Email:
[email protected]
Login
Register
English
Deutsch
Español
Français
Português
Home
Add new document
Sign In
Create An Account
REACHABILITY COMPUTATION FOR UNCERTAIN PLANAR AFFINE SYSTEMS USING LINEAR ABSTRACTIONS
HOME
REACHABILITY COMPUTATION FOR UNCERTAIN PLANAR AFFINE SYSTEMS USING LINEAR ABSTRACTIONS
REACHABILITY COMPUTATION FOR UNCERTAIN PLANAR AFFINE SYSTEMS USING LINEAR ABSTRACTIONS
Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006 ! "!#" ! ! "# $ %%& ' " # $ % &'( % )*...
Download PDF
483KB Sizes
0 Downloads
49 Views
Report
Recommend Documents
Probabilistic Control of Uncertain Linear Systems Using Stochastic Reachability
Hybrid abstractions of affine systems
Hybrid abstractions of affine systems
Reachability computation for hybrid systems with Ariadne
Control of Uncertain Nonlinear Systems using Ellipsoidal Reachability Calculus
Computation of Stability Margins for Uncertain Linear Fractional-order Systems using Interval Constraint Propagation
Reachability analysis of linear systems using support functions
Reachability analysis of continuous-time piecewise affine systems
Change-of-bases abstractions for non-linear hybrid systems
Stability Analysis for Affine Linear Uncertain Polynomial Systems via Directional Stability Radius
Affine Robust Controller Design for Linear Parametric Uncertain Systems with Output Feedback
Controller Design for Polynomial Nonlinear Systems with Affine Uncertain Parameters
PDF Reader
Full Text
Preprints of the 2nd IFAC Conf. on Analysis and Design of Hybrid Systems (Alghero, Italy), 7-9 June 2006
! "!#"
! ! "# $ %%& ' "
#
$ %
&'(
%
)* + ,
-../0
1
$ = $+
2 )* -..34 # 5
#
#
)$0
(
( -...0 # 5
!
)$0
)# 5 #
( $6670
)8
-..90
< : :
/ 8 9
);
* +
8
-..30 !
);
* +
)$0 -..30 118
-
%
=> ( % = >?& ? (# = ; @ 8 A; % ?*'; (? % >@> ?2 >
% F$ γ F$
!
.
)$0
% F-
γ F$
γ F-
% F<
!
!
)-0
−$
$ =
)-0
8 $ 8 #
{$ B ∃$ . ∈
# ∃# ≥ .
$ = Φ)# 0 ) #" Φ ).0 = $ .
∀τ ≤ # Φ)τ 0 = Φ )τ 0 +
Φ )τ 0 ∈
}
% )<0
%
{% }
#
%
5 1 )<0
%
> (% %
5
(% +$
%
+-
)
+$
+$
1
)
$ )E0 C
)
%
); * +
-..30
{% } < = > ( A %( A;?> 8 '%(? >@> ?2 >
{% }
D
5
)/0
%
+$ 0
($ − $ ) ≥ . ∧ % +$ ($ − $ ) ≤ .
.
)/0
!
)$0 5
& =
&
α α
+$ $ −$
( )
≤.
)90
C )70
)30
%
! !
= ($ − α )
&
)/0
)E0
($ − $ . ) ≥ . ∧ & +$ ($ − $ . ) ≤ .
+α
$
) #" α ∈ [. $] !
)$0
α .
$
)60 α
= ($ − α )$
.
+ α$
)60
$
{% } 119
)70
!
$ )E0
.
5
$. 1
)70 α
:
)30
& $ ≥ .∧&
!
-
$
5 )90 )90 5
%
α
5
(%
%
+$
)$.0 8
'(
α
)
α.
)+
%
+$
)
$
α
α
$α
)$$0
+$ α
($ − $ ) ≥ . ∧ % +$ ($ − $ ) ≤ .
%
α
α
α
{
($ − $ ) = .}
= $B%
α
)$.0
' α )$α 0 = α ∈[α . α$ ]
)$$0
' )$.0
8 5
!
α
(%
%
+$
$
α
#
)
∈
1
($ − $ α ) ≥ . ∧ & +$ ($ − $ α ) ≤ .
α.
∩
α$ ∀α ∈ [α . α $ ]
α$
)$<0
$
'
#
∈
α
α ($ # )
α.
α
+$ α
α$ α$
α$ $α
$$
α.
α$
β%
($
α = βα . + ($ − β )α$ −$
#
α.
) + ($ − β )% ($
% +$ ($
α α.
5
, α.
α
$.
)$-0
$
α
:
α. α.
($ . ) ' α ($$ ))
$
'(
)*
α.
) α
α
('
)$<0
&
)90
"
)$ α 0
α
α
'(
(%
α$
α$
#
−$
α
% #
−$
($ α$
)
#
)
−$
α
)=
!
-
α = βα . + ($ − β )α$ $$ ∈
$. ∈
$α ∈
α.
& )$ − $ # 0 = .
α
)$$0
α$
$ . $α
<
β ∈ [. $] & +$ ) $ − $ # 0 = . 0
)60
$$
) α,
+$ α
$ α = β$ . + ($ − β )$ $
>
α.
α$
<
%
+$
() α − $ ) = . ∧ & α
).
