REACTIONS OF HALOPHOSPHAZENES WITH ALKOXIDES, ARYLOXIDES, AND THIOLATES

REACTIONS OF HALOPHOSPHAZENES WITH ALKOXIDES, ARYLOXIDES, AND THIOLATES

Chapter 6 REACTIONS OF H A L O P H O S P H A Z E N E S WITH A L K O X I D E S , A R Y L O X I D E S , A N D THIOLATES A . Introduction T h e r e a ...

1MB Sizes 5 Downloads 82 Views

Chapter 6 REACTIONS OF H A L O P H O S P H A Z E N E S

WITH

A L K O X I D E S , A R Y L O X I D E S , A N D THIOLATES

A . Introduction T h e r e a c t i o n s t o b e d i s c u s s e d in t h i s c h a p t e r a r e t h e i n t e r a c t i o n s o f h a l o p h o s ­ p h a z e n e s w i t h a w i d e v a r i e t y of a l k o x i d e s , a r y l o x i d e s , o r t h e i r m e r c a p t o a n a ­ l o g u e s t o yield o r g a n o - s u b s t i t u t e d p h o s p h a z e n e s . T h e o v e r a l l g e n e r a l r e a c t i o n scheme can be formulated by the following e q u a t i o n s : 2/i ROH + (NPX )„ -> [NP(OR) ]„ + In HX 2

2

In RSH + (NPX )„ -> [NP(SR) ]„ + In HX 2

2

In practice, the nucleophile R O H or R S H can be varied to include almost any s t a b l e a l c o h o l , p h e n o l , m e r c a p t a n , o r even diol o r d i t h i o l . M a n y r e a c t i o n s use s o d i u m a l c o h o l a t e s , p h e n o l a t e s , o r s o d i u m t h i o l a t e s i n s t e a d of t h e free a l c o h o l o r p h e n o l . I n s u c h cases, as s h o w n b e l o w , s o d i u m c h l o r i d e is p r e c i p i ­ t a t e d as a r e a c t i o n p r o d u c t . W h e n t h e free a l c o h o l , p h e n o l , o r t h i o l is u s e d , a In RONa + (NPX )„ -> [NP(OR) ]„ + In NaX 2

2

b a s e s u c h a s t r i e t h y l a m i n e o r s o d i u m c a r b o n a t e is u s u a l l y e m p l o y e d t o r e m o v e t h e h y d r o h a l i d e . T h e h a l o g e n a t o m , X , c a n b e fluorine, c h l o r i n e , o r b r o m i n e , a n d t h e r e a p p e a r t o b e n o limits t o t h e d e g r e e of p o l y m e r i z a t i o n , n, of t h e h a l o p h o s p h a z e n e u s e d . A r e a c t i o n s o l v e n t is n e a r l y a l w a y s e m p l o y e d . It s h o u l d b e n o t e d t h a t n u c l e o p h i l i c s u b s t i t u t i o n r e a c t i o n s of t h i s t y p e p r o ­ v i d e o n e of t h e easiest r o u t e s t o t h e s y n t h e s i s of o r g a n o p h o s p h a z e n e s . T h e r e 150

B .

E X P E R I M E N T A L

151

C O N S I D E R A T I O N S

a c t i o n s a r e often c l e a n p r o c e s s e s w i t h few side r e a c t i o n s , a n d t h e p r o d u c t s u s u a l l y a r e s t a b l e s o l i d s w h i c h a r e easily purified a n d c h a r a c t e r i z e d .

Un­

d o u b t e d l y , t h i s p r o v i d e s o n e r e a s o n for t h e i m p r e s s i v e n u m b e r o f a l k o x y , a r y l o x y , a n d o r g a n o t h i o p h o s p h a z e n e s r e p o r t e d in t h e l i t e r a t u r e . H o w e v e r , a n o t h e r c o n t r i b u t i n g f a c t o r is c o n n e c t e d w i t h t h e fact t h a t c e r t a i n a r y l o x y a n d fluoroalkoxycyclophosphazenes show very high t h e r m a l a n d hydrolytic stabil­ ities a n d t h i s h a s led t o a d e t a i l e d i n v e s t i g a t i o n o f s u c h d e r i v a t i v e s for a p p l i c a ­ t i o n s in t h e h i g h - t e m p e r a t u r e m a t e r i a l s a n d p o l y m e r

fields.

B . Experimental Considerations T h e following three examples illustrate the techniques t h a t are c o m m o n l y used to prepare aryloxy- a n d alkoxycyclophosphazenes.

1.

S Y N T H E S I S

O F

H E X A P H E N O X Y C Y C L O T R I P H O S P H A Z E N E

1

-

3

T h e o v e r a l l r e a c t i o n s c h e m e is CL

Ρ

^Xl

CkJ C r

||^Cl+6PhONa P

V I

P

\ i

PhCX >

Ρ

PhO^ I

.OPh II^OPh+^NaCl

P h O ^ N ^ O P h II

A solution of s o d i u m p h e n o x i d e in t e t r a h y d r o f u r a n

( 5 0 0 m l ) is p r e p a r e d

f r o m p h e n o l (84.6 g, 0.91 m o l e ) a n d s o d i u m (20.7 g, 0.9 m o l e ) in a n a t m o s p h e r e o f d r y a r g o n . T o t h i s s t i r r e d s o l u t i o n is a d d e d a s o l u t i o n o f h e x a c h l o r o c y c l o t r i p h o s p h a z e n e (I) (52.2 g, 0.15 m o l e ) in t e t r a h y d r o f u r a n ( 5 0 0 m l ) . T h e m i x ­ t u r e is t h e n b o i l e d a t reflux for 8 h o u r s a n d t h e n a l l o w e d t o s t a n d a t 2 5 ° C f o r 56 h o u r s . F i l t r a t i o n of t h e m i x t u r e yields s o d i u m c h l o r i d e (55 g, 1 0 0 % b a s e d o n I ) , a n d e v a p o r a t i o n of t h e filtrate, f o l l o w e d b y p r e c i p i t a t i o n o f t h e r e s i d u e f r o m a c e t o n e i n t o a l a r g e excess of w a t e r , yields 88.5 g o f a w h i t e s o l i d . T h i s is t h e n r e c r y s t a l l i z e d t w i c e f r o m ^ - h e p t a n e a n d w - h e p t a n e - b e n z e n e m i x t u r e s , a n d is e x h a u s t i v e l y d r i e d i n a v a c u u m o v e n a t 6 0 ° C t o yield h e x a p h e n o x y ­ c y c l o t r i p h o s p h a z e n e ( I I ) (83.2 g, 9 3 % ) , m . p . 1 1 2 ° - 1 1 2 . 5 ° C . C h a r a c t e r i z a t i o n h a s b e e n effected b y C , H , N , a n d Ρ m i c r o a n a l y s i s , b y i n f r a r e d s p e c t r o s c o p y , a n d b y m a s s s p e c t r o m e t r y . C o m p o u n d I I is, in fact, a n e x c e l l e n t h i g h - t e m p e r a ­ t u r e m a s s s p e c t r o m e t r y s t a n d a r d b e c a u s e o f its h i g h m a s s ( M W = 693) a n d its h i g h s t a b i l i t y . T h e c o m p o u n d is a w h i t e , c r y s t a l l i n e s o l i d w h i c h is s o l u b l e in b e n z e n e o r t e t r a h y d r o f u r a n . It is h i g h l y r e s i s t a n t t o h y d r o l y t i c d e g r a d a t i o n .

152

6.

2.

R E A C T I O N S

S Y N T H E S I S

O F

W I T H

A L K O X I D E S ,

A R Y L O X I D E S ,

A

N

D

T H I O L A T E S

H E X A K I S ( T R I F L U O R O E T H O X Y ) C Y C L O T R I P H O S P H A Z E N E

4

T h e following equation illustrates the reaction scheme: Cl^

CF CH 0^

^Cl

3

N ^ N CkJ IUC1 + 6 C F C H O N a 3

C K

P

2

2

^OCH CH 2

3

N ^ N >

^ N ^ c i

CF CH 0\ I 3

II^OCH CF

2

2

CF CH 0^ 3

I

^OCH CH

2

2

+ 6 NaCl

3

3

III

S o d i u m ( 2 3 . 8 g, 1 . 0 5 m o l e s ) is a d d e d t o a c o o l e d s o l u t i o n of t r i f l u o r o e t h a n o l ( 1 0 3 . 3 g, 1 . 0 3 3 m o l e s ) in a n h y d r o u s e t h e r ( 4 0 0 m l ) . T o t h i s s t i r r e d , c o o l e d solu­ t i o n is a d d e d d r o p w i s e a s o l u t i o n of h e x a c h l o r o c y c l o t r i p h o s p h a z e n e (I) ( 5 9 . 6 g, 0 . 1 7 2 m o l e ) in a n h y d r o u s e t h e r ( 4 0 0 m l ) . T h e m i x t u r e is t h e n s t i r r e d a t 2 5 ° C for 8 h o u r s , a n d t h e w h i t e p r e c i p i t a t e of s o d i u m c h l o r i d e is filtered off. T h e filtrate is w a s h e d t h o r o u g h l y w i t h w a t e r t o r e m o v e excess s o d i u m t r i f l u o r o e t h o x i d e a n d t h e e t h e r e a l l a y e r is distilled t o r e m o v e excess tri­ f l u o r o e t h a n o l a n d s o l v e n t . T h e r e s i d u e is a v i s c o u s oil w h i c h solidifies o n c o o l i n g . T h i s is s u b l i m e d a t 7 0 ° C / 2 m m t o give h e x a k i s ( t r i f l u o r o e t h o x y ) c y c l o t r i p h o s p h a z e n e ( I I I ) ( 9 6 . 0 g, 7 7 % ) , m . p . 4 9 ° C . I t s h o u l d b e n o t e d t h a t o m i s s i o n of t h e w a s h i n g s t e p for r e m o v a l of s o d i u m t r i f l u o r o e t h o x i d e i n t r o ­ d u c e s t h e d a n g e r of a n e x p l o s i o n d u r i n g t h e s u b s e q u e n t d i s t i l l a t i o n a n d s u b l i ­ m a t i o n s t e p s . T h e c y c l o p h o s p h a z e n e I I I is a w h i t e , w a x y , c r y s t a l l i n e s u b ­ s t a n c e , r e a d i l y s o l u b l e in m a n y o r g a n i c s o l v e n t s . I t h a s a n u n u s u a l l y h i g h t h e r m a l stability a n d is q u i t e s t a b l e t o a t m o s p h e r i c m o i s t u r e o r n e u t r a l a q u e o u s solvents. 7

3.

S Y N T H E S I S

O F

T R I S ( O P H E N Y L E N E D I O X Y ) C Y C L O T R I P H O S P H A Z E N E

T h e o v e r a l l r e a c t i o n s c h e m e is a s follows : ^Cl CI J

t

,C1 + 3 [OT

+6Et3N

Cl

( Ç ^ / ^ vlQ)

+ 6Et3NHC1

C .

S C O P E

O F

T H E

153

R E A C T I O N

A s o l u t i o n o f c a t e c h o l (95 g, 0 . 8 6 4 m o l e ) a n d t r i e t h y l a m i n e (175 g, 1.728 m o l e s ) in t e t r a h y d r o f u r a n (500 m l ) is a d d e d d r o p w i s e t o a s t i r r e d s o l u t i o n o f h e x a c h l o r o c y c l o t r i p h o s p h a z e n e (100 g, 0.288 m o l e ) in t e t r a h y d r o f u r a n ( 1 0 0 0 m l ) a t 3 0 ° C . T h e m i x t u r e is t h e n b o i l e d a t reflux for 2 h o u r s a n d s t i r r e d a t 3 0 ° C f o r 4 8 h o u r s . T h e w h i t e p r e c i p i t a t e is filtered off, d r i e d (350 g ) , a n d t h e n washed thoroughly with water to remove triethylamine hydrochloride. T h e p o w d e r y r e s i d u e is t h e n e x t r a c t e d w i t h b o i l i n g b e n z e n e a n d t h e e x t r a c t s a r e c o o l e d t o yield w h i t e c r y s t a l s o f t r i s ( o - p h e n y l e n e d i o x y ) c y c l o t r i p h o s p h a z e n e (74 g, 5 0 % yield). S u b s e q u e n t r e c r y s t a l l i z a t i o n s f r o m b e n z e n e f o l l o w e d b y s u b l i m a t i o n a t 2 3 0 ° C / 0 . 0 5 m m give m a t e r i a l w i t h a m e l t i n g p o i n t o f 2 4 4 ° 245°C. This c o m p o u n d readily forms channel clathrates when b r o u g h t into c o n t a c t w i t h o r g a n i c l i q u i d s (see C h a p t e r 11). 4.

