1979. 208. Grant, P. M.; Khan, M.; O’Brien, H. A. Jr. The isolation of **Sr from 200 to 600 MeV protonirradiated MO targets for biomedical applications. J. Inorg. Nucl. Chem. 37: 413417;
19R3 __-_.
226. Kuhry, J.-G.; Adloff, J.-P. Sur les formes chimiques du radiocarbone produit par la reaction 14N(n,p)14Cdans les nitrures de beryllium, magnesium, calcium, aluminium et zirconium. Bulletin de la Sot. Chimique de France No. 9: 34143418; 1967. 227. Shoen, N. C.; Orlov, G.; McDonald,
1975.
209. Horlock, P. L.; Clark, J. C.; Goodier, I. W.; Barnes, J. W.; Bentley, G. E.; Grant, P. M.; O’Brien, H. The preparation of a rubidium-82 radionuclide generator. J. Radioanal. Chem. 64: 257-265: 1981. 210. Yano, Y.; Budinger, T. F.; Chiang, G.; O’Brien, H. A.; Grant, P. M. Evaluation and application of aluminabased Rb-82 generators with high levels of Sr-82/85. J. Nucl. Med. 20: 961-966; 1979. 211. Waters, S. L.; Coursey, B. M., editors. The strontium82/rubidium-82 generator. Appl. Radiat. Isot. 38: 171-239;
225. Zucchini, G. L.; Friedman, A. M. Isotopic generator for *‘*Pb and *‘*Bi. ht. J. Nucl. Med. Biol. 9: 83-84;
228. 229.
230.
1987.
212. Hilhnan, M.; Greene, M. W.; Bishop, W. N.; Richards, P. Production of s’Y and a s7mSraenerator. Int. J. At&. ** Radiat. Isot. 17: 9-12;
1966.
-
231. 232.
213. Allen, J. F.; Pinajian, J. J. A Srs7m generator for medical applications. Int. J. Appl. Radiut. Isot. 16: 319-325;
1965.
233.
214. Janssen, A. G. M.; Clasessens, R. A. M. J.; Van Den Bosch, R. L. P.; De Goeij, J. J. M. A rapid and high-yield preparation method for *7Y/87mSrgenerators, using the **Sr@, 2n) reaction. Appl. Radial. Isot. 37: 297-303;
Radiat. Isot. 29: 575-578;
1978.
219. Grant, P. M.; Daniels, R. J.; Daniels, W. J.; Bentley, G. E.; O’Brien, H. A. Jr. A heavy rare-earth nuclide generator. J. Labeled Compd. Radiopharm. 18: 61-62; 1981.
220. Neirinckx, R. D.; Davis, M. A.; Holman, B. L. The ‘7sW/‘78Ta generator: anion exchange behaviour of “‘W and “*Ta. Int. J. ADDI. Radiat. Isot. 32: 85-89: 1981. 221. Cheng, C.; Treves, S.; Samuel, A.; Davis, M. A. A new osmium-191 iridium-19lm generator. J. Nucl. Med. 21: 1169-l 176; 1980. 222. Bonardi, M.; Birattari, C. Excitation functions for the Au(p, 3n)‘9sm*‘9SHgnuclear reactions and ‘9ti,‘95Hg/‘9JmAugenerator yields. Int. J. Appl. Radial. ‘1
Isot. 35: 564; 1984.
223. Meyer, G.-J.; Lambrecht, R. M. Excitation function for the 209Bi(7Li,5n)*“Rn nuclear reaction. Int. J. Appl. 1980.
224. Atcher, R. W.; Friedman, A. M.; Gansow, 0. A.; Hines, J. J. An improved generator for the production and use of *‘*Pb and *‘*Bi. J. Labeled Compd. Radiopharm. 23: 1377; 1986.
I
Isot. 29: 91-96;
1986.