() α
-
+$ α
− $α ) = .
) α = β) . + ($ − β )) $
)$
α.
α$
F$ α1
α.
F$ α.
F$ α
α
F$ α
α1
γ F$
γ F$
.
γ F$
α
% F$ $
$
>α 8 - (
8 <
α
γ F$
F$ α0
F$ α1
α
γ
α
120
% F$ % F$
/
? (# = ; @ ;*
#2
("
{% } ($
"- - G α -. -
.
$
$
$
#
#
G
< -.
(* ( + 5
)
/
$
. # -. . # $
#
∈
/α
**
-#' )
("
( , $
$0
.
$
#
>
$
-. -.
α
($ α
($ # )
"-
# ∈ -.
(- α
$
#
%
α ∈ [. $]
#
#
-.
{. $} -. . #
(* (+
. #
∈
. #
α
5 <
α
α
+( #
#
"
(
)
(, α *
5
( .
)$/0
(α *
α
-.
α
($ # )
+(
#
,#
'
"
α *
5
);
-#'
}
-#'
{& }
.
$
$
)
%
($ α
(- α -.
0α = 'α ∩ < <
(α *
(+ -. 0α *
, 121
+$ α
α * +$ ) 0 #
0α * +$
)$/0
)∩
)$90
*
)$30
-.
+$
-.
( *
$
5
α * +$
{' α }
"-
!
-
'
/
-.
$0
.
*
.
(" -.
($
-#'
(' α
G"
5
1
.
) ' α )($ α 0 ' α )( - α 00
/
5
+
(" ) "- {%
"
* +
%
α
α ∈ [α * α * +$ ] 8
*
>
)$.0
)$90
($ # ) = ($ # ) ∪
{% } 5
*
α * +$ )
α
-
)$30
=
-
-..30
α
=
$ 5
'
-.
8
*
<0
. #(
0 #
( ,/ 01
9 ?I 2 A;?
"0
01∅
α
-.
= [/ 9]
#
α
#
8
+$ α
-.
( 2/
( $
$
#
∈
$α
#
α
$ α / +$
(
$ α /+-α/
)
-.
- α / +$
<
=
.
$ . −$ . . $ $≤ . −$ < −-
<
- α / +-
$
−/ −9
(α / α / +$ α /+- )
: $α /
)
.
-. . # -.
α / +$ >
-α
=
-.
α
( 4
(
%
-.
( ./ % F$
( 3
$9
)
>
-
. $
/
−$
=
$6
$. − $. $. −$ $9
$ 5
-.
-G =/ -G
/
-.
# = {. . -9 . 6.EE $}
G
= {. 6.EE $}
α 9 9 8 -
/
#
0 # 0 #
! / α
α-
α αH
α$
α-
αH
/α
α = . 6.EE $
α$
α =$ 8
αH
E
α =$
$
/
α = . -9 α = . 6.EE
α. 8
<
9α
> -.
α
'α 9 . -9
! α
- α2 $ αH
F$ α∗
8
9
3
- αH
F$ α$
α
$ ) $0
99
$ α2
F$ α2
9
/
/9
/
-.
<9
<
-9 < 69
122
/
/ .9
/$
/ $9
/-
/ -9
/<
/ <9
//
0
99
α
$D
9
/9
$ < / 9 3 E 7 6 $. $$ $$<
/
<9
<
-9 < 69 99
/
/ .9
/$
/ $9
/-
/ -9
/<
/ <9
//
0
9
/9
. 6.EE . -9 . . . . . $-E9 . -6E$ . <3$$ . <3$$ . <3$$ . <3$$ . <3$$
$ . 6.EE . -9 . -9 . -9 . -9 . $33E .
$ . 6.EE . 6.EE . 6.EE . 6.EE . -9 ./67E . 9-<$ . 6.EE .6.EE . 6.EE $
$ $ $ $ . <39< . 6.EE . 6.EE $ $ $
. 6.EE $ $
$
/
( %(;'>
<9
%
<
-9 < 69
8
/
/ .9
/$
/ $9
/-
/ -9
/<
/ <9
9 8
//
0
(
α 5
:
$ $
) - <0 &
)
:
/ 9 30 3
α
# / 8
<
!
α
E
# 8
α <
E
/
3
#
)*
(-..30
9
?8? ?%(?>
/
8
* )-..90 A# # !# 5 5 # # )? 00 * (; * ?
<
-
$
1 #
%%231!4 )2 2 ;
2
:
1 !# 5 * +
.
:$ $9
8
-
-9
<
<9
/
/9
9
# # 5
ΟαJ. 6.EE ΟαJ. -9 ΟαJ.
8
%%&31!4
# )-../0 #
*+5$-9<:$-3E A# # C : )$6670 : ' # 5 # # .,59/.:99/ # 5 =# 52 C : # )-...0 = # # 1 %%%31!4 !# 5 5 # # # )% ; = " )? 00 ; 2: # * + )-..30 # > 6 ' ! 3 1!4 !# 5 ' # $. $.$3B1 -..9 $- .$35
3 *
# #
5 # # # K,
)-..30
E&
123
×
Report "REACHABILITY COMPUTATION FOR UNCERTAIN PLANAR AFFINE SYSTEMS USING LINEAR ABSTRACTIONS"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close