V A R I A T I O N S

I N

T H E

E X P E R I M E N T A L

T E C H N I Q U E

T w o of t h e a b o v e e x a m p l e s u s e s o d i u m salts o f p h e n o l o r a n a l c o h o l a s t h e nucleophilic reagent, b u t a n u m b e r of modifications t o this process are p o s ­ sible. F o r e x a m p l e , t h e r e a c t i o n o f s o d i u m h y d r i d e w i t h a n a l c o h o l h a s b e e n u s e d for p r e p a r a t i o n o f t h e s o d i u m a l k o x i d e . * D i r e c t r e a c t i o n o f a s o l u t i o n o f a n a l c o h o l o r p h e n o l w i t h t h e h a l o p h o s p h a z e n e in t h e p r e s e n c e o f a s u s p e n s i o n of a n h y d r o u s s o d i u m c a r b o n a t e h a s a l s o p r o v e d t o b e a c o n v e n i e n t t e c h ­ nique. 6

8 ,

7

9

6 ROH + (NPC1 ) + 6 N a C 0 2

3

2

3

-* [NH(OR) ] + 6 NaCl + 6 N a H C 0 2

3

3

S o d i u m h y d r o x i d e pellets c a n b e u s e d w h e n a p h e n o l is a l l o w e d t o r e a c t w i t h a h a l o c y c l o p h o s p h a z e n e in a h i g h - b o i l i n g h y d r o p h o b i c s o l v e n t , s u c h as x y l e n e . Finally, a tertiary organic a m i n e , such as triethylamine or p y r i d i n e , m a y b e e m p l o y e d a s a h y d r o g e n c h l o r i d e a c c e p t o r , a s in t h e equation · · 1 0 - 1 2

2 , 8

9

1

3

-

1

9

6 ROH + (NPC1 ) + 6 Et N 2

3

3

[NP(OR) ] + 6 E t N H C l 2

3

3

N e a r l y a n y u n r e a c t i v e o r g a n i c s o l v e n t m a y b e used for t h e s e i n t e r a c t i o n s , b u t aliphatic ethers, such as diethyl ether or tetrahydrofuran, are particularly use­ ful. A l t h o u g h it is u s u a l t o p e r f o r m s u b s t i t u t i o n r e a c t i o n s of t h i s t y p e in s t a n ­ d a r d g r o u n d glass e q u i p m e n t w i t h e x c l u s i o n o f m o i s t u r e b y d r y i n g t r a p s , it is often n e c e s s a r y t o u s e a glass h i g h - v a c u u m s y s t e m w h e n p y r i d i n e is u s e d a s a solvent. 15

C . S c o p e of the Reaction A w i d e v a r i e t y of a l k o x y - , a r y l o x y - , a l k y l t h i o - , a n d a r y l t h i o p h o s p h a z e n e s can be prepared by the techniques described above. F o r example, the following

154

6.

R E A C T I O N S

W I T H

A L K O X I D E S ,

A R Y L O X I D E S ,

A

N

D

T H I O L A T E S

alkoxy groups have been attached to the phosphazene skeleton: CH 0—, > * ~ C H 0—, > · ' > > w-C H 0—, > z-C H 0—, > n-C H 0—, · ' ' PhCH 0— CH =CHCH 0— Fluoroalkoxy groups can be substituted at p h o s p h o r u s with particular ease, a n d the following are some of t h e substituents t h a t have been u s e d : C F C H 0 — , ' ' C F C H 0 — 4-6,24,25,27,29-31.33 C F C H 0 - , - ' > ' ' ' ' H(CF ) 2

1 8

2

0

2

5

2

2

4

1 8

1 3

2

3

1 9

1 8

2 0

2 4

2

2 5

5

3

2 2

2 0

9

2

7

3

2

2

2

2

4 - 6

3

4

2

5

2

3

CH 0—, - ' - ' H(CF ) CH 0—, 5

6

2 9

3 5

3 6

2

4

2

2 9

2

7

'

3 0

6

2 4

2 4

2 5 t

3 5

1 0

2 7

2 9 - 3 1

3 3

3 4

2

2

6

2 7

2

2

3 6

2 9

2

2 7 - 3 2

2

2 5

H(CF ) CH O—, « H(CF ) CH 0—, ' ' « H(CF ) CH 0—, ' and (CF ) CHO—, 5

2

2 0

7

2 6

8

2

2 9

3 0

3 3

2

3 5

6

>

3 5

2 7

2

3

2

Hexachlorocyclotriphosphazene also reacts with a n e q u i m o l a r a m o u n t of a c e t o x i n e i n t h e p r e s e n c e o f t r i e t h y l a m i n e t o yield p e n t a c h l o r o - 7 V - i s o p r o p y l idenoximinocyclotriphosphazene. T h e p r o d u c t is a solid, m . p . 91 ° C . 3 6 a

CL -HCl

(NPC1 ) + H O N = C M e 2

3

>

2

.ON=CMe

N

2

N

I || C1 P^ /PC1 2

N

2

Aryloxy substitution h a s also been studied in detail a n d a wide range of phenols have been used as nucleophiles. T h e substituents include C H 0—,1-3.24,25,35,37-43 _ eC H 0—, /7-MeC H 0—, m-CF C H 0-, ' m-FC H 0-, m-ClC H 0-, /?-ClC H 0-, * m-CF OC H 0-, o,m,and/?-N0 C H 0-, ' « · V-BrC H 0-, >MeOC H 0-. ' 2 9

6

w

5

1 0

2 9

M

6

4

6

6

6

1 1

7

2

4

2 9

4

4

3 7

4

2 9

6

2 7

4

6

3 7

3

2 9

4

4

3

3

4

6

6

3 7

6

2

4

6

3 7

4

Fewer m e r c a p t o derivatives have been reported t h a n alkoxy o r aryloxy p h o s p h a z e n e s , b u t those which a r e k n o w n cover a wide range of alkyl- a n d a r y l t h i o g r o u p s , a s d e m o n s t r a t e d b y t h e f o l l o w i n g list: C H S - , ' C H S-, ' ' iso-C H S-, ' C H S-, ' ' iso-C H S-, ' t-C H S-, C H S-, ' C H S-, C H S-, C H S-, PhCH S-, ' ' C H S-. ' ' - ' 1 3

2

1 9

3

4 5

4 6

7

3

4 6

4 5

9

6

1 3

6

1 9

1 9

7

1 9

8

3 7

4 5

1 9

4

4 6

U

4 5 , 4 6

1 7

4 5

4 5

9

4

1 9

1 2

2 5

4 5 t

4 6

4 6

9

4

1 9

1 6

l 9 f

5

4 6

1 9

3 3

4 5

4 6

2

4 6

5

T h e a b o v e syntheses lead t o t h e formation of derivatives which possess t w o i n d e p e n d e n t s u b s t i t u e n t s a t e a c h p h o s p h o r u s . H o w e v e r , it is a l s o p o s s i b l e t o p e r f o r m s u b s t i t u t i o n r e a c t i o n s u s i n g d i o l s o r d i t h i o l s in s u c h a w a y t h a t cyclized units are formed at t h e p h o s p h o r u s a t o m s , as shown in t h e following equation ' : 7 , 8

ci

x

1 4 - 1 7

o(

^Cl

C l ^ N ^ C l

H

°

< 0 -

P

- N -

P

-

0

/

R

T h e s e d e r i v a t i v e s a r e especially i n t e r e s t i n g b e c a u s e o f t h e i r b e a r i n g o n s u b s t i ­ t u t i o n m e c h a n i s m s . T h e y a r e c o n s i d e r e d in m o r e d e t a i l in S e c t i o n E 5 o f t h i s chapter. F i n a l l y , i t is p o s s i b l e t o c a r r y o u t s u b s t i t u t i o n r e a c t i o n s b e t w e e n a l k o x i d e s , a r y l o x i d e s , o r m e r c a p t a n s a n d fluoro o r b r o m o p h o s p h a z e n e s . T h e r e a c t i o n s

D .

G E N E R A L

P R O P E R T I E S

A

N

D

U S E S

O F

155

A M I N O P H O S P H A Z E N E S

a r e n o t r e s t r i c t e d t o cyclic t r i m e r s o r t e t r a m e r s . T h u s , a l t h o u g h m o s t o f t h e f o r e g o i n g e x a m p l e s h a v e r e f e r r e d t o r e a c t i o n s i n v o l v i n g cyclic t r i m e r s o r tetramers, ( N P X ) 3 2

ring-sized (NPX ) . 2

8

O R 4

, m o n o p h o s p h a z e n e s react similarly,

cyclic c o m p o u n d s 2 3

Even

very

such

high

as ( N P X ) , 2

molecular

5

43

(NPX ) , 2

weight

6

as d o m e d i u m (NPX ) , 2

and

7

chlorophosphazenes*

(NPCl ) ooo> readily u n d e r g o complete replacement of halogen w h e n treated 2

i5)

with methoxide, ethoxide, trifluoroethoxide, phenoxide, or other nucleophiles.

related

O n l y for t h e c y c l i z a t i o n p r o c e s s e s w i t h d i o l s a r e t h e r e

2 4 , 2 5

m a r k e d m e c h a n i s t i c differences b e t w e e n t h e s u b s t i t u t i o n of cyclic t r i m e r s a n d the higher h o m o l o g u e s .

7 , 2 5

D . General Properties of A l k o x y - , A r y l o x y - , Alkylthio-, and Arylthiophosphazenes In general, phosphazenes of structure [ N P ( O R ) ] „ or [NP(SR) ]„ are a m o n g the m o s t stable p h o s p h o r u s - n i t r o g e n derivatives k n o w n . H o w e v e r , the stabil­ ity t o h e a t a n d h y d r o l y s i s d e p e n d s o n t h e n a t u r e of t h e s u b s t i t u e n t O R o r S R a n d , a l t h o u g h t h i s subject is c o n s i d e r e d in m o r e d e t a i l in C h a p t e r s 5 a n d 12, some generalizations are a p p r o p r i a t e at this point. 2

2

M o s t fully s u b s t i t u t e d a l k o x y - , a r y l o x y - , a l k y l t h i o - , a n d a r y l t h i o ­ p h o s p h a z e n e s a r e s t a b l e , w h i t e c r y s t a l l i n e solids w h i c h a r e r e a d i l y s o l u b l e in o r g a n i c m e d i a . H o w e v e r , s o m e of t h e a l k o x y - o r a l k y l t h i o - s u b s t i t u t e d species such as [ N P ( O E t ) ] , [ N P ( O B u " ) ] , [NP(OMe) ] , or [ N P ( S B r " ) ] a r e c o l o r l e s s l i q u i d s a t r o o m t e m p e r a t u r e . A c o m p r e h e n s i v e s t u d y of t h e effects of mixed substitution a r o u n d the p h o s p h a z e n e ring by K o b e r , Lederle, a n d Ottmann h a s s h o w n t h a t s u b s t i t u t i o n of t h e t r i m e r i c o r t e t r a m e r i c r i n g by both fluoroalkoxy and aryloxy groups lowers the melting point to such a d e g r e e t h a t t h e m a t e r i a l s h a v e useful p r o p e r t i e s a s fire-resistant, l o w - t e m p e r a ­ t u r e h y d r a u l i c fluids o r l u b r i c a n t s . A l k o x y - o r a r y l o x y - s u b s t i t u t e d h i g h p o l y ­ m e r s a r e e l a s t o m e r s o r flexible-film-forming m a t e r i a l s . I n s o m e c a s e s , t h e m a t e r i a l s d o n o t lose t h e i r flexible p r o p e r t i e s u n t i l c o o l e d b e l o w — 8 0 ° C (see C h a p t e r 16). 2

2

3

2 3

2

3 o r 4

2

4 6

5 o r 7

2

3

2 9 , 3 0 , 3 5

2 4 , 2 5 , 2 7

A s m e n t i o n e d e a r l i e r , h e x a p h e n o x y c y c l o t r i p h o s p h a z e n e , [ N P ( O P h ) ] , is e x c e e d i n g l y s t a b l e t o h e a t a n d h y d r o l y s i s , a n d t h i s b e h a v i o r is c h a r a c t e r i s t i c of m a n y aryloxyphosphazenes. A l k o x y p h o s p h a z e n e s (except fluoroalkoxy derivatives) rearrange to cyclophosphazanes when heated, a n d they are also m o r e sensitive t o h y d r o l y s i s t h a n a r y l o x y c o m p o u n d s . M o s t a l k o x y d e r i v a ­ tives a r e q u i t e s t a b l e w h e n s t o r e d a t r o o m t e m p e r a t u r e in a m o i s t a t m o s p h e r e , and fluoroalkoxyphosphazenes are exceptionally stable to heat a n d neutral h y d r o l y s i s . W h e n five-membered cyclized g r o u p s a r e a t t a c h e d t o p h o s p h o r u s , h y d r o l y s i s t a k e s p l a c e r e a d i l y in s o l u t i o n , b u t m a r k e d h y d r o l y t i c s t a b i l i t y is 2

4 7

3

156

6.