215. Ehrhardt, G. J.; Volbert, W.; Goeckeler, W. F. A new Cd-l 15/In- 115m radioisotope generator. J. Labeled Compd. Radiopharm. 18: 6364, 1981. 216. Mitta, A. E. A. Present and future of radiopharmaceuticals resulting from generators. J. Rudioanal. Chem. 27: 129-136; 1975. 217. Lagunas-Solar, M. C.; Littel, F. E.; Moore, H. A. Jr. Cyclotron production of 128Cs (3.62 min). A new positron-emitting radionuclide for medical applications. Int. J. Appl. Radiat. Isot. 33: 619628; 1982. 218. Skraba, W. J.; Arino, H.; Kramer, H. H. A new ‘#Ce/‘@Pr radioisotope generator system. Int. J. Appl.
Radiat. Isot. 31: 351-355;
234.
R. J. Excitation functions for radioactive isotopes produced by proton bombardment of Fe, Co and W in the energy range from 10 to 60MeV. Phys. Rev. C20: 88-92; 1979. Tanaka. S.: Furukawa. M.: Chiba. M. Nuclear reac tions of nickel with protons up to 56 MeV. J. Inorg. Nucl. Chem. 34: 2419-2426; 1972. Progress Report (1979), Cyclotron for Medical Use. Departement de Biologie, Service Hospitalier Frederic Joliot, Commissariat P 1’Energie Atomique, 91406 Orsay, France. Horiguchi, T; Kumahora, H.; Inoue, H.; Yoshizawa, Y. Excitation functions of Ge (p, xnyp) reactions and production of 68Ge. Int. J. ADDI. __ Radiat. Isot. 34: 1531-1535; 1983. Moghissi, A. A.; Hupf, H. B. A krypton-83m generator. Int. J. Appl. Radiat. Isot. 22: 218-220; 1971. Thomas, K. E. Strontium-82 production of Los Alamos National Laboratory._ Appl. __ Radiat. Isot. 38: 175-180; 1987. Mausner, L. F.; Prach, T.; Srivastava, S. C. Production of **Sr bv nroton irradiation of RbCl. ADDI. A. Radiat. Isot. 38: i8-l-184; 1987. Skraba, W. J.; Arino, H.; Kramer, H. H. A new ?3r/90y radioisotope generator. Int. J. Appl. Radiat. I
1978.
235. Johnson, C. H.; Galonsky, A.; Kernell, R. L. (p, n) Reaction for 89 < A < 130 and an anomalous optical model potential for sub-coulomb protons. Phys. Rev. C20: 2052-2071; 1979. 236. Annual Report NAC/AR/79-01. P.O. Box 320, 7600, Stellenbosch, South Africa: National Accelerator Centre, CSIR; 1979. 237. Hogan, J. J. Study of the 14’Pr@,xn) reactions from 1&85MeV. J. Inorg. Nucl. Chem. 33: 3627-3641; 1971. 238. Rao, D. V.; Hallee, G. J.; Ottlinger, M. E.; Sastry, K. S. R. Radiations emitted in the decav of ‘6SEr: A promising medical radionuclide. Med: Phys. 4: 177-186; 1977. 239. Hansen, L. F.; Jopson, R. C.; Mark, H.; Swift, C. D. ‘*ITa@, n)‘*‘W and ‘“AI@, n)19’Hg excitation functions between 4 and 13 MeV. Nucl. Phys. 30: 389-398; 1962. 240. Quadri, S. M.; Wessels, B. W. Radiolabeled biomol-
ecules with ls6Re: potential for radioimmunotherapy. Nucl. Med. Biol. 13: 447-451:
1986.
241. Lambrecht,
R. M.; Mirzaded, S. Cyclotron isotopes and radiopharmaceutical-XXXV. Astatine-211. ht.
J. Appl. Radiat. Isot. 36: 443450; 1985. 242. Kelly, E. L.; Segre, E. Some excitation functions of bismuth. Phys. Rev. 75: 999-1005; 1949. 243. Ramler, W. J.; Wing, J.; Henderson, D. J.; Huizenga, J. R. Excitation functions of bismuth and lead. Phvs. r Reu. 114: 154162, 1959. 244. Graham, D.; Abeysekera, B.; Porter, J. AECL-
unpublished results (1987). M. L.; Teng, R.-R.; Schlyer, D. J.; Wolf, A. P. Production of high purity iodine-123 from xenon-124 at energies between 15 and 34eV. Rudiochim. Acta 41: 14, 1987.
245. Firouzbakht,