FRACTALS IN PHYSICS L. Pietronero, E. Tosatti (editors) © Elsevier Science Publishers B.V.,
279 1986
RANDOM RAIN SIMULATIONS OF DENDRITIC GROWTH
B . C A P R I L E , A . C . L E V I and L . L I G G I E R I Universita del
d i Genova, D i p a r t i m e n t o
CNR, V i a Dodecaneso
33,
di F i s i c a and Gruppo N a z i o n a l e d i S t r u t t u r a
16146 Genova,
dell a Materia
Italy
Two-dimensional growth s i m u l a t i o n s are d e s c r i b e d f o r a "random r a i n " m o d e l , where the c a n d i d a t e s f o r s t i c k i n g approach the g r o w i n g c l u s t e r a l o n g random s t r a i g h t l i n e s . Both i s o t r o p i c growth from a c e n t r a l seed and growth on a base l i n e on to which the "atoms" f a l l o b l i q u e l y from a p a r a l l e l l i n e are s t u d i e d . The r e s u l t i n g c l u s t e r s appear to be h i g h l y r a m i f i e d , a l t h o u g h l e s s so than f o r DLA, and t h e i r H a u s d o r f f - B e s i c o v i t c h dimension i s c o n s i d e r e d . I n t e g r o - d i f f e r e n t i a l equations for the l o c a l d e n s i t y a s a f u n c t i o n o f p o s i t i o n and time are a l s o d e r i v e d . F u r t h e r the s i m u l a t i o n i s m o d i f i e d by i n c l u d i n g d i f f e r e n t p h y s i c a l e f f e c t s , namely: 1) e v a p o r a t i o n ; 2) s u r f a c e t e n s i o n ( i n the form o f d i f f e r e n t i a l s t i c k i n g p r o b a b i l i t i e s ) ; 3) heat d i f f u s i o n i n the s o l i d ; 4) s u r f a c e d i f f u s i o n a l o n g the b o r d e r . I n t h i s way a p a r t i a l l y r e a l i s t i c p i c t u r e o f t w o - d i m e n s i o n a l c r y s t a l growth i s a p p r o a c h e d .
1.
INTRODUCTION
sticking,
Although d e n d r i t i c
crystal
growth has been
f o r a l o n g time a model f o r the g e n e r a t i o n ramified
t h i s phenomenon are f a r theory
of
o b j e c t s , microscopic simulations of from abundant and the
has remained to a l a r g e e x t e n t 1
scopic .
Diffusion-limited
Brownian p a t h s c h a r a c t e r i s t i c the r e s u l t i n g model the
a g g r e g a t i o n (DLA)
i s not a l t o g e t h e r
s t a r t i n g from M a r j o r i e 4 and i n v o l v i n g the work o f S u t h e r l a n d ;
B e s i d e s , DLA s i m u l a t i o n s are f a i r l y
mon e t a l .
expensive
computationally
(because o f the c o s t o f random
walk).
s i n c e i n our l a b o r a t o r y
atom-
i s s t u d i e d , we were more
i n growth from vapour than i n growth
5
and two
of the a u t h o r s
for
recently,
. In
the
candidates
for
first
a
then the "atoms"
a g g r e g a t i o n a r e made t o
starting
s i m u l a t i o n s where the " a t o m s " , c a n d i d a t e s
6
both i n two d i m e n s i o n s . I n the f o r m e r , seed i s p l a c e d a t the c e n t r e ;
DLA. perform
has 3 Void
p r e s e n t work two g e o m e t r i e s were c o n s i d e r e d ,
inwards from the c i r c u m f e r e n c e
these r e a s o n s , we chose to
It
has been c o n s i d e r e d i n s i m u l a t i o n s by B e n s i -
from s o l u t i o n , which would be b e s t modeled by
For a l l
new.
a long h i s t o r y ,
it
interested
(RR) mo-
2. THE RANDOM RAIN MODEL
cept i n s p e c i a l c a s e s ) than DLA c l u s t e r s .
surface scattering
"random r a i n "
similarity
w i t h c r y s t a l g r o w t h ; but d e n d r i t i c c r y s t a l s are much more compact and l e s s r a m i f i e d ( e x
Finally,
o f DLA. We c a l l
del.
The RR model to bear a mathematical
the
macro
2 was shown
" r a i n " on t o the g r o w i n g c l u s t e r a l o n g
random s t r a i g h t l i n e s r a t h e r than a l o n g
start
of a large c i r c l e ,
from random p o i n t s and moving a l o n g
random c o r d s . made to f a l l
I n the l a t t e r , on t o a l i n e ,
the
"atoms" are
i n random d i r e c t i o n s ,
Β. Caprile et al.
280
from a p a r a l l e l
meet e i t h e r the base l i n e o r the growing ter.
A r e p r e s e n t a t i v e example o f a
grown i n the former geometry 1 . The RR procedure tures
H . - B . d i m e n s i o n o f RR c l u s t e r s i s t r i v i a l ,
l i n e and t o s t i c k when they clus
produces r a m i f i e d
Figure
creasing cluster
than near the
t o s t i c k on a branch i s
i s presumably not
fi
size.
Growth on a l i n e
3.2.
struc
( a l t h o u g h l e s s so than i n D L A ) , because
the p r o b a b i l i t y
1.86
n a l , and s h o u l d i n c r e a s e s l o w l y to 2 w i t h i n
cluster
i s shown i n
D=2. Thus the v a l u e
i.e.
Here D was measured by c o u n t i n g "atoms" w i t h
higher
centre.
i n s t r i p s o f l e n g t h 1 and i n c r e a s i n g width
z,
a c c o r d i n g t o the formula N ( z ) - ^ l z ° \
re
The
s u l t i s a g a i n D = 1 . 8 6 ± . 0 2 , but a g a i n we expect D to approach 2 f o r l a r g e r
Ξ _ι
clusters.
0
CJ OvJ en
—ι
0
1
2
3
4
5
0
1
2
3
4
5
LN C D I STANCE FROM THE SEED 1 FIGURE 2 E v a l u a t i o n o f the H . - B . d i m e n s i o n a c c o r d i n g to the a l g o r i t h m D ( r ) = l n [ A - | N ( r ) / K ] / I n r where A^ i s the u n i t c e l l area and N ( r ) the number o f o c c u p i e d s i t e s w i t h i n a c i r c l e o f r a d i u s r, f o r the c l u s t e r s shown i n (1) F i g . 1 ; (2) F i g . 3 ; (3) F i g . 4 and (4) F i g . 5 .
FIGURE 1 C l u s t e r o b t a i n e d by s i m p l e RR attachment square
on a
lattice.
3 . HAUSDORFF-BESICOVITCH DIMENSION 3 . 1 . Growth from a seed 4.
The H a u s d o r f f - B e s i c o v i t c h dimension D o f a c l u s t e r was measured by c o u n t i n g "atoms" w i t h i n c i r c l e s o f i n c r e a s i n g r a d i u s , as shown i n The r e s u l t
i s D=1.86±.03.
However,
both
Fig.2.
extensi
ve s i m u l a t i o n s by M e a k i n 7 and a mathematical gument by B a l l
and W i t t e n ^
indicate
that
the
a_r
INTEGRO-DIFFERENTIAL EQUATIONS The mean r a d i a l
density
^(r,t)
growing from a seed i n the RR model w i t h time a c c o r d i n g to the equation
of a c l u s t e r increases
integro-differential
:
—Τ = Α φ ^ t τ
d < y ( R 2 + r 2 - 2Rr cos y
)"* χ
Random rain simulations of dendritic growth
x exp { Jln[l - v p ( r \ t ) ] dl } where ( R , - ^ )
(1)
a r e p o l a r c o o r d i n a t e s o f the s o u r c e
p o i n t o f the c i r c u m f e r e n c e
o f the l a r g e
and d 1 i s the d i f f e r e n t i a l h o l d s p r o v i d e d the c l u s t e r
circle
path l e n g t h .
Eq.(1)
i s very l a r g e i n com
281
b) heat d i f f u s i o n
i n the s o l i d ;
c) macroscopic c r y s t a l d) s u r f a c e
symmetry
diffusion.
Attempts have been made i n more r e c e n t s i m u l a t i o n s t o account f o r these
effects.
p a r i s o n t o the l a t t i c e s p a c i n g . The e x p o n e n t i a l d e s c r i b e s t h e o p a c i t y o f the c l u s t e r . Eq,
( 1 ) b e l o n g s t o an i n t e r e s t i n g
class of
e v o l u t i o n e q u a t i o n s whose s i m p l e s t i n s t a n c e i s : = [ f ( x ) + g ( x ) i f ( x , t ) ] e x p { - Γvp(x\t)dx'} (2) which can be e a s i l y s o l v e d a n a l y t i c a l l y
i n the
c a s e s : a ) g = 0 ; b) g = 1 , f = 0 . When t - > © o ,γ> tends to a functionvp
whose i n t e g r a l
diverges a t long
d i s t a n c e s . The o p a c i t y o f the o u t e r c l u s t e r becomes i n f i n i t e ,
p a r t s o f the
s o t h a t a t each
point
χ the d e n s i t y y s t o p s i n c r e a s i n g a f t e r a c e r t a i n time t ( t depends on x ) .
5.
EVAPORATION S t i c k i n g without
i n f i n i t e chemical tween f l u i d
evaporation corresponds to
potential
and s o l i d .
and atoms e v a p o r a t e .
differenceΔ^ι be
I n real
lifeA^
This situation
is finite
i s simulated
FIGURE 3 C l u s t e r o b t a i n e d on a hexagonal l a t t i c e . The s t i c k i n g p r o b a b i l i t y o f an "atom 11 i s f i x e d a s 0 . 0 2 , 0 . 3 o r 1 i f i t s attachment g i v e s t h e f u l f i l m e n t o f a segment, a t r i a n g l e o r a h e x a g o n . a) The e f f e c t s
of surface tension are p a r t l y
c o n s i d e r e d , s i m p l y by f a v o u r i n g attachment
at
by a l l o w i n g random detachment o f atoms from t h e
p o i n t s h a v i n g many n e i g h b o u r s . T a k i n g an under
periphery
l y i n g hexagonal l a t t i c e , a d i f f e r e n t i a l
stick
ing p r o b a b i l i t y
higher
o f the c l u s t e r .
along s t r a i g h t l i n e s u n t i l
S u b s e q u e n t l y they move they e i t h e r meet a n
i s assumed by a s s i g n i n g
o t h e r p a r t o f the c l u s t e r and s t i c k a g a i n o r
probability
d i s a p p e a r f a r from t h e c l u s t e r .
completes a t r i a n g l e
f o r s t i c k i n g when t h e added "atom" and s t i l l
h i g h e r when
completes a h e x a g o n . By f a v o u r i n g l i n e a r 6.
HEAT PROPAGATION AND DIFFERENTIAL S T I C K I N G
d e r s , t h i s procedure s i m u l a t e s s u r f a c e
The p r e v i o u s s i m u l a t i o n s l a c k many p h y s i c a l
b) L a t e n t
properties tal
t h a t a r e o f importance
i n real
crys
g r o w t h . Among t h e s e p r o b a b l y t h e most impo£
it
bor
tension.
heat i s produced when an "atom" s t i c k s ,
and i s p r o p a g a t e d t h r o u g h t h e c l u s t e r ,
with
heat f l u x p r o p o r t i o n a l
differen
t o temperature
tant are:
ce between n e i g h b o u r i n g c e l l s . E x c e s s heat i s
a) s u r f a c e t e n s i o n ;
radiated
away o u t o f t h e p l a n e .
Β. Caprile et al.
282
H . - B . d i m e n s i o n s are e v a l u a t e d apparent
i n F i g . 2:
the
D tends to i n c r e a s e a s more p h y s i c a l
e f f e c t s are
included.
FIGURE 4 Cluster obtained
introducing
sticking probabilities; s i d e the c l u s t e r ; cluster;
4)
3)
2)
1)
differential
heat t r a n s p o r t
heat r a d i a t i o n
out o f
" s u r f a c e " d i f f u s i o n o f the
in the
sticking
"atom".
achieved
in the p r e s e n t
physical
information
t i o n s by a l l o w i n g
the
REFERENCES
s i m u l a t i o n s ; however
the
1 . J . S . L a n g e r , Rev. M o d . P h y s . 52 (1980)
concerned s h o u l d be a g a i n
i s included
until
i n the
simula
it
finds a
1.
Phys.Rev.Letters
P h y s . R e v . B27 (1983) 5686.
3 . M . T . V o l d , J . C o l l o i d S c i . 18 (1963)
684.
the
site
4.
D.N.Sutherland, 25 (1967) 373.
J . C o l l o i d S c i 22 (1966)
300;
e i t h e r because o f
o r because o f ease to
dis
5.
D . B e n s i m o n , E.Domany and A . A h a r o n y , L e t t e r s 51 (1983)
Phys.Rev.
1394.
(b).
S i m u l a t i o n s d i f f e r by i n c l u d i n g one or more of the e f f e c t s
(a)
-
(d)
and/or
s t i c k i n g only (Figure
3),
including or add
i n g h e a t p r o p a g a t i o n and s u r f a c e d i f f u s i o n and e v a p o r a t i o n
(Fig.
5).
The
6 . A . C . L e v i and
L.Liggieri,Surf.Sci.148(1984)
212.
evaporation.
The examples shown a r e c l u s t e r s grown differential
and L . M . S a n d e r ,
47 (1981) 1400;
"atom" to wander a l o n g
where s t i c k i n g i s f a v o u r e d
s i p a t e heat
2. T.A.Witten
sticking.
perimeter o f the c l u s t e r ,
n e i g h b o u r number ( a )
evaporation.
not
crystal
r e l a t e d to d i f f e r e n t i a l d) S u r f a c e d i f f u s i o n
but i n c l u d i n g
symmetry i s
c) M a c r o s c o p i c hexagonal
4)
FIGURE 5 Same a s F i g . 4 ,
(Fig.
corresponding
7.
P.Meakin, private
communication.
8.
R . C . B a l l and T . A . W i t t e n , (1984) 2966.
P h y s . R e v . A 29