R E A C T I O N S

W I T H

A L K O X I D E S ,

A R Y L O X I D E S ,

A

N

D

T H I O L A T E S

d i s p l a y e d b y species w h i c h c o n t a i n six- o r s e v e n - m e m b e r e d r i n g s y s t e m s a t t a c h e d t o p h o s p h o r u s in a s p i r o a r r a n g e m e n t . T h e t r i m e r , [ N P ( O M e ) ] , is s o l u b l e in w a t e r . 7

2

3

A l k o x y p h o s p h a z e n e s h a v e b e e n d e v e l o p e d a s flame r e t a r d a n t s for r a y o n . Godfrey and Schappel reported that w-propoxycyclophosphazenes and trimert e t r a m e r - l i n e a r o l i g o m e r m i x t u r e s a r e p a r t i c u l a r l y effective flame r e t a r d a n t s , especially w h e n t h e p h o s p h a z e n e is e n c a p s u l a t e d in d i s c r e t e cavities w i t h i n e a c h fiber. A p p r o x i m a t e l y 15 wt. % o f t h e p h o s p h a z e n e is effective. 47a

E . Influence of the Nucleophile on Substitution T h e a b o v e i n f o r m a t i o n i l l u s t r a t e s t h e w i d e versatility o f t h i s g e n e r a l s u b s t i ­ t u t i o n r e a c t i o n b u t it i n d i c a t e s v e r y little a b o u t t h e r e a c t i o n m e c h a n i s m . T o o b t a i n a d e e p e r i n s i g h t i n t o t h i s p r o c e s s it is n e c e s s a r y t o e x a m i n e t h e influence of a n u m b e r of f a c t o r s o n t h e s u b s t i t u t i o n . O n e of t h e m o s t i m p o r t a n t of t h e s e is t h e influence of t h e n u c l e o p h i l e , R O o r R S . Useful i n f o r m a t i o n a b o u t t h e r o l e of t h e n u c l e o p h i l e c a n b e o b t a i n e d b y a n e x a m i n a t i o n of i n s t a n c e s of incomplete substitution, evidence concerning the p a t t e r n of substitution, the effects o f c o m p e t i t i o n r e a c t i o n s , t h e influence of o t h e r s u b s t i t u e n t s o n t h e r e ­ a c t i o n , a n d t h e r e s u l t s of c y c l i z a t i o n p r o c e s s e s a t p h o s p h o r u s . E a c h of t h e s e f a c t o r s will b e c o n s i d e r e d i n t u r n . e

1.

D E G R E E

O F

H A L O G E N

0

R E P L A C E M E N T

R e p l a c e m e n t of c h l o r i n e in c h l o r o c y c l o p h o s p h a z e n e s b y u n b r a n c h e d a l k o x y groups takes place m o r e readily t h a n replacement by phenoxy or branched a l k o x y g r o u p s . T h u s , c o m p l e t e r e p l a c e m e n t of c h l o r i n e in ( N P C 1 ) 3 , ( N P C 1 ) , or ( N P C l ) „ o o o occurs readily with methoxide, ethoxide, or «-propoxide, b u t m o r e drastic conditions are required t o achieve complete substitution with isopropoxide or phenoxide i o n s . ~ > I n fact, p a r t l y s u b s t i t u t e d phenoxychlorocyclophosphazenes, such as N P C l ( O P h ) , N P C l ( O P h ) , N P C l ( O P h ) , N P C l ( O P h ) , a n d N P C l ( O P h ) can be isolated from re­ actions which have n o t been forced to c o m p l e t i o n . T h e s a m e is t r u e for reactions between (NPC1 ) and the /7-bromophenoxide i o n . 2

2

4

2

2

1 5 j

2

1 , 2 > 2 5 , 3 7

4 2

4 8

3

3

3

3

3

3

3

4

2

3

3

3

5

3

3

2

4

5

2 , 3 8 - 4 1

3 9

2

3

However, partially substituted alkoxy derivatives, such as N P C l ( O C H C F ) , N P C l ( O C H C F ) , N P C l ( O C H C F ) , or N P C l ( O C H C F ) c a n b e p r e p a r e d if t h e r e a g e n t s t o i c h i o m e t r y is c o r r e c t a n d if t h e r e a c t i o n c o n ­ d i t i o n s a r e sufficiently m i l d . Similarly, b u t o x y d e r i v a t i v e s o f t h e t y p e s N P C l ( O B u ) , N P C l ( O B u ) , a n d N P C l ( O B u ) can be isolated from the reaction of ( N P C 1 ) with butoxide ion at 2 0 ° C . A s i m i l a r p a t t e r n c a n b e d i s c e r n e d for t h e t h i o a l k y l a n d t h i o a r y l d é r i v a 3

3

5

3

3

2

2

3

4

3

3

3

2

3

3

3

4 , 2 8

3

3

5

3

3

4

2

3

3

3

3

2 1

2

3

3

3

2

2

3

4

E .

I N F L U E N C E

O F

T H E

N U C L E O P H I L E

O

N

157

S U B S T I T U T I O N

t i v e s . T h u s , in b o i l i n g b e n z e n e , t h e r e a c t i o n o f ( N P C 1 ) w i t h E t S , « - P r S , H - B U S , o r P h C H S gives h e x a t h i o a l k y l d e r i v a t i v e s , b u t b r a n c h e d r e a g e n t s , s u c h a s f - P r S o r c y c l o h e x y l - S yield o n l y t e t r a s u b s t i t u t e d p r o d u c t s . D r a s t i c r e a c t i o n c o n d i t i o n s a r e r e q u i r e d for t h e p r e p a r a t i o n of [ N P ( S P h ) ] in b o i l i n g b e n z e n e . I t s h o u l d b e n o t e d t h a t t h e r e a c t i o n s o l v e n t e x e r t s a p r o f o u n d effect o n t h e r e a c t i v i t y o f t h i o a l k y l o r t h i o a r y l n u c l e o p h i l e s in t h i s r e a c t i o n . T h e a b o v e r e s u l t s s u g g e s t t h a t t h e steric d i m e n s i o n s of t h e n u c l e o p h i l e in­ fluence t h e d e g r e e o f h a l o g e n r e p l a c e m e n t , w i t h b u l k y side g r o u p s b e i n g t h e m o s t difficult t o i n t r o d u c e a s s u b s t i t u e n t s o n t h e p h o s p h a z e n e s k e l e t o n . 4 6

0

2

0

e

3

0

2

0

0

2

2.

P A T T E R N

O F

H A L O G E N

3

R E P L A C E M E N T

S u b s t i t u t i o n a t p h o s p h o r u s in c y c l o - o r p o l y p h o s p h a z e n e s c a n t a k e p l a c e either by geminal or non-geminal routes (IV or V). F u r t h e r m o r e , non-geminal

Non-geminal s u b s t i t u t i o n c a n r e s u l t in t h e f o r m a t i o n o f b o t h cis ( V I ) a n d trans ( V I I ) i s o m e r s . OR RO/

X

VI

\

X RO

VII

158

6.

REACTIONS WITH ALKOXIDES, ARYLOXIDES, A N D THIOLATES

E x a m i n a t i o n o f t h e p a t t e r n a n d s t e r e o c h e m i s t r y of a l k o x i d e , a r y l o x i d e , o r mercaptide

substitution

has

helped

t o clarify

the

mechanisms

of

these

reactions. T h e r e a c t i o n of h e x a c h l o r o c y c l o t r i p h o s p h a z e n e , ( N P C 1 ) 3 , w i t h 2

sodium

p h e n o x i d e o r s o d i u m / ? - b r o m o p h e n o x i d e p r o c e e d s n o n - g e m i n a l l y in b e n z e n e , acetone, or t e t r a h y d r o f u r a n . ' * 3 8

3 9

Γη a c e t o n e s o l u t i o n , t h e cis s u b s t i t u t i o n

4 0

p r e d o m i n a t e s slightly o v e r t h e trans?* T h e s e c o n c l u s i o n s a r e b a s e d o n t h e w o r k of B e z m a n

McBee,

4 1

Shaw,

3 8

3 9 , 3 9 a

a n d t h e i r c o - w o r k e r s , w h o identified t h e

n o n - g e m i n a l p r o d u c t s b y c o n v e r s i o n of t h e p h e n o x y c h l o r o p r o d u c t s phenoxy dimethylamino * 3 9

4 1

or phenoxy amino derivatives,

38

followed

to by

structural identification by melting p o i n t s a n d p r o t o n N M R spectra. T h e re­ action schemes studied are Cl^

/XI

Cl\

N^ "N Cl

> ^

N

^P

/

O

P

Me N

h

2

N ^ N

P

K O p h

HNMe

> ^ /PC Cr NT ^ O P h

K C 1

Cl

^OPh

x

2

PhO^I P\ Me N^

h c 1

ll/NMe

2

^OPh

2

(Ref. 41)

CL

.OPh

H N.

NaOPh

X

X

PhCK

.OPh

2

Ρ N

^N^

NH

p

3

^OPh

PhO^

cis and trans

OPh

cis and trans (Ref. 38)

T h e partly substituted phenoxy chloro derivatives can be separated by column and thin-layer c h r o m a t o g r a p h y .

3 8 , 3 9

It w a s a l s o s u g g e s t e d t h a t i n v e r s i o n of

configuration probably does not occur during phenoxide a t t a c k .

3 8

T h e s i t u a t i o n is less c l e a r w h e n a l k o x y n u c l e o p h i l e s a r e e m p l o y e d .

For

example, sodium trifluoroethoxide reacts with hexachlorocyclotriphosphazene t o yield N P 3 C l 3 ( O C H C F 3 ) 3 . 3

2

2 8

This material can then be a m m o n o l y z e d and

t h r e e i s o m e r s of t h e c o m p o u n d N P 3 ( N H ) 3 ( O C H C F 3 ) 3

2

2

3

are isolated. T w o of

t h e s e species a r e p r o b a b l y n o n - g e m i n a l cis a n d trans i s o m e r s a n d t h e t h i r d is a geminal f o r m .

2 8

Sodium butylate reacts with hexachlorocyclotriphosphazene

t o give a d i b u t o x y d e r i v a t i v e , N P C l ( O B u ) . 3

3

4

It was suggested b u t n o t

2 1

2

p r o v e d t h a t t h i s c o m p o u n d is n o n - g e m i n a l . By c o n t r a s t , it h a s b e e n s h o w n t h a t t h e i n t e r a c t i o n of h e x a c h l o r o c y c l o t r i ­ p h o s p h a z e n e with ethylthiolate or phenylthiolate ions leads to geminal substi­ tution.

4 6

This information was derived from

3 1

P and H l

N M R s p e c t r a of

N P C l ( S E t ) , N P C l ( S P h ) , a n d N P C l ( S E t ) . H o w e v e r , it s h o u l d b e 3

3

4

2

3

3

4

2

3

3

2

4

E.

159

I N F L U E N C E OF THE N U C L E O P H I L E O N S U B S T I T U T I O N

noted that a n u m b e r of these reactions are h e t e r o g e n e o u s a n d m a r k e d l y s o l v e n t - d e p e n d e n t , a n d s o m e c a r e m u s t b e exercised w h e n i n t e r p r e t i n g t h e data. 3 . E F F E C T OF O T H E R S U B S T I T U E N T S

A d d i t i o n a l i n f o r m a t i o n a b o u t the m e c h a n i s m of chlorine replacement c a n b e o b t a i n e d f r o m t h e influence o f s u b s t i t u e n t s a l r e a d y p r e s e n t o n t h e r i n g . F o r e x a m p l e , it w a s r e p o r t e d b y M c B e e , O k u h a r a , a n d M o r t o n t h a t 1,1-diphenyl3,3,5,5-tetrachlorocyclotriphosphazene (VIII) was phenoxylated and amm o n o l y z e d t o I X . T h e cis a n d trans n o n - g e m i n a l i s o m e r s o f I X w e r e i s o l a t e d in 3 8

Ph/

^Ph

Ph^ / P h

N ^ N

N a 0

CL I C

1

/

LCI

r> P

r>

^ / VIII

Ph

XT

„ >

—NaCl

P

N

C

1

N

^

PhO. I c

Ph/

N

NH

ll/OPh

p.

r

V

ρ

/Ph

N ^ N

3

ll/OPh

> PhO/ I

S

H

Ρ/

2

cis and trans

N -



^ N ^ IX cis and trans F

/

P

N

H

2

3 9 . 4 % a n d 3 2 . 2 % yields, r e s p e c t i v e l y , a n d a g e m i n a l i s o m e r w a s a l s o r e ­ c o v e r e d in 4 . 5 % yield. S i m i l a r r e s u l t s w e r e r e p o r t e d b y F o r d , B a r r , D i c k s o n , and Bezman b u t , in this c a s e , t h e b i s d i m e t h y l a m i n o a n d m e t h y l a m i n o d e r i v a t i v e s w e r e identified b y Ρ a n d Η N M R s p e c t r o s c o p y . T h u s , p h e n o x y l a t i o n is still p r e d o m i n a n t l y n o n - g e m i n a l in t h e p r e s e n c e o f a d j a c e n t g e m i n a l phenyl units. 4 2

3 1

1

F i t z s i m m o n s , Hewlett, Hills, a n d S h a w have reported the results of alcoholysis r e a c t i o n s of t h e g e m i n a l d e r i v a t i v e s , N3P3PIÎ2CI4 ( V I I I ) a n d N3P3PI14CI2 u s i n g a l k o x i d e i o n in a l c o h o l s o l v e n t s . M e t h o x i d e , e t h o x i d e , / z - p r o p o x i d e , a n d isopropoxide ions were used as nucleophiles. T h e results suggested t h a t t h e ease of s u b s t i t u t i o n d e c r e a s e s in t h e o r d e r ( N P C 1 ) > N3P3PI12CI4 > N3P3PI14CI2. Phenyl groups thus retard the substitution reaction at adjacent p h o s p h o r u s a t o m s . H o w e v e r , it s h o u l d b e n o t e d t h a t side p r o d u c t s o f t y p e s X o r X I w e r e a l s o f o r m e d in t h i s r e a c t i o n . 2 0

2

Ph/ N^

/Ph ? N

3

Ph/ /Ph

NH

RO/1

N^

? N

NH I / O

Ph/I

R O ^ N ^ O R X

P h ^ N '

P

< O R

XI

N o n - g e m i n a l d i a m i n o g r o u p s apparently d o n o t seriously interfere with t h e r e p l a c e m e n t o f a d j a c e n t c h l o r i n e a t o m s b y f l u o r o a l k o x y u n i t s . F o r e x a m p l e , it has been reported that l,3-diamino-l,3,5,5-tetrachlorocyclotriphosphazene ( X I I ) r e a c t s w i t h t h e s o d i u m salts o f t r i f l u o r o e t h a n o l , 2 , 2 , 4 , 4 - t e t r a f l u o r o - « -

160

6.

R E A C T I O N S

W

I

T

H

A L K O X I D E S ,

A R Y L O X I D E S ,

H N

H N.

2

2

NaOR

II/NH2 P

Cl

A

N

D

T H I O L A T E S

OR ll/NH

-NaCl

-ci

2

OR

RO

XII propanol,

2,2,4,4,4-pentafluoropropanol,

2,2,4,4,5,5,5-heptafluorobutanol,

a n d 2 , 2 , 4 , 4 , 5 , 5 - h e x a f l u o r o b u t a n o l t o r e p l a c e all t h e h a l o g e n a t o m s . 1,1,3,5-tetrakis(dimethylamino)-3,5-dichlorocyclotriphosphazene

3 3

a wide variety of nucleophiles, such as M e O , E t O , « - P r O , / - P r O , e

/ - B u O , *-BuO©, e

rt-C H O , e

5

and C H = C H — C H 2

4.

C O M P E T I T I O N

e 2

H

e

i-CsHnO© « - C H 6

e

Similarly,

reacts with 0

n-BuO , e

O , «-C H 0©, PhCH O , 0

1 3

e

7

1 5

to replace the two non-geminal chlorine a t o m s .

2

4 9

R E A C T I O N S

V e r y few e x a m p l e s h a v e b e e n r e p o r t e d in w h i c h t w o n u c l e o p h i l e s h a v e b e e n allowed to interact simultaneously with a halocyclophosphazene. However, e q u i m o l a r a m o u n t s o f t h e s o d i u m salts of w - f l u o r o p h e n o l a n d t r i f l u o r o e t h a n o l were simultaneously allowed to react with hexachlorocyclotriphosphazene. T h e final p r o d u c t c o n t a i n e d 3 t o 4 t i m e s a s m a n y a r y l o x y a s t r i f l u o r o e t h o x y groups, although the detailed molecular a r r a n g e m e n t was n o t established.

2 9

It has also been s h o w n t h a t the interaction of s o d i u m p h e n o x i d e with hexa­ c h l o r o c y c l o t r i p h o s p h a z e n e in b u t a n o l s o l v e n t r e a l l y c o n s t i t u t e s a c o m p e t i t i o n r e a c t i o n for t h e s u b s t r a t e b e t w e e n s o d i u m p h e n o x i d e a n d s o d i u m b u t o x i d e .

2 1

B o t h p h e n o x y a n d b u t o x y s u b s t i t u e n t s w e r e d e t e c t e d in t h e final p r o d u c t , a l t h o u g h the relative p r o p o r t i o n s of each were n o t reported.

5.

C Y C L I Z A T I O N

R E A C T I O N S

A T

P H O S P H O R U S

W h e n c a t e c h o l is a l l o w e d t o i n t e r a c t w i t h h e x a c h l o r o c y c l o t r i p h o s p h a z e n e in the presence of a solvent a n d a suitable base, cyclization takes place at each p h o s p h o r u s a t o m , t o yield X I I I .

I 4 , 1 5

Triethylamine or anhydrous sodium

XIII

E .

carbonate

are

I N F L U E N C E

O F

satisfactory

pyridine can also be u s e d .

T H E

N U C L E O P H I L E

hydrogen

O

N

chloride

S U B S T I T U T I O N

acceptors,

8 , 1 4 , 1 5

161

although

1 5 , 1 6

Similar high-yield reactions t a k e place between

hexachlorocyclotriphos-

p h a z e n e a n d 2 , 3 - d i h y d r o x y n a p h t h a l e n e o r t o l u e n e - 3 , 4 - d i t h i o l t o give X I V a n d XV.

8

I t is w o r t h w h i l e t o n o t e t h a t t h e cyclic t e t r a m e r i c a n a l o g u e o f X I I I is

XV e x t r e m e l y labile a n d difficult t o i s o l a t e . T h e p r i n c i p a l r e a c t i o n p r o d u c t w h e n t r i e t h y l a m i n e is u s e d a s a b a s e is a p h o s p h o r a n e ( X V I ) f o r m e d b y p h o s p h a z e n e r i n g c l e a v a g e . T h e s a m e p h o s p h o r a n e is a l s o p r o d u c e d d u r i n g f o r m a t i o n of X I I I , p a r t i c u l a r l y w h e n c a t e c h o l is in e x c e s s . 7

1 4 , 1 5

XVI

162

6.

R E A C T I O N S

W I T H

A L K O X I D E S ,

A R Y L O X I D E S ,

A

N

D

T H I O L A T E S

Six- a n d s e v e n - m e m b e r e d s p i r o - a r y l o x y s y s t e m s c a n a l s o b e i n t r o d u c e d a t phosphorus. F o r example, 1,8-dihydroxynaphthalene

and

2,2'-dihydroxy-

b i p h e n y l r e a c t w i t h h e x a c h l o r o c y c l o t r i p h o s p h a z e n e t o yield X V I I a n d X V I I I .

XVII

7

XVIII

C y c l o t e t r a p h o s p h a z e n e a n a l o g u e s of t h e s e t w o c o m p o u n d s h a v e a l s o b e e n prepared. 7

Cyclic derivatives such as X I I I - X V I I I are particularly interesting because of t h e u n e x p e c t e d ease of c y c l i z a t i o n . T h i s is especially so for X V I I I , w h e r e t o r ­ sional m o t i o n s of the P h — P h b o n d m i g h t be expected t o reduce the probability o f c y c l i z a t i o n . H o w e v e r , m a n i f e s t a t i o n s o f r i n g s t r a i n in X I I I - X V apparent

during

hydrolysis

5 0

(see C h a p t e r

degradations to form p h o s p h o r a n e s .

9 , 5 1

5) a n d

during

become

phosphazene

F o r e x a m p l e , it h a s b e e n s h o w n t h a t

X I I I , X I V , and X V form p h o s p h o r a n e X I X when treated with 0 - a m i n o p h e n o l . C o m p o u n d s X V I I a n d X V I I I a r e i n e r t u n d e r t h e s e c o n d i t i o n s (see a l s o C h a p t e r 14).

C y c l i z a t i o n a t p h o s p h o r u s is sterically f a v o r e d b y t h e p r e s e n c e of ortho f u n c t i o n a l g r o u p s o n a rigid p h e n y l r i n g , b u t a l i p h a t i c d i o l s m i g h t b e e x p e c t e d t o cyclize less r e a d i l y b e c a u s e o f t h e g r e a t e r o p p o r t u n i t i e s for c r o s s - l i n k i n g between r i n g s w i t h t h e s e l i g a n d s . H o w e v e r , it h a s b e e n s h o w n t h a t s p i r o - t y p e

E .

I N F L U E N C E

O F

T H E

N U C L E O P H I L E

O

N

163

S U B S T I T U T I O N

derivatives are formed w h e n hexachlorocyclotriphosphazene reacts with the s o d i u m o r t r i e t h y l a m i n e salts o f H O C H ( C F ) C H O H 2

C H O H . Species such as X X are isolated.

2

CF —CF 2

CH

2

C F

2

— C H — C H

2



P

2

2

2

CH

^CH —Ο ) C ^ _ 2

2

2

C

H

2

- C F

P

C-(CH ON0 )

N O C H

3

\\^0—CU —CF

^ N ^ ^ 0 — C H XX

2

2

2

ο

H C

( 0

2

2

— I

2

HOCH (CF )

I

ο C F

or

2

2

CH

2

I

2

Similarly, 2,2-bis(nitroxymethyl)-

5

2

2

2

2

2

I | | ^ 0 - C H ^ - P ^ P ^ ^ C ( C H 2

O

O

C

H

O N 0

2

2

)

2

XXI

3 - n i t r o x y p r o p a n - l - o l r e a c t s w i t h h e x a c h l o r o c y c l o t r i p h o s p h a z e n e in p y r i d i n e to form derivative X X I . the

interaction

of

1 7

Experiments have also been reported which involve

hexachlorocyclotriphosphazene

with

ethylene

glycol,

p r o p a n e - 1 , 2 - d i o l , b u t a n e - 1,2-diol, a n d c y c l o h e x a n e - l , 2 - d i o l in t h e p r e s e n c e o f pyridine.

5 2 ,

5 3 , 5 3 a

Spirocyclic

phosphazenes

such

as

XXII

are

formed.

CH —CHR 2

I

I

RHC—ON**

Np__ H

x

C

H C—Ο

2

Ο—CHR

2

XXII

A n a l o g o u s cyclic t e t r a m e r s h a v e a l s o b e e n d e s c r i b e d .

5 2

Pornin

5 2

reported

t h a t spiro c o m p o u n d s were also formed when propane-1,3-diol or butane-1,4d i o l r e a c t e d w i t h h e x a c h l o r o c y c l o t r i p h o s p h a z e n e in p y r i d i n e a t — 10°C, b u t Matuszko and C h a n g

5 3

observed that at higher temperatures (200°-210°C) the

p r i n c i p a l p r o d u c t s w e r e cyclic e t h e r s f o r m e d b y d e h y d r a t i o n of t h e d i o l .

HO(CH ) OH 2

4

(NPCI ) 2



Ho 2

3

H C 2

H C 2

X

Q

CH

2

/ C H

2

164

6.

REACTIONS W I T H ALKOXIDES, ARYLOXIDES, A N D THIOLATES

2-Aminoethanol (NPCl ) .

has been reported

to form

spirocyclic derivatives

with

5 3 a

2

3

In a similar m a n n e r , t h i o a m i d e s such as d i t h i o o x a m i d e , a n d thiosemicarbazide apparently

react with hexachlorocyclotriphosphazene

c h l o r o e t h a n e t o yield t h e s p i r o d e r i v a t i v e s s h o w n b e l o w .

in d r y

tetra­

T h i o u r e a reacts as

5 4

Ck

J

N*

. P /

^P^

Cl Cl HS—C=NH

I HS - C

NH

HN==C-

C=NH

I

NH

II

N H

NH

NH

C

I

S

NH

il

^N

/ N H - C — S .

I

S.

II / S — C — N H .

^ P ^

;NH

/ P ^

^ N H — C — N

S—C—NH'

NH

C—S

NH

S—C

NH

NH

t h e species H S — C ( N H ) = N H t o give h e x a - s u b s t i t u t e d p r o d u c t s o f s t r u c t u r e [NP(SC(NH )=NH) ] . 2

5 4

2

2

3

I t s h o u l d b e n o t e d t h a t s p i r o c y c l i c p h o s p h a z e n e s a r e of i n t e r e s t a s i n t e r ­ m e d i a t e s for p o l y m e r s y n t h e s i s (see C h a p t e r s 15 a n d 16).

F . Influence of the H a l o g e n in Halophosphazenes M u c h of t h e w o r k w h i c h h a s b e e n r e p o r t e d f o r t h e a l c o h o l y s i s , p h e n o l y s i s , a n d m e r c a p t a n o l y s i s of c h l o r o p h o s p h a z e n e s is believed t o b e a p p l i c a b l e a l s o t o f l u o r o p h o s p h a z e n e s a n d b r o m o p h o s p h a z e n e s , b u t v e r y little e x p e r i m e n t a l w o r k h a s b e e n r e p o r t e d for t h e s e l a t t e r h a l o p h o s p h a z e n e s . H o w e v e r , M a o , Dresdner, and Y o u n g

3 6

showed that ( N P F ) 2

3

and ( N P F ) 2

s o d i u m salt o f 1 , 1 , 7 - t r i h y d r o d e c a f l u o r o h e p t a n o l in a

4

react with the

fluorocarbon

solvent to

yield t h e a p p r o p r i a t e f u l l y - s u b s t i t u t e d c y c l o p h o s p h a z e n e s . S i m i l a r l y , P a d d o c k and

co-workers

reported

2 3

that

species

of

structure

[NP(OMe) ] _ , 2

5

8

[ N P ( O C H C F ) ] _ , and [ N P ( O P h ) ] _ could be prepared from the a p p r o ­ 2

3

2

5

8

priate fluorocyclophosphazenes.

2

5

8

Niecke, T h a m m , and Glemser have pre­

pared mono-methoxy, ethoxy, phenoxy, and from ( N P F ) . 2

3

5 7 a

phenylthio-fluorophosphazenes

H .

E F F E C T

O F

T H E

165

S O L V E N T

G. Influence of Phosphazene Ring or Chain Size I n g e n e r a l , it a p p e a r s t h a t m a n y of t h e r e a c t i o n s t h a t h a v e b e e n d e s c r i b e d for hexachlorocyclotriphosphazene are equally applicable to cyclic tetramers, ~ h i g h e r cyclic o l i g o m e r s , ' a n d very h i g h polymers. However, some noticeable exceptions are also found. F o r i n s t a n c e , a l t h o u g h t h e cyclic t r i m e r ( N P C 1 ) 3 r e a c t s r e a d i l y w i t h c a t e c h o l in t h e p r e s e n c e of b a s e t o yield a s p i r o c y c l o p h o s p h a z e n e ( X I I I ) , t h e h i g h p o l y m e r ( N P C l ) degrades instead to p h o s p h o r a n e (XXVI) and a m m o n i a . The cyclic t e t r a m e r i c s p i r o p h o s p h a z e n e c a n p e r h a p s be i s o l a t e d u n d e r very critical c o n d i t i o n s b u t , h e r e t o o , t h e p r e d o m i n a n t r e a c t i o n is d e g r a d a t i o n t o p h o s ­ p h o r a n e . E x p l a n a t i o n s for t h i s b e h a v i o r c a n b e f o r m u l a t e d in t e r m s of t h e g r e a t e r skeletal flexibility of t h e t e t r a m e r a n d h i g h e r h o m o l o g u e s . 2 - 6 , 2 9 , 3 0 , 3 1 , 3 5

3 7 , 4 8 , 5 2

2 4 , 3 3

5 5

2 4 , 2 5

2

1 5

2

n

5 2

1 5

1 5

Special p r o b l e m s a r e a l s o i n v o l v e d w h e n a l k o x i d e s o r a r y l o x i d e s i n t e r a c t w i t h very h i g h m o l e c u l a r w e i g h t p o l y ( d i c h l o r o p h o s p h a z e n e ) . In t h e first p l a c e , l o n g e r r e a c t i o n t i m e s a n d h i g h e r t e m p e r a t u r e s a r e r e q u i r e d t o effect complete substitution on a high molecular weight polymer. F o r example, total s u b s t i t u t i o n of ( N P C 1 ) b y m a n y a l k o x i d e s is c o m p l e t e in less t h a n 12 h o u r s i n e t h e r a t 2 5 ° C o r in 4 h o u r s in a b o i l i n g e t h e r - t o l u e n e s o l u t i o n . C o m p l e t e s u b s t i t u t i o n of t h e h i g h p o l y m e r r e q u i r e s a t least 16 h o u r s r e a c t i o n a t 7 0 ° 80°C. W h e n bulky substituents such as p h e n o x y are employed, m o r e d r a s t i c c o n d i t i o n s a r e r e q u i r e d for t o t a l p o l y m e r s u b s t i t u t i o n . T h i s r e s u l t s f r o m t h e fact t h a t p o l y m e r c h a i n s a r e often extensively c o i l e d in s o l u t i o n , a n d c o n s i d e r a b l e steric h i n d r a n c e m u s t b e s u r m o u n t e d b e f o r e a n u c l e o p h i l e c a n p e n e t r a t e sufficiently close t o t h e s k e l e t o n t o effect s u b s t i t u t i o n . A s e c o n d p r o b l e m e n c o u n t e r e d w i t h t h e s u b s t i t u t i o n of h i g h p o l y m e r s is t h a t t h e t e m ­ p e r a t u r e m u s t n o t b e so h i g h t h a t d e p o l y m e r i z a t i o n t o cyclic o l i g o m e r s is i n d u c e d (see C h a p t e r 15). 2 4 , 2 5

2

3

4

5

2 4 , 2 5

2 5

H . Effect of the Solvent A v a r i e t y of a n h y d r o u s s o l v e n t s h a v e b e e n u s e d for s u b s t i t u t i o n r e a c t i o n s of t h i s t y p e . T h e s e i n c l u d e d i e t h y l e t h e r , tetrahydrofuran, ' dioxane, benzene, °toluene, xylene, "· 25,44,46,48 a c e t o n e , methyl ethyl k e t o n e , dimethylformamide, fluorocarbon-i-butylamine, pyridine, ~ a n d excess of t h e a l c o h o l s o r t h i o l s b e i n g used as r e a g e n t s for s u b s t i t u t i o n . A n u m b e r of p r a c t i c a l c o n s i d e r a t i o n s m u s t b e t a k e n i n t o a c c o u n t w h e n choosing a reaction solvent. T h u s , a n h y d r o u s conditions must be maintained d u r i n g s u b s t i t u t i o n t o a v o i d h y d r o l y s i s of t h e p h o s p h o r u s - h a l o g e n b o n d s , a n d 4 , 2 8 , 4 6 , 5 6

2 , 2 5 ,

4 3

2 , 2 3 , 2 5 ,

3 7 , 3 8 ,

4

4 2 , 4 6

8 , 1 5

5 , 3 0 , 4 0 ,

4 3

4 2 , 4 6 ,

4 8

1 0 ,

4 3

36

2 , 1 6

1 8 ,

2 5 , 3 9 , 4 2 , 4 6

4 3 ,

4 6 , 5 2 , 5 3

1 8 , 2 0 , 2 1 ,

4 6

4 6

166

6.

R E A C T I O N S

W I T H

A L K O X I D E S ,

A R Y L O X I D E S ,

A

N

D

T H I O L A T E S

hydrophilic solvents such as tetrahydrofuran, dioxane, d i m e t h y l f o r m a m i d e , a n d p y r i d i n e m u s t b e e x h a u s t i v e l y d r i e d b e f o r e u s e . T h e s a m e is, of c o u r s e , t r u e for t h e a l c o h o l s o r m e r c a p t a n s u s e d as r e a g e n t s a n d s o l v e n t s . B o i l i n g x y l e n e , b e n z e n e , o r t o l u e n e is u s e d a s r e a c t i o n m e d i u m w h e n solid p o t a s s i u m o r s o d i u m h y d r o x i d e is e m p l o y e d a s a b a s e , since w a t e r f o r m e d d u r i n g t h e r e a c t i o n is r a p i d l y r e m o v e d b y d i s t i l l a t i o n . T h i s c a n influence t h e r e a c t i o n in c u r i o u s w a y s . T h u s , w h e n p h e n o x y l a t i o n of N3P3CI4PI12 t a k e s p l a c e in b e n z e n e , the râ-non-geminal i s o m e r of N j P j C ^ P l h i O P h ^ is f o r m e d . I n t e t r a h y d r o ­ f u r a n , f r o m w h i c h w a t e r is n o t r e m o v e d by a z e o t r o p i n g , b o t h cis a n d trans isomers are f o r m e d . 4 2

A s e c o n d i m p o r t a n t s o l v e n t influence is c o n n e c t e d w i t h s o l v e n t p o l a r i t y a n d w i t h t h e solubility of s o d i u m salts in t h e m e d i u m . F o r e x a m p l e , a p r e f e r r e d sol­ v e n t is o n e in w h i c h t h e s o d i u m a l k o x i d e , a r y l o x i d e , o r m e r c a p t i d e is s o l u b l e , b u t in w h i c h s o d i u m c h l o r i d e is i n s o l u b l e . E t h e r s often fall i n t o t h i s c a t e g o r y . T h e influence of t h e s o l v e n t o n t h e r e a c t i o n r a t e o r m e c h a n i s m is less easy t o determine. It seems reasonable to assume that the m o r e polar solvents should a c c e l e r a t e t h e r a t e of s u b s t i t u t i o n b y f a c i l i t a t i n g i o n i z a t i o n of a l k o x i d e , a r y l ­ o x i d e , o r m e r c a p t i d e i o n s . S o m e e v i d e n c e in f a v o r of t h i s view h a s b e e n p r o ­ v i d e d b y t h e r e s u l t s of C a r r o l l a n d S h a w for t h e a l k y l t h i o l y s i s a n d a r y l t h i o l y s i s of h e x a c h l o r o c y c l o t r i p h o s p h a z e n e . T h u s , fully m e r c a p t a l a t e d i s o p r o p y l thio-substituted p r o d u c t s were obtained when the solvent was dimethyl­ f o r m a m i d e , f o u r c h l o r i n e a t o m s w e r e r e p l a c e d in t e t r a h y d r o f u r a n , b u t o n l y t w o w e r e r e p l a c e d in b e n z e n e . In g e n e r a l , t h e e a s e of s u b s t i t u t i o n falls off w i t h sol­ v e n t c h a n g e s in t h e o r d e r : d i m e t h y l f o r m a m i d e a t 100°C > b o i l i n g d i g l y m e > boiling tetrahydrofuran > boiling benzene > boiling diethyl ether. This order r o u g h l y p a r a l l e l s t h e e x p e c t e d d e c r e a s i n g s o l v a t i o n of Na® in t h e r e a g e n t , b u t it s h o u l d b e r e m e m b e r e d t h a t t h e r e a c t i o n s a r e h e t e r o g e n e o u s in all o f t h e s e m e d i a e x c e p t d i m e t h y l f o r m a m i d e , a n d r e a g e n t solubility effects m a y t h u s b e r e s p o n s i b l e for t h e differences. It is i n t e r e s t i n g t o n o t e t h a t t h e s e s o l v e n t effects b e c o m e m a n i f e s t as a n influence o n t h e number of h a l o g e n a t o m s r e p l a c e d a n d n o t s i m p l y as a n effect o n t h e r e a c t i o n r a t e . F o r i n s t a n c e , in d i e t h y l e t h e r a t room temperature, ethane-, propane-, butane-, or isobutanethiol bring about r e p l a c e m e n t of t w o c h l o r i n e a t o m s o n l y , a n d f u r t h e r s u b s t i t u t i o n d o e s n o t n o r m a l l y o c c u r if t h e r e a c t i o n t i m e o r r e a g e n t c o n c e n t r a t i o n is i n c r e a s e d . H o w ­ ever, after 7 d a y s in b o i l i n g e t h e r , a t e t r a k i s ( e t h y l t h i o ) d e r i v a t i v e c a n b e i s o l a t e d . I n b o i l i n g t e t r a h y d r o f u r a n , fully s u b s t i t u t e d e t h a n e - , « - p r o p a n e - , « - b u t a n e - , a n d b e n z y l t h i o l d e r i v a t i v e s w e r e f o r m e d , b u t b r a n c h e d a l k a n e t h i o l a t e s (isopropyl or cyclohexyl) gave only tetrakis derivatives. O t h e r nucleophilic substi­ t u t i o n s , s u c h a s a l c o h o l y s i s o r a m i n o l y s i s , d o n o t s h o w t h i s s t r i k i n g sensitivity t o different s o l v e n t s . 45,

4 6

4 6

Z h i v u k h i n , T o l s t o g u z o v , a n d L u k a s h e v s k i h a v e e x a m i n e d t h e initial r a t e of t h e r e a c t i o n b e t w e e n h e x a c h l o r o c y c l o t r i p h o s p h a z e n e a n d sodium 2 2

I.

I N F L U E N C E

O F

T H E

167

B A S E

m e t h o x i d e in several different s o l v e n t s u s i n g a p o t e n t i o m e t r i c t e c h n i q u e . T h e initial r a t e in d i m e t h y l f o r m a m i d e w a s f o u n d t o b e m u c h m o r e r a p i d t h a n in acetone, dioxane, butanol, d i o x a n e - a c e t o n e , or d i o x a n e - m e t h y l ethyl ketone mixtures. H o w e v e r , the almost i n s t a n t a n e o u s replacement of u p to

four

c h l o r i n e a t o m s w h i c h o c c u r r e d in d i m e t h y l f o r m a m i d e m u s t b e c o n t r a s t e d w i t h t h e u l t i m a t e b u t s l o w e r r e p l a c e m e n t o f all six h a l o g e n a t o m s in t h e o t h e r sol­ vent systems.

I. Influence of the B a s e I n t h e m a j o r i t y o f r e a c t i o n s , a b a s e o r s o d i u m salt m u s t b e p r e s e n t b e f o r e a n a l c o h o l , p h e n o l , o r t h i o l will i n t e r a c t c l e a n l y w i t h a c h l o r o p h o s p h a z e n e . O n l y w h e n r e a c t i o n s of t h i s t y p e a r e e m p l o y e d for t h e h i g h - t e m p e r a t u r e c u r i n g o f cross-linked p o l y p h o s p h a z e n e resins m a y a base be absent, b u t even here t h e p r e s e n c e of a h y d r o g e n c h l o r i d e a c c e p t o r m a r k e d l y facilitates t h e p r o c e s s . I n t h e a b s e n c e of a b a s e , a l k a n e t h i o l s o r p h e n y l t h i o l d o n o t u n d e r g o s u b s t i t u t i o n w h e n heated with chloro- or a l k o x y c y c l o p h o s p h a z e n e s . Benzyl alcohol reacts w i t h ( N P C 1 ) in d i o x a n e in t h e a b s e n c e of a b a s e t o yield a h y d r o x y p h o s p h a zane a n d benzyl c h l o r i d e . 4 6

2

3

5 6 3

T h e u s e of s o d i u m salts of a l k o x i d e s , a r y l o x i d e s , o r t h i o l s h a s b e e n m e n ­ tioned t h r o u g h o u t this chapter. Reactions involving such reagents are usually c l e a n a n d r a p i d , a n d t h e y yield s o d i u m c h l o r i d e a s a n easily r e m o v e d side p r o ­ d u c t . S o d i u m salts of a l c o h o l s , p h e n o l s , o r t h i o l s c a n b e p r e p a r e d b y t h e a d d i ­ t i o n of m e t a l l i c s o d i u m t o a s o l u t i o n of t h e r e a g e n t in e t h e r o r t e t r a h y d r o f u r a n . W h e n strongly acidic alcohols or phenols are employed, p o t a s s i u m or s o d i u m h y d r o x i d e s c a n b e u s e d in situ for salt f o r m a t i o n . H o w e v e r , t h e s e m e t h o d s a r e u n s u i t a b l e w h e n t h e a l c o h o l o r p h e n o l u n d e r g o e s side r e a c t i o n s w i t h s o d i u m o r caustic alkali. U n d e r these circumstances, milder conditions are employed, w i t h t h e u s e of s o d i u m c a r b o n a t e , p y r i d i n e , o r t r i e t h y l a m i n e a s t h e h y d r o g e n c h l o r i d e a c c e p t o r . T h i s is e s p e c i a l l y s o f o r t h e f o r m a t i o n o f s p i r o c y c l i c p h o s ­ phazenes such as as X I I I , X I V , X V I I , X V I I I , a n d X X I . T h e d e s i g n a t i o n o f t h e b a s e a s a " h y d r o h a l i d e a c c e p t o r " in t h e s e r e a c t i o n s is n o t strictly v a l i d , since few r e a c t i o n s of t h i s t y p e t a k e p l a c e a t all in t h e a b s e n c e of a b a s e . I t is m o r e r e a s o n a b l e t o view t h e b a s e a s a c a t a l y s t f o r f a c i l i t a t i n g i o n i z a t i o n of t h e a l c o h o l o r p h e n o l t o a l k o x i d e o r a r y l o x i d e i o n ( X X I I I ) . ROH + Et N ^ R O + Et NH 0

3

3

XXIII S o d i u m c a r b o n a t e p r o b a b l y functions partly as a h y d r o h a l i d e acceptor t o re­ m o v e hydrohalide liberated d u r i n g a very slow direct phenolysis process

168

6.

R E A C T I O N

S

W I T

H

A L K O X I D E S

,

A R Y L O X I D E S

,

A

N

D

T H I O L A T E

S

6 RO H + (NPC1 ) - > [NP(OR) ] + 6 HC l 2

3

2

3

HCl + N a C 0 - » NaC l + N a H C 0 2

3

3

XXIV ( X X I V ) . H o w e v e r , i t i s a l s o likel y t h a t t h e i n t e r a c t i o n o f a p h e n o l w i t h s o d i u m c a r b o n a t e result s i n th e f o r m a t i o n o f smal l a m o u n t s o f s o d i u m p h e n o l a t e , which the n reac t b y th e conventiona l r o u t e : ROH + N a C 0 ^ RON a + N a H C 0 2

3

3

R e a c t i o n s p e r f o r m e d wit h pyridin e a s a bas e ar e especiall y sensitiv e t o trace s of m o i s t u r e .

1 5

F u r t h e r m o r e , pyridin e apparentl y form s a n isolabl e crystallin e

complex wit h hexachlorocyclotriphosphazene.

5 2

J . Influenc e o f Temperatur e The interactio n o f som e nonfluorinate d alcohol s o r alkoxide s wit h chloro phosphazenes m u s t b e carrie d ou t a t th e lowes t practicabl e temperatur e t o avoid rearrangemen t o f th e alkoxycyclophosphazen e t o a n oxophosphazan e (XXV).

5 7

(se e C h a p t e r 13) . R e a r r a n g e m e n t s o f t h i s k i n d o c c u r s l o w l y e v e n a t [NP(OR) ] 2

-ï^ >

3

[N(R)—P(0)O R]

3

XXV r o o m temperature , whe n O R i s methox y o r e t h o x y . F o r thi s reason , th e reac 7

tion o f sodiu m methoxid e wit h hexachlorocyclotriphosphazen e i n b e n z e n e methanol solutio n i s carrie d ou t a t 0 ° C . Th e interactio n o f ethanol , pyridine , 2

and

hexachlorocyclotriphosphazene s

fl-butanol

i s conducte d

at

0°-5°C.

2

Whe n

replace s ethanol , th e reactio n take s plac e a t r o o m t e m p e r a t u r e .

2

M i l d r e a c t i o n c o n d i t i o n s a r e a l s o p r e f e r r e d fo r t h e f o r m a t i o n o f s o m e s p i r o cyclophosphazenes, suc h a sX I I I ,

1 4

-

1 5

XXI,

1 7

o rX X I I

5 2

t o a v o i d sid e r e a c t i o n s .

F o r example , th e reactio n o f ( N P C l ) r 4 wit h catecho l i n pyridin e solutio n i s 2

conducted a t - 8 ° t o 3 0 ° C . * 1 5

3 o

5 2

However, mor e drasti ctemperatur e condition s ca n b euse d whe n th e nucleo p h i l e i s i s o p r o p o x y , b e n z y l o x y , p h e n o x y , o r fluoroalkoxy,

an d temperature s i n

the 30°-120° C rang e m a y b e used . Aryloxy - an d

fluoroalkoxyphosphazenes

do no t rearrang e thermall y t o oxophosphazanes . I t shoul d b e note d tha t a t 2 5 0 °C fluoroalkoxy

group s ca n b e exchange d fro m on e molecul e t o a n o t h e r .

5 7 1 3

W h e n d i m e t h y l f o r m a m i d e i s u s e d a s a s o l v e n t fo r t h e i n t e r a c t i o n o f m e r c a p t a n s o r t h e i r s o d i u m s a l t s , t h e t e m p e r a t u r e m u s t b e k e p t b e l o w 100° C t o a v o i d degradation reactions.

4 6

L .

T H E

R E A C T I O N

169

M E C H A N I S M

K. Monophosphazenes and Related Compounds All of the foregoing analysis has centered a r o u n d the nucleophilic substitu­ tions of halocyclophosphazenes or their linear high polymers. However, m o n o p h o s p h a z e n e s are k n o w n to u n d e r g o similar reactions. F o r example, Zhmurova, Voitsekhovskaya, and Kirsanov have shown that P-trichloro-Narylmonophosphazenes (phosphinimines) (XXVI) react with sodium pheno x i d e t o yield t h e a p p r o p r i a t e t r i p h e n o x y d e r i v a t i v e s ( X X V I I ) . Such tri4 3

A r N = P C l + 3 PhONa

ArN=P(OPh) + 3 NaCl

3

3

XXVI

XXVII

phenoxymonophosphazenes are formed from both the m o n o m e r i c trichlorom o n o p h o s p h a z e n e , as shown above, or from the dimeric (cyclodiphosphazane) f o r m . H o w e v e r , t h e t r i p h e n o x y d e r i v a t i v e s exist o n l y a s m o n o m e r s a n d n o t a s cyclic d i m e r s , p o s s i b l y for s t e r i c r e a s o n s . T h i s r e a c t i o n h a s b e e n c a r r i e d o u t for a n u m b e r o f P - t r i c h l o r o m o n o p h o s p h a z e n e s ( X X V I ) in w h i c h t h e g r o u p A r is P h ; o , m-, / ? - M e C H ; 3 , 5 - M e C H ; o-, m-, / ? - C l C H ; 2 , 4 - C l C H ; 3 , 5 - C l C H ; 2 , 4 , 6 - C l C H ; o-, m-, / ? - B r C H ; 2 , 4 - B r C H ; 2 , 4 , 6 - B r C H ; / ? - M e O C H ; / ? - E t O C H ; o, m-, / 7 - N 0 C H ; 2 , 4 - ( N 0 ) C H ; 2 , 6 - C l - 4 - N 0 C H . T h e c o m p o u n d s in w h i c h A r is 2 , 4 , 6 - C l C H ; 2 , 4 , 6 - B r C H ; / ? - N 0 - C H ; 2 , 4 - ( N 0 ) C H ; o r 2 , 6 - C l - 4 - N 0 C H a r e c r y s t a l l i n e s o l i d s , b u t t h e rest a r e v i s c o u s l i q u i d s . E x c e p t in t h e c a s e w h e r e A r is p h e n y l , t h e y c a n n o t b e distilled a t r e d u c e d p r e s ­ s u r e w i t h o u t d e c o m p o s i t i o n . All t h e s e m a t e r i a l s a r e h y d r o l y z e d r a p i d l y b y w a t e r o r m o i s t a i r t o f o r m d i p h e n y l e s t e r s of a r y l a m i d o p h o s p h o r i c a c i d s , b y t h e reaction 6

6

3

6

6

2

4

6

2

6

4

2

6

6

2

3

2

3

2

4

2

6

6

3

3

6

3

3

6

6

3

2

2

2

2

6

2

2

6

4

3

2

6

4

2

6

4

2

2

6

4

2

2

6

4

2

ArN=P(OPh) + H 0 -> ArNH—PO(OPh) + PhOH 3

The compounds

2

SC1 P—N=PC1 2

2

3

and S P ( O P h ) — N = P C 1

sodium phenoxide according to the s c h e m e s

2

3

react

with

5 8 , 5 9

S=PC1 —N=PC1 + 5 NaOPh -> S=P(OPh) —N=P(OPh) + 5 NaCl 2

3

2

3

S=P(OPh )—N=PC1 + NaOPh -> S = P ( O P h — N = P ( O P h ) + 3 NaCl 2

3

2

3

I t h a s b e e n s h o w n t h a t m o n o p h o s p h a z e n e s of s t r u c t u r e C 1 C — C 1 C — N = P C 1 r e a c t w i t h p r i m a r y a l c o h o l s a t 2 0 ° - 2 5 ° C t o yield c o m p o u n d s of s t r u c t u r e C1 C—C1 C—N=PCl (OAlk). However, these materials are unstable and d e c o m p o s e with elimination of alkyl halide. 3

2

3

6 0

3

2

2

L . T h e Reaction M e c h a n i s m T h e n a t u r e of the reaction m e c h a n i s m d u r i n g alcoholysis, phenolysis, or thiolysis is i n t i m a t e l y c o n n e c t e d w i t h q u e s t i o n s a b o u t t h e m e c h a n i s m s o f t h e

170

6.

R E A C T I O N S

W I T H

A L K O X I D E S ,

A R Y L O X I D E S ,

A

N

D

T H I O L A T E S

h y d r o l y s i s , a m i n o l y s i s , m e t a t h e t i c a l e x c h a n g e , a n d s k e l e t a l d e g r a d a t i o n of h a l o p h o s p h a z e n e s . T h e s e l a t t e r m e c h a n i s m s a r e c o n s i d e r e d in C h a p t e r s 5 , 7 , 8, a n d 14. T h e a v a i l a b l e e v i d e n c e a b o u t t h e m e c h a n i s m o f a l c o h o l y s i s , p h e n o l y s i s , a n d t h i o l y s i s is i n c o m p l e t e a n d f r a g m e n t a r y , b u t several p e r t i n e n t facts c a n b e d i s c e r n e d a n d t h e s e a r e listed b e l o w . (a) T h e d i r e c t r e a c t i o n b e t w e e n a h a l o p h o s p h a z e n e a n d a n a l c o h o l , p h e n o l , o r t h i o l in t h e a b s e n c e of a b a s e is a s l o w r e a c t i o n w h i c h often yields side p r o ­ d u c t s o r d e c o m p o s i t i o n species r a t h e r t h a n s u b s t i t u t e d p h o s p h a z e n e s . H o w ­ ever, w h e n s o d i u m alkoxides, aryloxides, or thiolates are used, o r w h e n a s t r o n g b a s e is e m p l o y e d w i t h t h e a l c o h o l o r p h e n o l , t h e r e a c t i o n is r a p i d . T h i s s u g g e s t s t h a t a l k o x i d e , a r y l o x i d e , o r t h i o l a t e i o n s a r e t h e r e a c t i v e species d u r i n g " n o r ­ m a l " substitution. This has been confirmed by the kinetic studies of S o r o k i n and Latov,

6 1

w h o showed that, when sodium ethoxide reacts with ( N P C 1 ) 2

N P C l 4 ( O B u ) 2 , t h e n u c l e o p h i l e is E t O 3

3

0

3

or

and not E t O N a . The ionization to

e t h o x i d e i o n is e n h a n c e d in h i g h d i e l e c t r i c c o n s t a n t s o l v e n t s a n d t h i s l e a d s t o i n c r e a s e d s u b s t i t u t i o n r a t e s in s u c h m e d i a . (b) B o t h t h e d e g r e e of s u b s t i t u t i o n a n d t h e p a t t e r n of h a l o g e n r e p l a c e m e n t a r e sensitive t o t h e steric c h a r a c t e r i s t i c s of t h e n u c l e o p h i l e . T h u s , b r a n c h e d alkoxides, branched alkylthiolates, or phenoxides cause total substitution only w i t h difficulty. P h e n o x i d e i o n s u b s t i t u t e s n o n - g e m i n a l l y , p o s s i b l y b e c a u s e of steric i n f l u e n c e s . (c) T h e p o s s i b i l i t y a l s o exists t h a t t h e n o n - g e m i n a l r e p l a c e m e n t p a t t e r n observed with phenoxide and some alkoxides m a y result from electron supply from alkoxide or aryloxide to p h o s p h o r u s , which lowers the reactivity of a C l — Ρ — O R u n i t b e l o w t h a t of a C l — Ρ — C l u n i t . I n v i e w of t h e r e s u l t s o f polarographic experiments with alkoxy- and a r y l o x y p h o s p h a z e n e s ,

6 2

it s e e m s

u n l i k e l y t h a t r e s o n a n c e effects i n v o l v i n g t h e p h e n y l g r o u p s a r e r e s p o n s i b l e f o r t h e e l e c t r o n s u p p l y . H o w e v e r , d o n a t i o n of t h e o x y g e n l o n e - p a i r e l e c t r o n s t o ­ w a r d p h o s p h o r u s is p o s s i b l e . ( d ) A l k y l t h i o l a t e i o n s s u b s t i t u t e g e m i n a l l y , r a t h e r t h a n n o n - g e m i n a l l y , in s p i t e of t h e l o w e r e l e c t r o n e g a t i v i t y of a l k y l t h i o s u b s t i t u e n t s t h a n groups.

4 6

It has been s u g g e s t e d

4 6

chloro

t h a t the high polarizability of the C l — Ρ — S R

u n i t c o m p a r e d w i t h t h a t of t h e C l — Ρ — C l g r o u p i n g m a y b e t h e r e a s o n for t h i s behavior. (e) G e m i n a l cyclization

to form

spirocyclophosphazenes

occurs

w h e n five-, six-, o r s e v e n - m e m b e r e d r i n g s a t p h o s p h o r u s a r e i n v o l v e d .

readily 8 , 1 5

This

i m p l i e s t h a t , w h e n g e m i n a l s u b s t i t u t i o n is not r e t a r d e d b y steric effects, t h e r e a r e n o s e r i o u s e l e c t r o n i c influences w h i c h i n h i b i t t h e g e m i n a l p r o c e s s . S o m e c o n ­ firmation

of t h i s view is p r o v i d e d b y t h e fact t h a t w h e n ( N P C 1 ) r e a c t s w i t h 2

catechol, 2,3-dihydroxynaphthalene, 2,2'-dihydroxybiphenyl,

3

1,8-dihydroxy-

n a p h t h a l e n e , o r t o l u e n e - 3 , 4 - d i t h i o l , n o n o n - g e m i n a l , u n c y c l i z e d species, s u c h as X X V I I I , are i s o l a t e d . * 8

1 5

L .

T H E

R E A C T I O N

171

M E C H A N I S M

XXVIII (f ) W h e n b u t o x i d e i o n r e p l a c e s c h l o r i n e in h e x a c h l o r o c y c l o t r i p h o s p h a z e n e , t h e r e a c t i o n r a t e d e c r e a s e s in t h e o r d e r ( N P C 1 ) > N P C l ( O B u ) > l N P C l ( O B u ) > N P C l ( O B u ) , w i t h t h e a c t i v a t i o n e n e r g y i n c r e a s i n g in t h e o r d e r 10.0, 11.3, 14.5, a n d 17.2 k c a l / m o l e , r e s p e c t i v e l y . If t h i s r a t e d e c r e a s e is t h e result of electron supply from b u t o x y g r o u p s to the ring, an S l - t y p e mecha­ n i s m is p r e c l u d e d since e l e c t r o n s u p p l y w o u l d e n h a n c e t h e i o n i z a t i o n of Ρ — C l t o P ® C l a n d , t h u s , i n c r e a s e t h e r a t e . S e c o n d - o r d e r k i n e t i c s (first o r d e r in b o t h p h o s p h a z e n e a n d a l k o x i d e ) a r e , in fact, o b s e r v e d a n d t h i s s u g g e s t s a n S 2 t y p e of mechanism. (g) If t h e m e c h a n i s m d o e s p r o c e e d b y a n S 2 - t y p e p r o c e s s , t h e r e a r e t w o possibilities for t h e a p p r o a c h of t h e n u c l e o p h i l e t o p h o s p h o r u s p r i o r t o a t t a i n ­ m e n t of t h e t r a n s i t i o n s t a t e . T h e first m e c h a n i s m is o n e i n v o l v i n g a side a t t a c k o n p h o s p h o r u s in t h e p l a n e of t h e r i n g , a s s h o w n in X X I X . E i t h e r r e t e n t i o n o r 2

2

3

3

3

3

3

3

5

3

3

4

3

61

N

e

N

N

Cl = N

X

/Cl

+

Θ OR



θ n > — O R

>

= N \

Cl

/Cl

Cl

e

XXIX i n v e r s i o n of c o n f i g u r a t i o n c o u l d , t h u s , o c c u r d e p e n d i n g o n t h e c h a r a c t e r o f t h e l e a v i n g g r o u p . T h e l o w e n t r o p y of a c t i v a t i o n v a l u e for b u t o x i d e i o n a t t a c k o n h e x a c h l o r o c y c l o t r i p h o s p h a z e n e h a s b e e n cited a s e v i d e n c e for t h i s t y p e of process. 6 1

A second, a n d m o r e logical, a p p r o a c h to a trigonal b i p y r a m i d a l transition s t a t e is via a b a c k s i d e a t t a c k , l e a d i n g t o i n v e r s i o n of c o n f i g u r a t i o n , a s s h o w n in XXX. OR' OR' e

=Nci

-Λ^Υ

ι---Cl

XXX

O K



: "OR eci

172

6.

R E A C T I O N S

W I T H

A L K O X I D E S ,

A R Y L O X I D E S ,

A

N

D

T H I O L A T E S

N o u n a m b i g u o u s e v i d e n c e for o r a g a i n s t i n v e r s i o n of c o n f i g u r a t i o n h a s y e t been p r o d u c e d . H o w e v e r , this type of m e c h a n i s m seems reasonable o n theor­ etical g r o u n d s since t h e a t t a c k i n g n u c l e o p h i l e c o u l d a p p r o a c h p h o s p h o r u s a l o n g t h e ζ axis o f a n unfilled d o r b i t a l . A d d i t i o n a l e v i d e n c e f o r t h i s t y p e of m e c h a n i s m is p r o v i d e d b y t h e r e s u l t s o f r e a c t i o n s b e t w e e n n u c l e o p h i l e s s u c h a s H O " or M e O a n d spirocyclic aryloxyphosphazenes. T h u s , attack by R O ~ o n a u n i t s u c h a s X X X I c a n n o t t a k e p l a c e b y a n y r o u t e w h i c h forces t h e t w o 2

z

-

-

XXXI

XXXII

Ρ — Ο — P h u n i t s t o m o v e t o a x i a l p o s i t i o n s in t h e t r a n s i t i o n s t a t e ( X X X I I ) , a n d t h e side a t t a c k m e c h a n i s m is, t h u s , p r o h i b i t e d . A s d i s c u s s e d e a r l i e r in

OR

OR

XXXIII

XXXIV

C h a p t e r 4, n u c l e o p h i l i c a t t a c k b y H O ~ ( a n d R O " ) o n s p i r o a r y l o x y p h o s p h a z e n e s w i t h five-membered r i n g s a t p h o s p h o r u s , a s in X X X I I I , is m u c h m o r e rapid than attack on molecules with seven-membered rings or two i n d e p e n d e n t s u b s t i t u e n t s a t p h o s p h o r u s . T h i s is c o n s i s t e n t w i t h t h e e a s e w i t h w h i c h t h e five-membered r i n g c a n a s s u m e t h e a x i a l a n d e q u a t o r i a l p o s i t i o n s ( X X X I V ) , thus allowing the Ο — Ρ — Ο b o n d angle to a p p r o x i m a t e to 90°-95°. T h u s , t h e e n e r g y of t h e t r a n s i t i o n s t a t e w o u l d b e l o w e r e d b y t h e p r e s e n c e of a five-membered ring at p h o s p h o r u s a n d the rate would be enhanced. In the a b s e n c e of e v i d e n c e t o t h e c o n t r a r y it m u s t b e a s s u m e d t h a t a t t a c k b y R O ~ fol­ l o w s t h e s a m e p a t h w a y a s a t t a c k b y H O , i.e., b y a n S 2 b a c k s i d e a t t a c k . T h e m a i n differences b e t w e e n s u b s t i t u t i o n b y H O a n d R O ~ w o u l d b e e x p e c t e d w h e n t h e g r o u p , R, is b u l k y o r h i g h l y p o l a r i z a b l e . 5 0

-

N

-

R E F E R E N C E S

173

REFERENCES

1. H. R. Allcock and R. J. Best, Can. J. Chem. 42, 447 (1964). 2. B. W. Fitzsimmons and R. A. Shaw, Chem. Ind. (London) p. 109 (1961); / . Chem. Soc. London?. 1735 (1964). 3. M. Yokoyamaand F. Yamada,/. Chem. Soc. Jap., Ind. Chem. Sect. 66,613(1963). 4. É. T. McBee, H. R. Allcock, R. Caputo, A. Kalmus, and C. W. Roberts, U.S. Govt. Astia Rep. AD 209,669 (1959). 5. R. Râtz, H. Schroeder, H. Ulrich, Ε. Kober, and C. Grundmann, / . Amer. Chem. Soc. 84, 551 (1962). 6. R. F. Ràtzand C. Grundmann, U.S. Pat. 2,876,247 (1959). 7. H. R. Allcock and E. J. Walsh, unpublished information (1969). 8. H. R. Allcock and R. L. Kugel, Inorg. Chem. 5, 1016 (1966). 9. H. R. Allcock and R. L. Kugel, J. Amer. Chem. Soc. 91, 5452 (1969). 10. G. M. Nichols, Ger. Pat. 1,182,660 (1964). 11. G.M.Nichols,U.S.Pat. 3,316,330(1967); U.S. Govt. Res. Rep. ASD-TDR62-372(1962). 12. E. Kober, H. Lederle, and G. Ottmann, Inorg. Chem. 5, 2239 (1966). 13. B. W. Fitzsimmons and R. A. Shaw, Inorg. Synt. 8, 77 (1966). 14. H. R. Allcock, / . Amer. Chem. Soc. 85, 4050 (1963). 15. H. R. Allcock, / . Amer. Chem. Soc. 86, 2591 (1964). 16. J. Parrod and R. Pornin, C. R. Acad. Sci. 258, 3022 (1964). 17. M. S. Chang and A. J. Matuszko, Chem. Ind. (London) p. 410 (1962). 18. B. Dishon, / . Amer. Chem. Soc. 71, 2251 (1949). 19. M. Yokoyama, / . Chem. Soc. Jap., Pure Chem. Sect. 81, 158 (1960). 20. B. W. Fitzsimmons, C. Hewlett, K. Hills, and R. A. Shaw,/. Chem. Soc, A p. 679 (1967) 21. M. F. Sorokin and V. K. Latov, Zh. Obshch. Khim. 35, 1471 (1965). 22. S. M. Zhivukhin, V. B. Tolstoguzov, and Z. Lukashevski, Russ. J. Inorg. Chem. 10, 901 (1965). 23. G. Allen, D. J. Oldfield, N. L. Paddock, F. Rallo, J. Serregi, and S. M. Todd, Chem. Ind. (London) p. 1032 (1965). 24. H. R. Allcock and R. L. Kugel, / . Amer. Chem. Soc. 87, 4216 (1965). 25. H. R. Allcock, R. L. Kugel, and K. J. Valan, Inorg. Chem. 5, 1709 (1966). 26. C. Hamalainen, W. A. Reeves, and J. D. Guthrie, Text. Res. J. 26, 145 (1956). 27. H. R. Allcock and G. Konopski, unpublished work (1969). 28. Ε. T. McBee, L. Brinkmann, and H. P. Braendlin, U.S. Govt. Res. Rep. AD 254,982 (1960). 29. H. Lederle, E. Kober, and G. Ottmann, / . Chem. Eng. Data 11, 221 (1966). 30. G. Ottmann, H. Lederle, and E. Kober, Ind. Eng. Chem., Prod. Res. Develop. 5 , 202 (1966). 31. E. Kober, H. Lederle, and G. F. Ottmann, U.S. Govt. Res. Rep. AD 430,861 (1964). 32. M. V. Lenton, B. Lewis, and C. A. Pearce, Chem. Ind. (London) p. 1387 (1964). 33. M. V. Lenton and B. Lewis, / . Chem. Soc, A p. 665 (1966). 34. S. H. Rose, / . Polym. Sci., Part Β 6, 837 (1968). 35. Ε. Kober, Η. Lederle, and G. Ottmann, Amer. Soc. Lubric. Eng. Trans. 7, 389 (1964). 36. T. J. Mao, R. D. Dresdner, and J. A. Young, / . Inorg. Nucl. Chem. 24, 53 (1962). 36a. M. R. Pitina, T. M. Ivanova, and Ν. I. Shvetsov-Shilovskii, / . Gen. Chem. USSR 37, 1968 (1967). 37. Ε. T. McBee, P. Johncock, and H. P. Braendlin, U.S. Govt. Res. Rep. AD 254,984 (1960). 38. Ε. T. McBee, K. Okuhara, and C. J. Morton, Inorg. Chem. 5, 450 (1966). 39. D. Dell, B. W. Fitzsimmons, and R. A. Shaw,/. Chem. Soc,London p. 4070 (1965).

174

6.

R E A C T I O N S

W I T H

A L K O X I D E S ,

A R Y L O X I D E S ,

A

N

D

T H I O L A T E S

39a. D. Dell, B. W. Fitzsimmons, R. Keat, and R. A. Shaw, / . Chem. Soc., A p. 1680 (1966). 40. V. B. Tolstoguzov, V. V. Pisarenko, and V. V. Kireev, Russ. J. Inorg. Chem. 10, 382 (1965). 41. C. T. Ford, F. E. Dickson, and I. I. Bezman, Inorg. Chem. 4, 419 (1965). 42. C. T. Ford, J. M. Barr, F. E. Dickson, and 1.1. Bezman, Inorg. Chem. 5, 351 (1966). 43. I. N. Zhmurova, I. Yu. Voitsekhovskaya, and Α. V. Kirsanov, Zh. Obshch. Khim. 31, 3741 (1961). 44. E. Kober, H. Lederle, and G. Ottmann, Inorg. Chem. 5, 2239 (1966). 45. A. P. Carroll and R. A. Shaw, Chem. Ind. (London) p. 1908 (1962). 46. A. P. Carroll and R. A. Shaw, / . Chem. Soc, A p. 914 (1966). 47. H. R. Allcock and E. J. Walsh, / . Amer. Chem. Soc 91, 3102 (1969). 47a. L. E . A. Godfrey and J. W. Schappel, Ind. Eng. Chem., Prod. Res. Develop., 9,426 (1970). 48. E . Kober, H. Lederle, and G. T. Ottmann, U.S. Navy Res. Rep. Nobs-90092 (1964). 49. M. R. Pitina and Ν. I. Shvetsov-Shilovskii, / . Gen. Chem. USSR 36, 517 (1966). 50. H. R. Allcock and E. J. Walsh, J. Amer. Chem. Soc 91, 3102 (1969). 51. H. R. Allcock and R. L. Kugel, unpublished work (1969). 52. R. Pornin, Bull. Soc. Chim. Fr. [5] 258, No. 9, 2861 (1966). 53. A. J. Matuszko and M. S. Chang, / . Org. Chem. 31, 2004 (1966). 53a. A. Wende and D. Joel, Z. Chem. 3, 467 (1963). 54. B. Yanik, V. Zheshutko, and T. Pel'char, / . Gen. Chem. USSR 36, 1451 (1966). 55. F. Rallo, Ric Sci. Chim. 8, 1134 (1965). 56. M. R. Pitina, T. M. Ivanova, and Ν. I. Shvetsov-Shilovskii, / . Gen. Chem. USSR 37, 1968 (1967). 56a. M. Kajiwara and H. Saito, Kogyo Kagaku Zasshi, 74, 619 (1971). 57. B. W. Fitzsimmons, C. Hewlett, and R. A. Shaw, / . Chem. Soc, London p. 4459 (1964). 57a. E. N. Niecke, H. Thamm, and O. Glemser, Z. Naturforsch. 26B, 366 (1971). 57b. V. N. Prons, M. P. Grinblat, A. L. Klebanskii, and G. A. Nikolaev, / . Gen. Chem. USSR, 40, 2109 (1970). 58. E. Fluck, Z. