Polyhedron 20 (2001) 557– 569 www.elsevier.nl/locate/poly
Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes Part 2. The effects of different excitation wavelengths Jianzhuang Jiang a,c,*, Ursula Cornelissen b, Dennis P. Arnold c,*, Xuan Sun a, Heiner Homborg b,* a
Department of Chemistry, Shandong Uni6ersity, Jinan 250100, People’s Republic of China Institut fu¨r Anorganische Chemie der Christian-Albrechts-Uni6ersita¨t, Olshausenstrasse 40, D-24098 Kiel, Germany c Centre for Instrumental and De6elopmental Chemistry, Queensland Uni6ersity of Technology, GPO Box 2434, Brisbane 4001, Australia b
Received 12 September 2000; accepted 7 December 2000
Abstract The resonance or near-resonance Raman spectroscopic data in the range of 500– 1800 cm − 1 of a series of nineteen naphthalocyaninato (Nc), phthalocyaninato (Pc) and/or porphyrinato (Por) rare earth sandwich complexes including double-deckers M[Pc(OC8H17)8]2 (M=Nd, Ce, Eu, Er), M(Nc*)2 [M= Pr, Nd, Eu; Nc* = Nc(tBu)4, Nc(SC12H25)8], M(Por)(Nc) {M =La, Pr, Eu, Gd; Por= meso-tetrakis(4-t-butylphenyl)porphyrin [T(4-tBu)PP], meso-tetrakis(4-chlorophenyl)porphyrin [T(4-Cl)PP]}, Ce(Por)(Pc) [Por =meso-tetrakis(4-pyridyl)porphyrin (TPyP)], and triple-deckers Eu(Pc)Eu(Pc*)Eu(Pc*) [Pc* = Pc(OC8H17)8], M2(Por)2(Pc) [M = Ce, Sm, Eu; Por=meso-tetraphenylporphyrin (TPP), TPyP, T(4-tBu)PP], and Eu2(Por)(Pc)2 [Por= T(4-Cl)PP, T(4-tBu)PP] have been studied systematically using laser excitation sources emitting at 457.9, 488.0, 514.5 or 647.1 nm. The resonance Raman characteristics for unsubstituted and substituted (na)phthalocyaninato mono-radical anions Pc−, Nc*− and dianions Pc2 − are thus described comparatively under a variety of conditions. The intense band at ca. 1491– 1524 cm − 1 attributed to both pyrrole CC and CN aza group stretches was confirmed to be the marker band for Pc− and Pc2 − anions. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Raman spectroscopic characteristics; Phthalocyanine; Naphthalocyanine; Rare earth sandwich complexes
1. Introduction The sandwich-type phthalocyaninato double-deckers have attracted great attention due to their potential applications in materials science [1,2]. Some proposed fields of use include molecular electronics, molecular optronics, and molecular iono-electronics [3,4]. The search for novel advanced molecular materials has stimulated intense research into substituted bis(phthalocyaninato), bis(naphthalocyaninato), heteroleptic * Corresponding co-authors. Tel.: +86-531-856-4088; fax: +86531-856-5211 (J. Jiang); Tel.: + 61-7-3864-2482; fax: +61-7-38641804 (D.P. Arnold); Tel.: +49-431-880-3262; fax: +49-431-880-1520 (H. Homborg); E-mail addresses:
[email protected] (J. Jiang), d.arnold@ qut.edu.au (D.P. Arnold),
[email protected] (H. Homborg).
bis(phthalocyaninato), and mixed porphyrinat – (na)phthalocyaninato metal complexes especially since the beginning of the 1990s [5–9]. IR spectroscopy has been proved to be a versatile technique for studying the intrinsic properties of the sandwich bis(phthalocyaninato) complexes M(Pc%)2 (M= rare earth, Th, U, Zr, Hf, Bi, Sn; Pc% =Pc, Pc*) and porphyrinato-phthalocyaninato double-deckers M(Por)(Pc%) (Pc% = Pc, Pc*; M= rare earth, Th, U, Zr, Hf) (for a list of abbreviations, see Appendix A; for general structural formulae, see Fig. 1) [10 –18]. Since the neutral double-deckers of M(III) ions formally contain one macrocycle radicalanion and one dianion, the degree of (de)localisation of the hole is a major point of interest. The study of the triple-deckers allows comparison with the spectra of the macrocyclic dianions. We recently published an exten-
0277-5387/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S 0 2 7 7 - 5 3 8 7 ( 0 0 ) 0 0 6 5 7 - 4
558
J. Jiang et al. / Polyhedron 20 (2001) 557–569
sive IR study of rare earth double- and triple-deckers containing a variety of unsubstituted and substituted (na)phthalocyanines and porphyrins [10]. Raman spectroscopy is potentially another valuable tool in analysing the extent of charge (de)localisation in complexes containing porphyrin or phthalocyanine pradicals. However, in the field of sandwich-type porphyrinato and/or phthalocyaninato metal complexes, Raman spectroscopy has not been as extensively applied as the IR technique [19,20]. Since 1989, both Aroca and Homborg have devoted themselves to the Raman spectroscopic characterisation of rare earth bis(phthalocyaninato) compounds [15,21,22]. In 1994, Tran-Thi et al. compared the FT-Raman spectra (excited at 1064 nm) for a series of sandwich phthalocyaninato and porphyrinato gadolinium and cerium compounds in solution and proposed that the intense line at 1500 cm − 1 is the marker line to estimate the hole (de)localisation involving the Pc moiety [19]. As part of our continuing efforts to develop novel synthetic methodologies and to investigate the ring-ring interaction between or among the macrocycles (porphyrinato and phthalocyaninato ligands), we and our collaborators have applied electrochemical and spectroscopic methods to several series of sandwich porphyrinato and/or (na)phthalocyaninato rare earth compounds [5–9,23]. Recently we systematically investigated the Raman characteristics of phthalocyanine and naphthalocyanine for a large number of (na)phthalocyaninato/porphyrinato and/or (na)phthalocyaninato rare earth complexes using a laser excitation source emitting at 632.8 nm [24]. Because of the presence of intense visible absorption bands due to the Pc and Por ligands, the exact pattern of frequencies and intensities of these Raman spectra are expected to depend on the excitation wavelength(s), especially when in near-resonance with the absorption maxima. Herein we describe and compare the resonance or near-reso-
Fig. 1. General structural formulae of unsubstituted ligands and double- and triple-decker complexes.
nance Raman spectroscopic characteristics for the (na)phthalocyanine ligand in M(Pc*)2, M(Nc*)2, Ce(TPyP)(Pc), M(Por)(Nc), (Pc)Eu(Pc*)Eu(Pc*), and M2(Por)2(Pc), M2(Por)(Pc)2 [Por = TPP, TPyP, T(4Cl)PP, T(4-tBu)PP] using several laser frequencies for excitation.
2. Experimental The sandwich-type rare earth complexes were prepared according to the reported procedures [5,23,25]. Resonance Raman spectra were recorded with a multichannel spectrometer XY (Dilor), equipped with a Spectra Physics model 171 and 2025 Kr+ and Ar+ lasers emitting at 457.9, 488.0, 514.5, or 647.1 nm. The sample was fixed on a rotating steel disk and the spectra were measured at ca. 20 K [26].
3. Results and discussion
3.1. Resonance Raman characteristics of homoleptic double-deckers M(Pc*)2 [Pc* =Pc(OC8H17)8] The previous work on Raman spectra of homoleptic double-deckers by the groups of Aroca [21,27], TranThi [19], Homborg [15,28] and Jiang, Rintoul and Arnold [24] was reviewed in our previous paper [24]. We have now extended our studies of the solid-state Raman spectra of the phthalocyanine ligand in M(Pc*)2 [M= Nd, Eu, Er, Ce; Pc*= Pc(OC8H17)8] by recording the spectra with excitation at= 457.9, 488.0, 514.5 and 647.1 nm, to compare with our previous results obtained with uex = 632.8 nm. The four spectra of Nd[Pc(OC8H17)8]2 are compared in Fig. 2, and Table 1 summarises the frequencies for the four double-deckers and the four wavelengths, together with partial assignments according to our previous scheme [24]. The Raman shifts with laser excitation at 647.1 nm for both tervalent rare earth bis(phthalocyaninato) compounds and the tetravalent cerium bis(phthalocyaninato) complex are almost the same as those recorded with 638.2 nm excitation [24] because of the similarity in excitation wavelengths. Typical enhanced Raman lines around 1508 –1525 cm − 1 for MIII[Pc(OC8H17)8]2 (M=Nd, Eu, Er) and at 1503 cm − 1 for Ce{[Pc(OC8H17)8]2 − }2 were observed. The former has been attributed to a w3 porphyrin-like mode which contains nearly equal CC (pyrrole) and CN (aza group) character for both tervalent rare earth and tetravalent cerium phthalocyaninato double-deckers. By using shorter wavelength excitation lines which are still farther away from resonance with the most intense Q absorption band of M[Pc(OC8H17)8]2 (M=Nd, Eu, Er; umax = 688, 681, 673 nm, respectively), a new Ra-
1511s 1592s
4c
566w 606w 684m 743m
787w 884w 987w 1007w 1113w 1133w 1177m 1277m 1300w 1354w 1377s 1409w
1514s 1598s
4b
563m 625w 684w 743w
786w 883w
1406w 1438w 1504m 1590m
1113m 1131w 1177m 1276s 1301w 1351m
786m 884m 986w
685s 743m
566w
4d
1514s 1592s
1458w
1343w 1383w 1404s
1176m 1208w 1278s 1314w
1410m 1437m 1503s
1010w 1111w 1141w 1177m
566m 629w 684s 743s 753 m 787w 868m
4e
1508s
1342w 1383w 1403m
1314w
1137m 1175m 1207w
786w 868sh
563w 632w 685s 742m
1e
1514s 1596s
1409m
1174m 1209w 1276w
953w 1080w
742w
2b
1515s 1594s
1351w 1386w 1406m
1176m 1210w 1279m
1078w 1113w
689w 743w
564w
2c
b
1, Nd[Pc(OC8H17)8]2; 2, Eu[Pc(OC8H17)8]2; 3, Er[Pc(OC8H17)8]2; 4, Ce[Pc(OC8H17)8]2. uex = 457.9 nm. c uex = 488.0 nm. d uex = 514.5 nm. e uex = 647.1 nm.
a
1362w 1410w 1443w 1505m 1592m
1504m 1591s
1462w
1449w
1114w 1136w 1176m 1277w 1300w
1350w 1382m 1403s
1354w 1388w 1410w
1279w
1140w 1178w
1108m
870w
869w
745w
1077w 1109w 1136w 1175m 1209w
686w 743w 756w
685m 743w 756w
1d
563w
1c
563w
b
566w
1
Table 1 Characteristic Raman bands (cm−1) for RE[Pc(OC8H17)8]2 (RE= Nd, Ce, Eu, Er) a
1516s 1593s
1406m
1344w
1176m 1207w 1280s 1315w
1108m
687w 744w 757w
564w
2d
1513s
1342w
1314w
1084w 1112w 1137w 1175w
787m 870w
563w 631w 686s 743s
2e
1523s 1600s
1414m
1276m
1176w
1113w
687w 742w 758w
3b
1524s 1600s
1462w
1414m
1322w 1353s
1179w 1210w 1280m
1112s
879w
760m
688m
565w
3c
1524s 1600s
1412s
1277s 1318w
1176w
1110s
875w
687m 744m 759m
3d
1523m
1402w 1413s
1138w 1178w
567w 630m 687s 745m 758m
3e
wCa–Cb(pyrr.) wCN wCN wCb–Cb(pyrr.) wCN (aza) wbenzene
benzene breath. lC–H lC-H pyrrole breath. lC–H lC–H lC–H
macrocycle breathing lmacrocycle wC–N (aza)
wCN wCb–Cb (pyrr.) wCN (aza) wbenzene
wCN
wCa–Cb (pyrr.)
lC–H
benzene breath. lC–H lC–H pyrrole breath. lC–H lC–H
macrocycle breathing l macrocycle wC–N(aza)
Assignment
J. Jiang et al. / Polyhedron 20 (2001) 557–569 559
560
J. Jiang et al. / Polyhedron 20 (2001) 557–569
Raman lines of MIII[Pc(OC8H17)8]2 (M=Nd, Eu, Er) at 1508 –1524 cm − 1 and 1592 –1600 cm − 1 seem to experience a blue-shift in the same order. This agrees with the result of Homborg on M(Pc)2 [15,28] and also with that for M[T(4-tBu)PP](Nc) as will be discussed below.
3.2. Resonance Raman characteristics of M(Nc*)2 [Nc* =Nc( tBu)4, Nc(SC12H25)8]
Fig. 2. Resonance Raman spectra of Nd(Pc*)2 [Pc* = Pc(OC8H17)8] with excitation at (A) 457.9 nm, (B) 488.0 nm, (C) 514.5 nm, (D) 647.1 nm.
man line due to the ortho-substituted benzene quadrant stretches around 1590 cm − 1 appears as the most intense band instead of that due to pyrrole CC group and CN aza group stretches at 1508 – 1523 cm − 1. Furthermore, the latter gradually gains relative intensity and becomes more intense than when excited with 647.1 nm radiation. The results for MIII[Pc(OC8H17)8]2 (M =Eu, Nd, Er) collected in Table 1 are consistent with those of Homborg for M(Pc)2 [15,28]. In contrast, for Ce{[Pc(OC8H17)8]2 − }2, the intensity of the line at about 1503 cm − 1 remains unchanged and an additional band with medium intensity appears at about 1591 cm − 1. This difference is attributed to the different electronic absorption characteristics between MIII[Pc(OC8H17)8]2 (M =Nd, Eu, Er) and Ce{[Pc(OC8H17)8]2 − }2 (main Q band: umax =649 nm). It is worth noting that the line in the range of 1276 – 1280 cm − 1 for tervalent rare earth double-deckers appears as an intense one when excited with 514.5 nm; it is of weak or medium intensity in the spectra of MIII[Pc(OC8H17)8]2 (M= Nd, Eu, Er) when excited with 457.9 nm and 488.0 nm radiation and also in the spectra of Ce{[Pc(OC8H17)8]2 − }2 with all four excitation lines (u=457.9, 488.0, 514.5, 647.1 nm). It is also noteworthy that along with the decrease of the rare earth ionic size from Nd to Er, the typical Pc*−
In contrast to the bis(phthalocyaninato) rare earth compounds, neither the synthesis nor the spectroscopic characterisation of bis(naphthalocyaninato) rare earth compounds has been studied extensively. Before our work on the synthesis, IR and brief Raman spectroscopic characterisation for substituted M[Nc(tBu)4]2 [23 –25], Eu[Nc(SC12H25)8]2 [23,24], and M(TPyP)(Nc%) [Nc% =Nc, Nc(SC12H25)8] [5], only the synthesis, electronic absorption spectra, and electrochemical properties of unsubstituted naphthalocyanine-containing Lu(Nc)2, Lu(Pc)(Nc), and Lu2(Nc)3 have been described [29 –33]. By analogy with the Raman characteristics of sandwich naphthalocyaninato rare earth compounds with excitation at 632.8 nm, the Raman characteristics of M(Nc*)2 [M= Pr, Nd, Eu; Nc* =Nc(tBu)4, Nc(SC12H25)8] were partially assigned and the data are summarised in Table 2. Due to the similar electronic structure and electronic absorption properties among these naphthalocyaninato double-decker complexes, all three compounds show similar Raman characteristics when employing the same excitation line. Because of the similar excitation energy, the Raman spectra of these compounds (u= 647.1 nm) are very similar to those obtained with 632.8 nm [24]. Since this excitation is far away from resonance with the most intense Q absorption band of M(Nc*)2 (M=Pr, Nd, Eu; umax = 783, 786, 784 nm, respectively), the ortho-substituted benzene quadrant stretch (naphthalene) around 1590 cm − 1 appears as the most intense line while the pyrrole CC group and CN aza group stretches at 1510 cm − 1 and 1520 cm − 1 appear as medium lines. When excited with 457.9, 488.0 or 514.5 nm radiation, which are still farther away from resonance with the Q absorption band of naphthalocyaninato rare earth double-deckers, featureless Raman spectra with few and weak Raman peaks were obtained for M(Nc*)2 [Nc*= Nc(tBu)4, Nc(SC12H25)8].
3.3. Resonance Raman characteristics of M(Por)(Nc) As noted by Tran-Thi, the porphyrin ligand and the Pc ligand can be easily distinguished by both the frequencies of their respective characteristic Raman lines and their different intensity patterns [19]. The Qy absorption bands of phthalocyanines are generally much stronger (at least tenfold) and appear at longer wave-
J. Jiang et al. / Polyhedron 20 (2001) 557–569
lengths than those of porphyrins. They are thus in closer resonance with the excitations used here (457.9 –632.8 nm) and so the phthalocyanine contributions appear to dominate the Raman spectra in the mixed Por– M–Pc% sandwich compounds. The characteristic resonance Raman lines for M(Por)(Nc) are given in Table 3. The partial assignments listed for Eu[T(4-Cl)PP](Nc) in Table 3 are based on the similarity of the spectra to those of Eu(Por)(Nc) and Eu(Nc*)2 studied previously using 632.8 nm excitation [24]. The comparison with the spectra of M(Nc*)2 is limited due to the strong fluorescence in running the Raman measurements for Eu[T(4-Cl)PP](Nc) when using excitations other than 647.1 nm. The Raman spectra of M[T(4-tBu)PP](Nc) suffered from strong fluorescence even when using 647.1 nm excitation. Fig. 3 exhibits the typical Raman spectra of Pr[T(4-tBu)PP](Nc) (uex = 457.9, 488.0, 514.5, 647.1 nm). It is clear that the Raman spectra of the mixed porphyrinato and naphthalocyaninato rare earth compounds change significantly depending on the excitation wavelength due to the difference in degree of resonance with the electronic absorption bands. In the Raman spectra with excitation at 457.9 nm, the lines at 1493 – 1506 cm − 1, due to
561
pyrrole CC group and CN aza group stretches, and at 1286 –1292 cm − 1, attributed to aromatic C–H bending vibrations, appear as the most intense Raman lines. By using 488.0 nm excitation, the line at 1286 –1292 cm − 1 loses some intensity and the most intense one appears at 1468 –1480 cm − 1 (pyrrole CC group and CN aza group stretches). The latter shifts to around 1486 –1499 cm − 1 and changes to be the most intense line when excited with 514.5 nm radiation. Interestingly, the energies of these most intense characteristic Nc− lines seem to depend on the ionic size of rare earth sandwiched in these mixed double-deckers, regardless of the excitation energy. Along with the decrease of rare earth ionic size from La to Gd, all these corresponding Raman lines are shifted to higher energy. This result corresponds well with that for M(Pc%)2 [Pc% =Pc, Pc(OC8H17)8] as mentioned above.
3.4. Resonance Raman characteristics of homo-dinuclear triple-deckers (Pc)Eu(Pc*)Eu(Pc*) [Pc* =Pc(OC8H17)8] The resonance Raman results for triple-decker (Pc)Eu(Pc*)Eu(Pc*) [Pc*= Pc(OC8H17)8] (uex =457.9,
Table 2 Characteristic Raman bands (cm−1) for RE(Nc*)2 [RE= Pr, Nd, Eu; Nc* = Nc(tBu)4, Nc(SC12H25)8] a 5
b
5c
5d
540m 606w 620w 684s 715w 739s 752m 776m 821w 851w 890w 1090m 1126w 1157w 1193s 1218m
619w 683w
811w
811w 953w
1216w
5e
1194w 1219w
1300w 1320w 1371s 1402m
1368m 1401w
6c
6d
615w
616w
684w
683w
810w
813w
978w 1083m 1114w
1085m
1190m 1217w
1191m 1218w
1323w 1373w
1373w 1402m
6e 540m 607w 664w 684s 715w 739s 752w 776w 820w 851w 890w 1090m 1127w 1156w 1192s 1217m 1261w 1302w 1371s 1402m
7b
7c
691w 740w
a
1434m 1537m 1592m 1660m
1589w
1507m 1592s 1630w
1423m 1502m 1587m 1649m
1506w 1592m 1645m
1508m 1592s 1629w
5, Pr(Nc*)2; 6, Nd(Nc*)2, [Nc*= Nc(tBu)4]; 7, Eu[Nc(SC12H25)8]2. uex = 457.9 nm. c uex = 488.0 nm. d uex = 514.5 nm. e uex = 647.1 nm. b
7e
547w
537w
690w
581w 688w
macrocycle breathing
739w 751w 765w
l macrocycle wC–N (aza)
740w
833w
1085w 1121w 1154w 1194m
1194w
1516m 1588m 1629m
1627w
864w 981w 1088w 1128w 1192m 1213m
lC–H lC–H pyrrole breath. lC–H lC–H lC–H
1413w
1301w 1346w 1368s 1398m 1413m
1504w 1585w 1647w
1514m 1586s 1627m
wCb–Cb (pyrr.) wnaphthalene
1350w 1371w
1427w 1514w
Assignment
831w
953w
1414w 1431w 1536w 1593w 1653w
7d
wCa–Cb(pyrr.) wCN wCN
b
1453w 1471m
1362w 1382w
1286s
1220w
1142w 1187m
1030w 1070w
934w 954w
845w
798w
641w 692w
8
1468s
1429m
1357w
1266m 1289w
1169m 1202w
1124w
1017w 1082w
917w 937w
785w 829w
1447w
1370w
1216w 1254w 1276w 1306w
1138w 1173w
1028w
927w 948w
637w
592w 629w 679w
702w
8d
8c
1439w 1456w
1366w
1306w 1346w
1241w
1003w 1023w 1056w 1080w
621w 642w 673w
8e
1434w 1476w
1367w 1388m
1136w 1148w 1182m 1191m 1237w 1290s
1032w 1079w 1104w
938m 957w
775w 804w 847w
644w 683w 698w 726 w
9b
1410w 1437m 1477s
1174m 1209w 1246w 1270m 1293w
1129w
1015w
921w 940w
762w 787w 831w 845w
631w 683w 705w
594w
9c
1452m
1357w 1374w
1307w
1216w 1255w
1138m 1169m
1025w 1072w
928w 947w
765w 793w
688w 710w
9d strong fluorescence
9e
Table 3 Characteristic Raman bands (cm−1) for RE[T(4-tBu)PP](Nc) [RE =La, Pr, Gd] and Eu[T(4-Cl)PP](Nc) a
1435w 1477w
1368w 1389m
1146w 1176m 1190w 1236w 1265w 1292s
1032w 1079w 1104w
937w 956w
578w 606w 644w 682w 698w 723w 757m 774sh 803m 846w
10 b
1413w 1444m 1480s
1369w
1130w 1159m 1174w 1213w 1248w 1274m 1296w
1017w 1087w
922w 942w
763w 791w 832m
686w 707w
595w 633w
10 c
1380w 1426w 1458w
1308w
1138m 1168m 1221w 1257w
1031w 1071w
948w
768w 795w
637w 691w 711w
10 d
1463w
1350w 1386w
1310w
1026w 1057w
644w
10 e
wCN wCb–Cb(pyrr.)
wCN
wCa–Cb(pyrr.)
lC–H
lC–H lC–H pyrrole breath. lC–H lC–H
lC–H lC–H
macrocycle breathing lmacrocycle wC–N (aza)
Assignment
562 J. Jiang et al. / Polyhedron 20 (2001) 557–569
1274w
1289w
1500w
1564w
1484w
1576w
1169w
1120w
11 d
1486s 1566w 1595w
8d
1561s
1450w 1492w
1308m 1350w 1373w 1386w
559w 622 w 644 w 676 w 958w 1025m 1057w 1082w
11 e
1560s 1591w
8e
1581w 1602w
1501s
9b
1547w 1576s
9c 1491s 1564w 1597w
9d
9e
b
8, La[T(4-tBu)PP](Nc); 9, Pr[T(4-tBu)PP](Nc); 10, Gd[T(4-tBu)PP](Nc); 11, Eu[T(4-Cl)PP](Nc). uex = 457.9 nm. c uex = 488.0 nm. d uex = 514.5 nm. e uex = 647.1 nm.
a
1506w
1162w
1178w
1417w
11 c
11 b
8c
1552w 1573w
b
1493s 1576w 1597w
8
Table 3 (Continued)
1575w 1601w
1506s
10 b
1549w 1580w
10 c 1499s 1565w 1597w
10 d 1492w 1561m
10 e
wCN wCb–Cb (pyrr.) wCN (aza) wbenzene
wCN
l C–H l C–H pyrrole breath. l C–H l C–H l C–H wCa–Cb(pyrr.)
macrocycle breathing lmacrocycle wC–N (aza) l C–H l C–H
wbenzene
wCN (aza)
Assignment
J. Jiang et al. / Polyhedron 20 (2001) 557–569 563
J. Jiang et al. / Polyhedron 20 (2001) 557–569
564
488.0, 514.5, 647.1 nm) are tabulated in Table 4 and assigned as previously for 632.8 nm excitation. As expected, the Raman spectrum (uex = 647.1 nm) is quite similar to that when using excitation u= 632.8 nm except for the intrusion of stronger fluorescence. Use of excitation at shorter wavelengths further enhances the fluorescence. However, for the purpose of reference, the corresponding Raman data are listed in Table 4.
3.5. Resonance Raman characteristics of Ce(TPyP)(Pc), M2(Por)2(Pc), and M2(Por)(Pc)2
Fig. 3. Resonance Raman spectra of Pr[T(4-tBu)PP](Nc) with excitation at (A) 457.9 nm, (B) 488.0 nm, (C) 514.5 nm, (D) 647.1 nm.
Table 4 Characteristic Raman bands (cm−1) for (Pc)Eu(Pc*)Eu(Pc*) [Pc* = Pc(OC8H17)8] a b
12
12 c
685w
12 d
681w
1176w
1502m 1593w a
1500m 1593w
1505m 1592w
12 e
Assignment
565w 575w 629w 683s 745m 768w 783w 816m 1106w
macrocycle breath. lmacrocycle wC–N (aza)
1138 w 1181w 1202w 1339w 1404m 1499m
lC–H lC–H pyrrole breath. lC–H lC–H lC–H wCa–Cb (pyrr.) wCN wCb–Cb (pyrr.) wbenzene
12, (Pc)Eu(Pc*)Eu(Pc*) [Pc* =Pc(OC8H17)8]. uex = 457.9 nm. c uex = 488.0 nm. d uex = 514.5 nm. e uex = 647.1 nm). b
The resonance Raman characteristics together with partial assignment [24] for Ce(TPyP)(Pc), M2(Por)2(Pc), and M2(Por)(Pc)2 (u=457.9, 488.0, 514.5, 647.1 nm) are summarised in Table 5. As expected from the similarity of the excitation wavelengths, the Raman spectrum of Ce(TPyP)(Pc) (uex = 647.1 nm) is quite similar to the one excited with 632.8 nm as both wavelengths are in close resonance with the main Q band of Ce(TPyP)(Pc) (630 nm). The sole difference is that the detection of Raman peaks in the range of 1090 –1458 cm − 1 is obscured to some degree due to increased fluorescence in the present case in contrast to the results obtained by the Raman microscope technique [24]. The Raman marker for the phthalocyanine dianion Pc2 − appears as an intense line at 1495 cm − 1, which downshifts by about 10 cm − 1 compared with that of Pc*2 − in Ce(Pc*)2, but corresponds well with that in the triple-decker M2(Por)2(Pc) and M2(Por)(Pc)2 as discussed previously [24]. With excitations (u= 457.9, 488.0, 514.5 nm) farther away from resonance with the main 630 nm Q absorption band of Ce(TPyP)(Pc), the strong wCb –Cb (pyrr.) line at 1495 cm − 1 (uex = 647.1 nm) shifts to 1516 –1521 cm − 1 together with the appearance of a shoulder band at about 1500 –1505 cm − 1. Moreover, a new line due to the ortho-substituted benzene quadrant stretches around 1590 cm − 1 becomes more significant as compared to the situations with excitation at 647.1 and 632.8 nm [24], the greatest enhancement of this medium intensity Raman line being obtained with excitation at 514.5 nm (Table 5). The resonance Raman spectra of (TPP)Sm(Pc)Sm(TPP) and [T(4-tBu)PP]Eu(Pc)Eu(Pc) with the four excitation lines are shown in Figs. 4 and 5, respectively. It is obvious that all the Raman investigations for the triple-deckers M2(Por)2(Pc) suffer from strong fluorescence when excited with 647.1 nm. This is in marked contrast with the results obtained with the Raman microscope technique with similar excitation wavelength (632.8 nm) [24]. However, good Raman spectra were obtained for these triple-deckers with excitations at 457.9, 488.0 and 514.5 nm. It is worth mentioning that the similarity of the Raman spectra of the two classes (Por)M(Pc)M(Por) and (Por)M(Pc)M(Pc) with
J. Jiang et al. / Polyhedron 20 (2001) 557–569
565
Table 5 Characteristic Raman bands (cm−1) for Ce(TPyP)(Pc), RE2(Por)2(Pc), and RE2(Por)(Pc)2 [RE= Ce, Sm, Eu; Por=TPP, TPyP, T(4-tBu)PP, T(4-Cl)PP] a 13
b
13 c
13 d
13 e
14 b
14 c
14 d
14 e
576w
579w 632w
577w
680w
684m
15 b
15 c
15 d
15 e
Assignment
574w 626w 667w 683w
macrocycle breathing
752 782w
lmacrocycle wC–N (aza)
547w 575w 638w 679w 756w
681w
676w 732w
742 w 803w
801w 828w 846w 884w
827w
678w 739w
679w 732w
689w
746 m 775w
800w
820m
828w
779w 795w 833w
822w
933w 953w
916w 937w
884w
897w
1004w
636w
884w 917s 939m
986w 1004w
999w
1004w
987w 1005w
988w 1006w
l C–H l C–H
1005w
1033m 1070w 1090w 1128w 1148w
1083w 1116w 1139w
1085w
1081w 1119w
1078w 1117w
1174w
1139w 1178w
1230s
1230m
1230m
1278m
1278w
1177w 1194w
1195w
1222w
1239w 1260w
1238w 1268w
1231w
1230w 1266w
1078w 1120w
1082w 1118w 1137w 1176w
1078w 1116w
1228w 1266w
1230s 1274w
1298m 1319m 1348w
1343m 1359w
1339m
1403w 1455s 1510s
1493m 1517w 1540w
1494m 1541m
1564w 16
b
1344s
1344s
1391w 1439w
1494s
1493s
1493s
1543s
1540s
1541s
1438w 1477w 1491w 1513w
16
c
16
d
550w
strong fluorescense
681w 731w
16
e
lC–H lC–H pyrrole breath. lC–H lC–H lC–H
1219w 1230w
1302w
1281w 1297s 1312w
1345s
1355w
1333m 1345m 1360m 1393w 1442m
1440w
1495s
1496m
1544s
1541m
lC–H wCa–Cb(pyrr.)
wCN wCN
1394w 1454s 1505s
1447w 1498w
wCb–Cb(pyrr.) wCN (aza)
1563w 1599w
1599w
1599w
b
c
d
17
17
576w
679w 710w 729w
679w 711w 733w
17
17
e
1599w
1599w
b
c
18
18
576w
657w 677w
678w
733w
732w
18
547w 578w
576m
679w
679s 710w 732sh 743s 782w 806w 816m
802w 815w
816w
816w
884w
889w
889w
988w 1007w
989m 1007w
990w 1008w
888w 936w 990w 1008w 1028w
1081w
1080w 1103w
733w
577w
wbenzene d
579w 628w
736 w 782w
779w
1073w
1178m
1554w
594w
680w
1493w
1344m 1360m 1393w 1442w
1068w 1088w 1123w
678w 708w 731w 743 w
781w
18
e
576w
678s 730w 741 m 779w
macrocycle breathing lmacrocycle wC–N (aza)
797w 803w 814w 869w 890w 989w 1008w
1083w
815w 890w 991w 1007w 1029w 1074w
889w 988w 1006w
813w 885w 990w 1008w
1076w
1009w 1030w
937w 990w 1008w 1027w 1079w
1085w 1106w
1103w
1080w 1106w
815w
989w 1007w
1103w
lC–H lC–H lC–H
J. Jiang et al. / Polyhedron 20 (2001) 557–569
566 Table 5 (Continued) 16 b
16 c
16 d
1118w 1137w 1174w
1116w 1137m 1174w
1122w 1178w
1228w 1262w
1231m
17 c
17 d
17 e
18 b
18 c
18 d
1139w
1117w 1138m
1115w
1181w
1137w 1177w 1196w
1115w 1135w 1175w 1195w
1122w 1137w 1178w
1229m 1266w
1230m 1259w
1230m 1260w
1228m
1227w
1228m 1265w
1227m 1264w
1300w 1330sh
1302w 1331m
1301w 1329m
1276w 1298w 1328w
1307w 1330m
1303w 1327m
1346m 1360sh 1397w 1441w 1496s 1542s
1346m 1361m
1346m 1375w
1344m 1359m
1344s
1447w 1497s 1544s 1566w 1596w
1447w 1499s 1543s 1566s
1395w 1443w 1493s 1538s
1444w 1493s 1538s
1446w 1492s 1539s
1608w
1606w
1608w
1330w
1330sh
1330sh
1344w 1361w 1390w 1440w 1495s 1541s
1345s 1359sh 1391w
1345s 1360sh
16 e
17 b 1119w
1495m 1540m 1564w
1496s 1542s
1606w
1608w
19 c
19 d
19 d
684w
563w 629w 685w 725w 744w
1591w 19 b
682w
678w
748w
743w
1177w
1340w 1359w 1422w 1447m 1492m 1542w 1566w
1233m 1263w
1344m
18 e
1217w 1225w
lC–H pyrrole breath. lC–H lC–H lC–H
1299w 1329m 1337m
lC–H wCa–Cb(pyrr.)
1420w 1446w 1494s 1534w
wCN wCN wCb–Cb (pyrr.) wCN (aza) wbenzene
macrocycle breathing lmacrocycle wC–N (aza)
786w 807w 813w 848w
867w 894w
937w 989w 1006w 1029w
987w 1006w 1028w
1105w
1106w
1143w
1140w
1198w
1194w
1138w 1177w 1194w
1228w 1264w
1225w
1224w
1280w 1301w
1278m 1300w 1316w 1342m
992w 1010m 1033w 1087w 1108w
1304w 1347m
1454w 1505sh 1521s 1550m
1343m 1365w 1385w 1404w 1431w 1505sh 1516s 1546m
1597w
1595w
1393w
1403w 1430w 1505sh 1516s 1545w 1558w 1594m
988w 1006m 1028w 1090w
lC–H lC–H
1141w 1164m
lC–H lC–H pyrrole breath lC–H lC–H lC–H
1292w l C–H wCa–Cb(pyrr.) 1363m 1426w
wCN
1458w 1495s
wCN wCb–Cb (pyrr.)
1536w 1557m
wCN (aza) wbenzene
a 13, Ce2(TPyP)2(Pc); 14, Sm2(TPP)2(Pc); 15, Eu2(TPP)2(Pc); 16, Eu2[T(4-tBu)PP]2(Pc); 17, Eu2[T(4-Cl)PP](Pc)2; 18, Eu2[T(4-tBu)PP](Pc)2; 19, Ce(TPyP)(Pc). b uex = 457.9 nm. c uex = 488.0 nm. d uex = 514.5 nm. e uex = 647.1 nm.
J. Jiang et al. / Polyhedron 20 (2001) 557–569
567
the same excitation laser line clearly suggests that the spectra for these different kinds of triple-deckers are dominated by Pc2 − contributions. There is no Raman line that can be readily ascribed to the Por moiety even when the excitation at 457.9 nm (closer to resonance with the Soret band) was used. In both series of tripledeckers (Por)M(Pc)M(Por) and (Por)M(Pc)M(Pc), the w3 porphyrin-like mode (of the Pc moiety) shows two characteristic lines at ca. 1493 – 1505 and 1538 –1544 cm − 1, their relative intensity depending on both the sandwich species and the excitation energy used. These results are in good correspondence with those of Jiang on the Raman spectra of analogous compounds using the Raman microscope technique with excitation at 632.8 [24] and of Tran-Thi on (TPP)M(Pc%)M(TPP) [M = Ce, Gd, Pc% = Pc, Pc(OMe)8] using the FT Raman technique with excitation at 1064 nm [19]. Interestingly, the characteristic patterns of the resonance Raman spectra for these two kinds of triple-deckers are similar to each other and also similar to those reported by TranThi although different excitation laser lines were used.
4. Conclusions With excitation at 647.1 nm, the band at ca. 1503 cm − 1 with contributions from both CC (pyrrole) and
Fig. 4. Resonance Raman spectra of (TPP)Sm(Pc)Sm(TPP) with excitation at (A) 457.9 nm, (B) 488.0 nm, (C) 514.5 nm, (D) 647.1 nm.
Fig. 5. Resonance Raman spectrum of [T(4-tBu)PP]Eu(Pc)Eu(Pc) with excitation at (A) 457.9 nm, (B) 488.0 nm, (C) 514.5 nm, (D) 647.1 nm.
CN (aza group) stretches, is a good Raman marker band for the phthalocyanine dianion Pc%2 − [Pc% =Pc, Pc(OC8H17)8] in double-deckers CeIV(Pc*)2 [Pc*= Pc(OC8H17)8] and triple-decker (Pc)Eu(Pc*)Eu(Pc*) [Pc*= Pc(OC8H17)8]. In Pc*− radical anion-containing double-deckers MIII(Pc*)2 [Pc*= Pc(OC8H17)8], this band shifts to ca. 1508 –1524 cm − 1 depending on the rare earth ionic radius. When the excitation is farther away from resonance with the Q band absorption of the double-decker Ce(Pc*2 − )2 [Pc*= Pc(OC8H17)8], a medium intensity line around 1590 –1592 cm − 1 assigned to the benzene quadrant stretch of the Pc ring appears as an additional feature of Pc*2 − . A additional line of similar intensity appears at 1592 –1600 cm − 1 for the phthalocyanine monoanion radical Pc*− in MIII(Pc*)2 [Pc*= Pc(OC8H17)8]. For the same excitation wavelength, the most intense characteristic lines for Pc− occur at higher energy than those of the corresponding Pc*2 − . The appearance of only the Pc*− lines in MIII(Pc*)2 (M=Nd, Eu, Er) indicates strong ring –ring interaction and hole delocalisation over both substituted Pc chromophores on the time-scale of Raman spectra. This is in good agreement with the results previously reported by Homborg [15,28] and Jiang, Rintoul and Arnold [24] on a series of sandwich complexes but is in contrast to those for Gd(Pc)2 and Gd(TPP)(Pc) obtained by Tran-Thi [19].
568
J. Jiang et al. / Polyhedron 20 (2001) 557–569
When the excitation is far away from resonance with the Q band absorption of double-decker naphthalocyaninato rare earth complexes, the strongly enhanced Raman line at ca. 1586 – 1592 cm − 1, assigned to the naphthalene quadrant stretch, is a feature typical of naphthalocyanine monoanion radical Nc*− in M(Nc*)2 [Nc =Nc(tBu)4, Nc(SC12H25)8]. The shorter wavelength excitations are not suitable for recording resonance Raman spectra of M(Nc*)2 due to strong fluorescence. In contrast to the above situation, strong fluorescence interfered for M[T(4-tBu)PP](Nc) even when excited with 647.1 nm, which makes it difficult to compare the Raman spectra among the series of complexes. With excitation at 514.5 nm the most intense characteristic Raman line for naphthalocyanine monoanion radical Nc− is due to both CC (pyrrole) and CN (aza group) stretches and occurs at ca. 1486 – 1499 cm − 1. This line red-shifted to 1468 – 1480 cm − 1 under excitation at 488.0 nm, but blue-shifted to 1493 – 1506 cm − 1 with excitation at 457.9 nm. In the latter case, a less intense line appears at ca. 1286 – 1292 cm − 1, changing to a very weak one using excitations other than 457.9 nm. The energies of all the most intense naphthalocyanine monoanion radical marker lines blueshift as the size of the sandwiched rare earth ion in the mixed double-decker M[T(4-tBu)PP](Nc) decreases. This is also the case for Pc*− in PcMIII(Pc*)2 [Pc*= Pc(OC8H17)8]. Further systematic work is in progress to confirm this conclusion. When the porphyrin ligand is changed from [T(4-tBu)PP] to [T(4-Cl)PP] in the mixed double-decker, strong fluorescence interfered when the shorter wavelengths were used, while the Raman spectrum of M[T(4-Cl)PP](Nc) is quite similar to that of its analogue La[T(4-tBu)PP](Nc) when excited at 647.1 nm. The marker line of Pc2 − in the double-decker CeIV(TPyP)(Pc) occurss at ca. 1495 cm − 1 (uex =647.1 nm) but moves to 1501 cm − 1 as a strong shoulder along with another strong line at ca. 1516 – 1521 cm − 1 when excited with 457.9, 488.0 or 514.5 nm radiation. For the Pc2 − dianion in the triple-deckers M2(Por)(Pc)2 and M2(Por)2(Pc) with 647.1 nm excitation, the Raman line appears at 1492 – 1494 cm − 1, and at 1492 –1499 cm − 1 along with a strong line around 1534 – 1543 cm − 1 when the shorter wavelength excitations are used. Thus, the most intense Raman marker(s) for the phthalocyaninato monoanion radical Pc%− generally occur(s) at higher energy than those of the phthalocyanine dianion Pc%2 − under the same conditions.
Acknowledgements The authors thank the National Natural Science Foundation of China (grant no. 29701002), National Educational Ministry of China, Natural Science Foun-
dation of Shandong Province (Z99B03), State Key Lab of Rare Earth in Peking University, Science Committee of Shandong Province, Shandong University, and the Centre for Instrumental and Developmental Chemistry, Queensland University of Technology (Australia) for financial support. We also thank Dr Llew Rintoul for help in the preparation of the figures.
Appendix A. List of abbreviations M
rare earth metal ion, unless otherwise stated general phthalocyanine H2(Pc%) H2(Pc) unsubstituted phthalocyanine H2(Pc*) substituted phthalocyanine H2(Nc%) general naphthalocyanine H2(Nc) unsubstituted naphthalocyanine H2(Nc*) substituted naphthalocyanine H2[Pc(OC8H17)8] 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine H2[Nc(tBu)4] 3 (4), 12 (13), 21 (22), 30 (31)tetra(tert-butyl)-2,3-naphthalocyanine H2[Nc(SC12H25)8] 3,4,12,13,21,22,30,31-octa(dodecylthio)-2,3-naphthalocyanine H2(Por) general porphyrin H2(TPP) 5,10,15,20-tetraphenylporphyrin H2(TPyP) 5,10,15,20-tetra(4-pyridyl)porphyrin H2[T(4-Cl)PP] 5,10,15,20-tetra(4-chloro)phenylporphyrin H2[T(4-tBu)PP] 5,10,15,20-tetra(4-tert-butyl)phenylporphyrin
References [1] I.S. Kirin, P.N. Moskalev, Yu.A. Makashev, Russ. J. Inorg. Chem. 10 (1965) 1065. [2] I.S. Kirin, P.N. Moskalev, N.V. Ivannikova, Russ. J. Inorg. Chem. 12 (1967) 497. [3] (a) J.-J. Andre, K. Holczer, P. Petit, M.-T. Riou, C. Clarisse, R. Even, M. Fourmigue, J. Simon, Chem. Phys. Lett. 115 (1985) 463. (b) D. Markovitsi, T.-H. Tran-Thi, R. Even, J. Simon, Chem. Phys. Lett. 137 (1987) 107. (c) M. Mardru, G. Guillaud, M. Al Sadoun, M. Maitrot, C. Clarisse, M. Le Contellec, M.J.-J. Andre, J. Simon, Chem. Phys. Lett. 142 (1987) 103. (d) P. Turek, P. Petit, J.-J. Andre, J. Simon, R. Even, B. Boudjema, G. Guillaud, M. Maitrot, J. Am. Chem. Soc. 109 (1987) 5119. (e) J. Simon, F. Tournilhac, J.-J. Andre, J. Appl. Phys. 62 (1987) 3304. [4] (a) M. Maitrot, G. Guillaud, B. Boudjema, J.-J. Andre, H. Strzelecka, J. Simon, R. Even, Chem. Phys. Lett. 133 (1987) 59. (b) T.-H. Tran-Thi, D. Markovtsi, R. Even, J. Simon, Chem. Phys. Lett. 139 (1987) 207. (c) Z. Belarbi, M. Maitrot, K. Ohta, J. Simon, J.-J. Andre, P. Petit, Chem. Phys. Lett. 143 (1988) 400. (d) R. Madru, G. Guillaud, M. Al Sadoun, M. Maitrot, J.-J. Andre, J. Simon, R. Even, Chem. Phys. Lett. 145 (1988) 343. [5] (a) J. Jiang, D. Du, M.T.M. Choi, J. Xie, D.K.P. Ng, Chem. Lett. (1999) 261. (b) J. Jiang, R.C.W. Liu, T.C.W. Mak, T.D.W. Chan, D.K.P. Ng, Polyhedron 16 (1997) 515. (c) J. Jiang, W.
J. Jiang et al. / Polyhedron 20 (2001) 557–569
[6] [7]
[8] [9]
[10] [11]
[12] [13] [14] [15]
[16] [17] [18]
[19] [20]
[21]
Liu, W.-F. Law, J. Lin, D.K.P. Ng, Inorg. Chim. Acta 268 (1998) 49. (d) J. Jiang, J. Xie, D.K.P. Ng, Y. Yan, Mol. Cryst. Liq. Cryst. 337 (1999) 305. (e) J. Jiang, T.C.W. Mak, D.K.P. Ng, Chem. Ber. 129 (1996) 933. D. Chabach, A. De Cian, J. Fischer, R. Weiss, M. El, M. Bibout, Angew. Chem. Int. Ed. Engl. 35 (1996) 898. (a) J. Jiang, R.L.C. Lau, T.W.D. Chan, T.C.W. Mak, D.K.P. Ng, Inorg. Chim. Acta 255 (1997) 59. (b) R.L.C. Lau, J. Jiang, D.K.P. Ng, T.W.D. Chan, J. Am. Soc. Mass Spectrosc. 8 (1997) 161. (c) J. Jiang, W. Liu, W.-F. Law, D.K.P. Ng, Inorg. Chim. Acta 268 (1998) 141. D.K.P. Ng, J. Jiang, Chem. Soc. Rev. 26 (1997) 433. (a) J. Jiang, M.T.M. Choi, W.-F.Law, J. Chen, D.K.P. Ng, Polyhedron 17 (1998) 3903. (b) J. Jiang, J. Xie, M.T.M Choi, S. Sun, D.K.P. Ng, J. Porphyrins Phthalocyanines 3 (1999) 322. J. Jiang, D.P. Arnold, H. Yu, Polyhedron 18 (1999) 2129. (a) I.S. Kirin, P.N. Moskalev, Yu.A. Makashev, Russ. J. Inorg. Chem. 12 (1967) 369. (b) P.N. Moskalev, I.S. Kirin, Russ. J. Inorg. Chem. 15 (1970) 7. G.A. Corker, B. Grant, N.J. Clecak, J. Electrochem. Soc. 126 (1979) 1339. M. M’Sadak, J. Roncali, F. Garnier, J. Electroanal. Chem. 189 (1985) 99. C. Clarisse, M.T. Riou, Inorg. Chim. Acta 130 (1987) 139. (a) G. Ostendorp, H. Homborg, Z. Anorg. Allg. Chem. 622 (1996) 873. (b) G. Ostendorp, H. Homborg, Z. Anorg. Allg. Chem. 622 (1996) 1358. J. Jiang, W. Liu, J. Lin, D.K.P. Ng, Huaxue Tongbao 7 (1997) 14. J. Janczak, Pol. J. Chem. 72 (1998) 1871. (a) K.M. Kadish, G. Moninot, Y. Hu, D. Dubois, A. Ibnlfassi, J.-M. Barbe, R. Guilard, J. Am. Chem. Soc. 115 (1993) 8153. (b) R. Guilard, J.-M. Barbe, A. Ibnlfassi, A., Zirneh, V.A. Adamian, K.M. Kadish, Inorg. Chem. 34 (1995) 1472. T.H. Tran-Thi, T.A. Mattioli, D. Chabach, A. De Cian, R. Weiss, J. Phys. Chem. 98 (1994) 8279. J. Jiang, K. Kasuga, D.P. Arnold, in: H.S. Nalwa (Ed.), Supramolecular Electroactive and Photosensitive Materials, Academic Press, 2001, in press. (a) R. Aroca, R.E. Clavijo, C.A. Jennings, G.A. Kovacs, J.M. Duff, R.O. Loutfy, Spectrochimica Acta 45A (1989) 957. (b) R.E. Clavijo, D. Battisti, R. Aroca, G.J. Kovacs, C.A. Jennings,
.
[22]
[23]
[24] [25] [26] [27]
[28]
[29]
[30] [31]
[32] [33]
569
Langmuir 8 (1992) 113. (c) M.L.R. Mendez, Y. Khoussed, J. Souto, J. Sarabia, R. Aroca, J.A. de Saja, Sensors Actuators B 18 – 19 (1994) 89. (a) M.S. Haghighi, A. Franken, H. Homborg, Z. Naturforsch, Teil B 49 (1994) 812. (b) M.S. Haghighi, H. Homborg, Z. Anorg. Allg. Chem. 620 (1994) 1278. (c) M.S. Haghighi, G. Peters, H. Homborg, Z. Anorg. Allg. Chem. 620 (1994) 1285. (a) T. Nyokong, F. Furuya, N. Kobayashi, W. Liu, D. Du, J. Jiang, Inorg. Chem. 39 (2000) 128. (b) W. Liu, Jiang, D. Du, D.P. Arnold, Aust. J. Chem. 53 (2000) 131. (c) J. Jiang, W. Liu, N. Pan, D.P. Arnold, Inorg. Chim. Acta, in press. J. Jiang, L. Rintoul, D.P. Arnold, Polyhedron 19 (2000) 1381 and refs. cited therein. J. Jiang, W. Liu, K.-W. Poon, D.P. Arnold, D.K.P. Ng, Eur. J. Inorg. Chem. (2000) 205. W. Preetz, E. Parzich, Z. Naturforsch, Teil B 48 (1993) 1737. (a) D. Battisti, L. Tomilova, R. Aroca, Chem. Mater. 4 (1992) 1323. (b) D. Battisti, R. Aroca, J. Am. Chem. Soc. 114 (1992) 1201. (c) J. Souto, L. Tomilova, R. Aroca, J.A. DeSaja, Langmuir 8 (1992) 942. (d) M.L. Rodriguez, R. Aroca, J.A. DeSaja, Chem. Mater. 5 (1993) 933. (a) G. Ostendorp, H. Homborg, Z. Naturforsch., Teil B 50 (1995) 1200. (b) G. Ostendorp, H. Homborg, Z. Anorg. Allg. Chem. 622 (1996) 1222. (c) G. Ostendorp, H.W. Rotter, H. Homborg, Z. Anorg. Allg. Chem. 622 (1996) 235. (d) M.S. Haghighi, M. Rath, H.W. Rotter, H. Homberg, Z. Anorg. Allg. Chem. 619 (1993) 1887. (e) M.S. Haghighi, H. Homborg, Z. Naturforsch, Teil B 46 (1991) 1641. (f) M.S. Haghighi, C.L. Teske, H. Homborg, Z. Anorg. Allg. Chem. 608 (1992) 73. (g) G. Ostendorp, S. Sievertsen, H. Homborg, Z. Anorg. Allg. Chem. 621 (1995) 451. (a) F. Guyon, A. Pondaven, P. Guenot, M. L’Her, Inorg. Chem. 33 (1994) 4787. (b) F. Guyon, A. Pondaven, J.-M. Kerbaol, M. L’Her, Inorg. Chem. 37 (1998) 569. M. Bouvet, J. Simon, Chem. Phys. Lett. 172 (1990) 299. (a) N. Ishikawa, O. Ohno, Y. Kaizu, Chem. Phys. Lett. 180 (1991) 51. (b) N. Ishikawa, O. Ohno, Y. Kaizu, J. Phys. Chem. 97 (1993) 1004. M. Bouvet, P. Bassoul, J. Simon, Mol. Cryst. Liq. Cryst. 252 (1994) 31. M. Passard, A. Pauly, J.P. Germain, C. Maleysson, Synth. Met. 80 (1996) 25.