Rare earths oxide film effect on different metal and alloys at high temperature in oxidizing conditions

Rare earths oxide film effect on different metal and alloys at high temperature in oxidizing conditions

Advanced Materials '93, I / A: Ceramics, Powders, Corrosion and Advanced Processing, edited by N. Mizutani et al. Trans. Mat. Res. Soc. Jpn., Volume 1...

534KB Sizes 0 Downloads 57 Views

Advanced Materials '93, I / A: Ceramics, Powders, Corrosion and Advanced Processing, edited by N. Mizutani et al. Trans. Mat. Res. Soc. Jpn., Volume 14A © 1994 Elsevier Science B.V. All rights reserved.

107

Rare earths oxide film effect on different metal and alloys at high temperature in oxidizing conditions. J.C.Colson, H.Buscail, G.Bonnet, RSotto, J.P.Larpin. Laboratoire de Recherches sur la Réactivité des Solides Fac. Sci. Mirande, BP 138, F.21004 Dijon Cedex Abstract : Different m e t h o d s for rare e a r t h s d e p o s i t i o n o n the s u r f a c e of iron a n d A I S I 3 0 4 , F 1 7 T i s t a i n l e s s s t e e l s l a n d s t e e l s a r e p r o p o s e d . T h e c o a t e d or n o n c o a t e d s a m p l e s in c o r r o s i o n t e s t s u n d e r i s o t h e r m a l c o n d i t i o n s r e v e a l e d a n i d e n t i c a l o x i d a t i o n p r o c e s s but t h e c o r r o s i o n r a t e c o n s t a n t s d e c r e a s e d s i g n i f i c a n t l y for t h e c o a t e d s a m p l e s . In t h e r m a l c y c l i c c o n d i t i o n s , p r o t e c t i v e s c a l e spallation c o m p l e t e l y d i s a p e a r e d for c o a t e d s a m p l e s . It w a s s h o w n that t h e rare e a r t h effect is m o r e e f f e c t i v e w i t h e l e m e n t s l o c a t e d o n t h e left in t h e l a n t h a n i d e period of t h e Periodic T a b l e . D i f f é r e n t s e x p l a n a t i o n s for t h e s e results p r o p o s e d . 1.

INTRODUCTION

oxygen cycling reaction at r o o m

T h e b e n e f i c i a l e f f e c t of r a r e e a r t h o n h i g h t e m p e r a t u r e o x i d a t i o n r a t e of s t e e l a n d p a r t i c u l a r l y o n p r o t e c t i v e s c a l e a d h e r e n c e , is now well e s t a b l i s h e d , as well as by introduction as a minor e l e m e n t (1-3), by i m p l a n t a t i o n (4) or by c h e m i c a l p r o c e s s e s (510). C h e m i c a l p r o c e s s e s (sol/gel and/or electrophoresis, Organometallic Chemical V a p o r D e p o s i t i o n m e t h o d s (11)) to realize rare e a r t h o x i d e c o a t i n g s , w h i c h are e a s i e r s e e m to b e a p r o m i s i n g w a y . M e c h a n i s m s are not yet well understood (1-16).

R a r e e a r t h o x i d e w e r e d e p o s i t e d by v a r i o u s processes : I - P o l y m e r i c c o a t i n g s b y d i p p i n g s a m p l e s in a c o l l o ï d a l s o l u t i o n of c e r i a in a n a q u e o u s solution of p o l y a c r y l a m i d . II - A l c o h o l i c c o a t i n g s by d i p p i n g s a m p l e s in an alcoholic solution of a m m o n i u m c e r i u m nitrate. III - E l e c t r o p h o r e t i c c o a t i n g s r e a l i z e d w i t h a very fine g r a i n e d c e r i u m h y d r o x i d e sol d i s p e r s e d in water or in o r g a n i c s o l v a n t ( D M F ) . IV - M O C V D p r o c e s s w h i c h led us to p e r f o r m a s y s t e m a t i c s t u d y of t h e r a r e e a r t h effect w i t h practically all t h e rare e a r t h e l e m e n t s (17).

In this p a p e r , t h e e f f e c t of rare e a r t h o x i d e deposited by various chemical processes on iron, A I S I 3 0 4 , F 1 7 T i s t a i n l e s s s t e e l s a n d FeMn-AI alloy is s t u d i e d . Fe Electrolytic F e

C

Cr

for all < 0 , 1

at 2 x 1 0 ^ P a , u n d e r i s o t h e r m a l or c o n d i t i o n s ( o n e c y c l e = 2 h r s at t h e t e m p e r a t u r e : 9 5 0 ° C, f o l l o w e d by 1 hr temperature).

W h a t e v e r t h e p r o c e s s t o p r o d u c e t h e rare Ni

Mn

AI

Mo

Cu

e x c e p t i n g for H - N a , K , C a , M o , M n , C o , N i , C u < 1

Si

μg/g

AISI 304

bal

0,042

17,74

8,8

1,4

0,16

0,17

0,48

F17Ti

bal

0,015

17,19

0,12

0,39

0,06

0,07

0,4

Fe-Mn-AI

bal

0,28

0,018

0,01

32

6,6

Fe-Mn-AI-0,5Si

bal

0,27

0,018

0,01

30

6,2

0,55

Fe-Mn-AI-0,8Si

bal

0,29

0,018

0,01

31

6,8

0,8

High

temperature

oxidation

tests

were

p e r f o r m e d in a m i c r o t h e r m o b a l a n c e e i t h e r in air u n d e r a t m o s p h e r i c p r e s s u r e or in pure

earth oxide film, the coated s p e c i m e n s were reheated

following

a

linear

temperature

increase up to 8 0 0 ° C , remaining one

hour,

108 and

slowly

cooled

down

to

the

Isothermal

room

oxidation

kinetics

exhibited

linear m a s s - g a i n c u r v e s ( F i g . 2 ) . T h e c o m p a c t

temperature. The coating characterisation

have

o x i d e s c a l e is c o m p o s e d m a i n l y w u s t i t e . O x i d e

been

grain

r e a l i s e d b y X r a y diffraction a n d S.I.M.S.

growth

occurs

with

a

preferential

orientation. T h e o x i d a t i o n m e c h a n i s m is similar to

that

proposed

by

P. K O F S T A D

who

e m p h a s i z e s a c o n s t a n t n u m b e r of g r o w t h sites d e t e r m i n e d b y t h e t e x t u r e of t h e o x i d e layer. W i t h c o a t e d p u r e iron t h e l i n e a r o x i d a t i o n kinetics a r e c o n s e r v e d for t h e c o a t e d s a m p l e s , but t h e rate c o n s t a n t i n c r e a s e s . T h e o x i d a t i o n m e c h a n i s m is also t h e s a m e , but c e r i u m o x i d e o n t h e s u r f a c e of t h e m e t a l Τ ι me 3 2

O X Y G E N E

p r o b a b l y i n c r e a s e s t h e n u m b e r of n u c l e a t i o n

?COÛ [sec ] N d 2 Ô S ' / 3 0 < 2 h 1 0 0 8

B 0 N E T D ? 3 P f *

P o s i t i v e J5:2I:29

2 2 F e b 19S3

s i t e s a n d , c o n s e q u e n t l y , t h e c o r r o s i o n rate. M o r e o v e r in all c a s e s ( c o a t e d a n d u n c o a t e d

Figure 1 : Concentration profiles at the surface vicinity of N d 2 0 3 coated AISI 304 (5 Minutes

during cooling.

coated and heating 1 h at 800°C and 2h in oxidation conditions).

w a s o b s e r v e d iron o x i d a t i o n b e h a v i o r .

iron)

w e never

observed

scale

spallation

In c o n c l u s i o n , n o p o s i t i v e rare e a r t h effect That

d o e s not m e a n h o w e v e r that t h e r a r e e a r t h Concentration

profiles

show

(Fig. 1 ) a

e l e m e n t d o e s n o t play a role in t h e o x i d a t i o n

mixing with natural oxide produced on the

mechanism.

s a m p l e d u r i n g h e a t i n g . S u p e r f i c i a l rare e a r t h

2.2.AISI 304 stainless steel

c o n c e n t r a t i o n is high a n d d e c r e a s e s quickly.

a

2. HIGH TEMPERATURE TESTS 2.1.Pure Iron oxidation

p a r a b o l i c m a s s - g a i n c u r v e s ( F i g . 3 ) . T h e rate

-

Isothermal

OXIDATION

oxidation

Am/S=f(Vt) were respectively kp=5,1.10'

iron. This s y s t e m have been studied ( 2 1 0 "

1 2

g cm"V 2

1

2

3 < P Q < 2 1 0 " ) t o c o n s t i t u t e a r e f e r e n c e with a 4

2

Ε ο

pure metal.

exhibited

1,8.10"

1 2

C

5

I I I I I 1 I 1 > 1 1

Uncoated AISI 304 al

1000'C

Uncoated AISI 304 at

950°C

6 I I 1 1 i I Π

7 I i i,

en

Μ- ι ·)

Pur Iron Iron Coated by Ce 0

1.2 1 0.8

0.8 2

0.8

1 000°C y

0.6 Η

and

at 9 5 0 a n d 1 0 0 0 C . 4

I I I I I I I 1 1 1

1.2

m/s

ε

kinetics

c o n s t a n t s k p m e a s u r e d f r o m t h e linear plots

Firstly w e h a v e s t u d i e d t h e b e h a v i o r of p u r e

I

oxidation

Uncoatied AISI 3 0 4 stainless steel :

0.6

950°C

//

0.4

1OO0°C

0.2

' " ' 950°C

*, ".

.—

ι

1

1

1

—ι

1

1—

ι

10

0

·

12

F i g u r e 2 : Pure Iron uncoated and coated by C e 0 (isothermal oxidation). 2

Figure 3 : AISI 304 isothermal oxidation in air. t(h)

Am/S= f(t) and Am/S = f (VtJ. T h e m o r p h o l o g y a n d c o m p o s i t i o n of t h e oxide

scale

grown

were

determined

as

109 f u n c t i o n of t h e c o r r o s i o n t e s t t i m e . T h e o x i d e w a s initially c o m p o s e d of F e C r 2 0 , t h e n a n

(kp=8,1.10~ and 1 , 8 . 1 0 " g c m " V at 950 and 1000°C respectively). T h e protective o x i d e s c a l e is s t r o n g l y a d h e r e n t t o t h e m e t a l substrate. F r o m a m o r p h o l o g i c a l p o i n t of v i e w o x i d e s c a l e g r o w n w a s practically t h e s a m e a s t o t h e s c a l e o b s e r v e d o n t h e u n c o a t e d alloy. X-ray measurements indicated the following phase : MnFe 0 , Cr 0 but w e also found a 1 3

4

internal c h r o m i a subscale f o r m e d , which w a s c r o v e r e d b y a n e x t e r n a l s c a l e c o m p r i s e d of two spinels : M n C r 0 and F e C r 0 2

4

2

4

containing ( F e C r ^ C ^ nodules. T h e internal g r o w t h of s i l i c a w a s a l s o o b s e r v e d a l o n g t h e alloy grain b o u n d a r i e s .

2

U n d e r t h e r m a l c y c l i n g c o n d i t i o n s (Fig 4)

4

complex

scale spallation a p p e a r e d after 5 or 7 cycles.

1 2

2

oxide

with

a structure 2 1

Λ 1 I I I II II 1 1 1,1 Uncoated AJSI 304 steel

0.6



AISI 304 Coated by C e Q

ro.48-^

3 8

close

to

(19).

0.6

Under thermal cycling conditions (Fig 4), t h e s c a l e spallation c o m p l e t e l y d i s a p p e a r e d .

•0.48

The M O C V D m e t h o d lead us to prepare c o a t i n g s of p r a c t i c a l l y all t h e r a r e e a r t h e l e m e n t s . A s s h o w n in F i g 5 , t h e r a r e e a r t h effect is m o r e i m p o r t a n t w i t h e l e m e n t s l o c a t e d o n t h e left in t h e l a n t h a n i d e p e r i o d of t h e Periodic Table.

2

I hO.36 0.360.240.12-

0.12

τ-ρττ

1

3

((Ca,Ce)(Ti,Fe,Cr,Mg)) 0 _

2

Weigth gam lor uncoated AISI 3 0 4 steel

Λιη/s

τ-ρττ 20'

10 20

30

40

60

40

cycles

80

hours

Figure 4 : Thermal cycling oxidation of coated (by C e 0 ) and uncoated samples in air at 950°C.

Η

0.8

h

0.6

I — r

2

0.4

0.4

P r o t e c t i v e o x i d e s c a l e g r o w t h w a s b y cation d i f f u s i o n ( 1 2 , 1 4 , 1 8 , 1 9 ) . T h e c o r r o s i o n rate is m o n i t o r e d b y a d i f f u s i o n p r o c e s s in t h e chromia subscale . Under thermal cycling conditions, thermal s t r e s s e s resulted in s c a l e spallation after 5 or 7 cycles. N e w oxides exhibited a high growth rate. T h e s p a l l i n g p r o c e s s is m a i n l y linked t o t h e a c c u m u l a t i o n of t h e o x i d e g r o w t h s t r a i n c o n n e c t e d w i t h t h e e x p a n s i o n of t h e o x i d e , crystalline d i s t o r t i o n at t h e interfacial z o n e a n d void a c c u m u l a t i o n .

b

- Coated

oxidation

AISI

(Ceria

304 stainless coatings

d i p p i n g or e l e c t r o p h o r e s i s ) : revealed

that

the

processes

are always

steel

produced

by

Corrosion tests

diffusion dominant

oxidation for ceria

U Ce

-ι 56

1

P r Nd r- " Ί

58

60

Sm

Eu

I

I

62

64

Dy

Er

Yb "Τ­

66

68

70

72 (Ζ)

Figure 5: Weight gain of coated AISI 3 0 4 steel after 50h oxidation in air at 1000°C.

2.3.F17TÎ a

-

stainless

Uncoated

steel

F17TÎ

oxidation

stainless

steel

oxidation : I s o t h e r m a l o x i d a t i o n k i n e t i c s exhibited parabolic m a s s gain curves with t w o p a r a b o l i c p a r t s ( p a r a b o l i c rate c o n s t a n t s w e r e m e a s u r e d f r o m t h e linear plots A m / S = f ( V t ) ) . C o r r o s i o n p r o d u c t s initially g r e w at t h e b a s e of t h e s u b s t r a t e g r a i n b o u n d a r i e s , t h e n , f o r the next t w o hours, an external M n C r 0 2

4

spinel s u b s c a l e c o n t a i n i n g iron a n d a n internal

coated samples and for the blank ones,and

subscale containing chromia, titanium were

t h a t t h e p a r a b o l i c rate c o n s t a n t s d e c r e a s e d

observed.

110 After a 4hr run, T i 0

2

and M n C r 0 2

4

crystallites

were observed on the scale surface. U n d e r t h e r m a l cycling conditions,scale spalling a p p e a r e d generally after 3 - 5 cycles', d e p e n d i n g u p o n t h e initial m e t a l s u r f a c e roughness.

b

-

Coated

oxidation

F17Ti

(.Ceria

stainless

coatings

steel

produced

by

dipping or electrophoresis) : the ceria coated

Thin M O C V D rare earth oxide films has also have a similar effect on corrosion behaviour both under cyclic or isothermal conditions.

2.4. Fe-Mn-AI alloy oxidation a - Uncoated Fe-Mn-AI alloys: the F e Mn-AI weight-gain curve s h o w s a relatively high oxidation rate (Fig.7). For alloys Fe-Mn-AI0,5Si and F e - M n - A I - 0 , 8 S i , t h e experimental weight-gain decreases significantly (Fig.7).

sample isothermal corrosion tests revealed an identical

oxidation

process with only o n e

FeMnAI

parabolic part in t h e weigth gain curve and parabolic rate constants decreased. T h e p r o t e c t i v e oxide s c a l e adherent to the metal substrate.

is strongly

T E M observations shown that the external sublayer w a s m a d e of M n C r 2 0 4 containing iron and the internal oxide contained only very fine grains of chromia. O n the surface of the oxide scale grown, large C e 0 particles were

FeMnAI0.5Si FeMnAIO.eSi

2

1 I ιιιιjτ t1 ιj 1 1 ι1 j ιι1 1 ;1 1 « « I » • 10 20 30 40 50 60 70 80

observed. In all cases, ceria was localised more in t h e external part of the oxide scale, and X ray m e a s u r e m e n t s

indicated t h e following

p h a s e composition

: MnFe 0 ,

Cr 0 2

3

2

4

Ti0

2

and

and a complex oxide with a structure

close to ( C a , C e ) ( T i , F e , C r , M g ) 0 2 1

3 8

Figure 7: Oxidation kinetics of Fe-Mn-AI, Fe-MnAI-0,5Si, Fe-Mn-AI-0,8Si alloys P = 2 0 0 0 0 P a , Τ = o2

850°C.

(17).

U n d e r t h e r m a l cycling conditions,(Fig 6) scale spallation completely disappeared.

From the slopes of the plot of the specific weight-gain versus the square root of time, the following p a r a b o l i c r a t e c o n s t a n t s w e r e determined :
^(Fe-Mn-AI-O.OSSi)

2

4

1

=1,15 l O ' ^ g ^ m ' V

1

p( Fe-Mn-AI- 0 , 5 S i ) 1,5 10" g cm' s" . O b s e r v a t i o n of t h e oxide s c a l e c r o s s section and the external surface of the F e - M n AI alloy revealed that the oxide layer w a s non adherent to t h e s u b s t r a t e , a n d spallation occured during cooling. T h e w h o l e scale consisted of several subscales containing iron and m a n g a n e s e . T h e different p h a s e s were identified is a - M n 0 , M n F e 0 and a small 11

2

4

1

:

2

F i g u r e 6 : Thermal cycling oxidation of F17Ti coated by C e 0 and uncoated samples in air at 2

950°C.

3

2

4

amount of M n O . T h e oxide scales formed on F e - M n - A I - 0 , 5 Si a n d F e - M n - A I - 0 , 8 S i alloys w e r e also examined . It appears that the outer scale w a s

I ' '

Ill c o m p o s e d o n l y of α - Μ η 0 . U n d e r 2

this o u t e r

3

part, a 2μηη thick dark < * - A I 0 2

3

containing

r e g i o n w a s o b s e r v e d . T h e o x i d e layer w a s also not a d h e r e n t to t h e s u b s t r a t e a n d s p a l l a t i o n occured during cooling,

b - Coated Fe-Mn-AI alloy oxidation T h e w e i g h - g a i n c u r v e s are r e p o r t e d (Fig 8). Fe-MnAI oxidation kinetics followed the classical parabolic rate low with k =1,6 1 0 "

1 1

g cm" s" . 2

4

1

FeMnA10,55Si FeMnAlO.eOSi - FeMnA)

Ί

ΗΓ " 10 Τ

T-T-T-

-T-r-r

40

30

20

70

60

50

O n t h e contrary, t h e c r o s s s e c t i o n of F e - M n - A I -0,8Si alloys o x i d i z e d at t h e s a m e t e m p e r a t u r e exhibited a large difference b e t w e e n coated and uncoated specimens.This scale was d i v i d e d in t w o p a r t s . T h e e x t e r n a l s u b s c a l e w a s n o n a d h e r e n t a n d w a s c o m p o s e d of a M n O g . T h e inner s u b s c a l e w a s c o m p o s e d of 2

Mn 0 3

4

a n d M n O , a n d r e m a i n e d a d h e r e n t to

t h e s u b s t r a t e . N o i r o n w a s d e t e c t e d in b o t h s u b s c a l e s a n d a n ΑΙ-rich z o n e a s s o c i a t e d w i t h S i l i c o n w a s o b s e r v e d at t h e s c a l e a l l o y interface.The observation m a d e on a ten minute experiment s h o w s a thin uniform and a d h e r e n t o x i d e s c a l e w h e r e c e r i u m is m a i n l y i n c o r p o r a t e d in t h e o u t e r p a r t . S i l i c o n w a s o b s e r v e d at t h e inner i n t e r f a c e . In this c a s e t h e s i l i c o n - f r e e alloy c o a t e d by cerium oxide always exhibited a lower mass g a i n c o m p a r e d w i t h b l a n k s p e c i m e n s , but the i n f l u e n c e of s i l i c o n m i n o r a d d i t i o n s w a s q u i t e remarkable.Silicon-containing alloys always gave higher m a s s gain c o m p a r e d with blank s p e c i m e n s after d i p p i n g

t(h)

3. D I S C U S S I O N Figure 8: Oxidation kinetics of coated Fe-Mn-AI, F e - M n - A I - 0 . 5 S Ï , F e - M n - A I - 0, 8 S i - a l l o y s , P = 2 0 0 0 0 P a , Τ = 850°C o2

C o n c e r n i n g t h e s i l i c o n - c o n t a i n i n g alloy, the weight-gain registered was more important : k

p(Fe-Mn-AI-0,08Si)

=

k

p(Fe-Mn-Al-0,5Si)

1

=

>

0

·

2

8

10"

1 1

g cm- s- , 2

4

1

10" g cm"V . 10

2

1

T h e s c a l e of t h e c o a t e d F e - M n - A I alloy w a s c o m p o s e d by t w o 10μΐτι thick s u b s c a l e s c o n t a i n i n g b o t h i r o n a n d m a n g a n e s e in t h e s a m e proportions. A thin aluminium-rich zone w a s f o u n d at t h e s c a l e alloy i n t e r f a c e , but c e r i u m w a s not d e t e c t e d by analytical techniques. Oxide scale had generally the s a m e aspects and composition as that the blank specimen, except a lower thickness o b s e r v e d . H o w e v e r , after t e n m i n u t e s a v e r y t h i n n o n a d h e r e n t C e 0 layer w a s still present 2

a b o v e t h e i r o n - m a n g a n e s e o x i d e scale already grown on the substrate.

AND

CONCLUSIONS

To s u m m a r i z e , t h e s e r e s u l t s c o n c e r n i n g iron a n d a l l o y s , w e c a n s a y t h a t in g e n e r a l , r a r e earth-coating produces a decrease in o x i d a t i o n r a t e a n d a n i n c r e a s e in p r o t e c t i v e s c a l e a d h e r e n c e , e x c e p t for p u r e iron. In fact t h e p o s i t i v e e f f e c t is o n l y o b t a i n e d if t h e o x i d a t i o n rate is f i x e d by a d i f f u s i o n p r o c e s s . It is not the c a s e for o x i d a t i o n of p u r iron. N e v e r t h e l e s s t h e p r e s e n c e of a m i n o r e l e m e n t , like silicon, c a n i n v a l i d a t e t h e positive effectof t h e rare e a r t h e l e m e n t s . Different e x p l a n a t i o n s for t h e s e e f f e c t s c a n be proposed : - t h e r a r e e a r t h e f f e c t s in c o n c e r t w i t h t h e r e a c t i o n m e c h a n i s m r e s u l t s of a n i n c r e a s e of t h e p l a s t i c d e f o r m a t i o n c a p a c i t y of t h e r a r e earth-containing oxide scale, - a m o d i f i c a t i o n of the m a t t e r t r a n s p o r t p r o c e s s or/and transport

inhibition along the

oxide

grain boundaries. In the c a s e of u n c o a t e d s a m p l e s , t h e matter transport

occurs

via

cation

vacancies.

A

112 c o n s e q u e n c e c o n s i s t s in a v o i d a c c u m u l a t i o n at t h e o x i d e / m e t a l i n t e r f a c e . T h e s c o u l d b e t h e o r i g i n of t h e o b s e r v e d o x i d e s c a l e d e t a c h m e n t b o t h u n d e r i s o t h e r m a l a n d cyclic c o n d i t i o n s . W h e n a r e a c t i v e e l e m e n t is present over the metal surface, t h e protective layer contains a fine grained chromia scale e x h i b i t i n g a h i g h p l a s t i c i t y [ 2 2 ] . T h e origin of s u c h modification could be attributed to an i n v e r s i o n of m a t t e r t r a n s p o r t m e c h a n i s m , e v o l v i n g f r o m a c a t i o n i c o u t w a r d t o a n anionic i n w a r d d i f f u s i o n p r o c e s s . T h i s i n v e r s i o n will also increase t h e oxide scale adherence, s i n c e t h e r e is n o v o i d a c c u m u l a t i o n at t h e m e t a l / o x i d e i n t e r f a c e . M . J . B E N N E T T [23] d e s c r i b e d similar o b s e r v a t i o n s a n d g a v e similar c o n c l u s i o n s in h i s s t u d y c o n c e r n i n g a n y t t r i u m i m p l a n t e d nickel b a s e d alloy. T h a t is in a g r e e m e n t w i t h r e s u l t s o b s e r v e d in t h e c a s e of p u r e c h r o m i u m a n d h i g h c h r o m i u m c o n t e n t alloys, b y R.J. H U S S E Y a n d M.J. G R A H A M (24). Their c o n c l u s i o n is that for c o a t e d s u b s t r a t e s , t h e r e is a c h a n g e in m e c h a n i s m w h i c h b e c o m e s p r e d o m i n a t e d by anion diffusion. Finally, R . A . R A P P a n d B. P I E R A G G I recently (25) p r o p o s e d that the rare earth effect is a c c o m p l i s h e d by t r a p p i n g t h e v a c a n c i e s at t h e i n t e r n a l i n t e r f a c e leading also t o a n o x i d e g r o w t h b y anion diffusion. In conclusion, h o m o g e n e o u s a n d t h i n r a r e earth oxide films which were realized on stainless steel by chemical p r o c e s s e s or by M O C V D h a v e a positive effect o n the high temperature stainless steel oxidation resistance, but not o n pure iron oxidation r e s i s t a n c e . T h e p o s i t i v e effect is o n l y o b t a i n e d if t h e o x i d a t i o n r a t e is g o v e r n e d b y a diffusion process. In this c a s e : - T h e corrosion rate decreases under i s o t h e r m a l c o n d i t i o n s a s well a s u n d e r c y c l i c conditions. - T h e r m a l c y c l i n g d o e s not c a u s e a n y specific degradation a n d the oxidation rate constants are similar for isothermal a n d cyclic conditions. T h i s r e s u l t is p a r t i c u l a r l y i m p o r t a n t f o r t h e u s e o f s u c h s t a i n l e s s s t e e l s at h i g h t e m p e r a t u r e . It is p o t e n t i a l l y a n i n t e r e s t i n g

p r o c e s s u s e a b l e in d i f f e r e n t h i g h t e m p e r a t u r e corrosion a r e a s . REFERENCES 1) H. NAGAI Mat. Sci. Forum 43 (1989) 75-130. 2) T.A. RAMANARAYANAN, R. A Y E R , R. PETKOVIC, D P . LETA Oxid. Met 29, 5/6 (1988). 3) J. STRINGER Mat. Sci. Eng. A12 (1989) 129. 4) M.J. ΒΕΝΝΕΤΤ,Η.Ε. BISHOP.P.R. CHALKER.A TUSON Mat. Sci. Eng. 9 (1987) 177-190. 5) R.L. NELSON, J.D. RAMSAY, L . WOODHEAD Thin Solid Films 81 (1981) 329-337. 6) M. J. BENNETT J. Vac. Sci. Technol. B2.4, 10-12 (1984) 800-805. 7) P.Y. H O U , J. S T R I N G E R J. Electrochem. Soc. 134-7 (1987)1836 . 8) M R STROOSNIJDER.V. GUTTMANN.T. FRANSEN.J WIT Oxid. Met. 33 (1990) 371-397. 9)D.P. MOON, M.J. BENNETT Mat Sci. Forum 43 (1989) 269. 10) J.P. LARPIN, G. AGUILAR, H. BUSCAIL, J.C. COLSON in "High Temp. Oxid. Sulphid. Processes" Ed J.D. EMBURY Pergamon Press (1990) 337-345. 11) G. BONNET, J.P. LARPIN, J.C. COLSON Solid State Ionics 5 (1992) 125. 12) W.C. HAGEL, U. SEYBOLT J. Electrochem Soc. 12(1961) 1146-52. 13) F. I. WEI, F. H. STOTT Cor. Sci. 29,(1989) 839. 14) C M . COTELL, G.J. YUREK, R.J. HUSSEY, D.F. MITCHELL, M.J. G R A H A M Oxid. Met.,34-3/4 (1990) 173. 15) J.G. SMEGGIL, A.W. F U N K E N B U S H , N.S. BORNSTEIN Met. Trans 17A (1986) 923. 16) J.G. SMEGGIL Mat Sci and Eng. 87 (1987) 261. 17) K.J. EISENTRAUT, R.E. SIEVERS, J. Amer Chem. Soc. 20 (1965)5254. 18) J.G. LANGEVOORT.L.J. HANEKAMP, P. J . GELLINGS Appl.Surf.Sci,28 (1987) 189-203. 19) D.R. BAER, M. D. MERZ Metal. Trans 11A.12 (1980) 1973-80. 20)M. LAMBERTIN, J.C. C O L S O N Oxid. Met. 7,3,(1973) 163-171. 21) B. GATEHOUSE Am. Mineral 63 (1978) 28) 22)K.PRZYBYLSKl,A.GARATT-REED,G.J. YUREK J.Electrochem.Soc,135,2 (1988) 508. 23) M.J. BENNETT, D.P. MOON The role of active elements in the oxidation behaviour of high temperature metals and alloys E. LANG (Ed), ELSEVIER, LONDON (1988)111-129. 24) R.J. HUSSEY, M.GJ. GRAHAM 3rd Int. Symp. High Temp. Cor. May 1992, Les Embiez France. . 25) B. PIERAGGI, R.A. RAPP 3rd Int. Symp. High Temp. Cor. May 1992, Les Embiez.France.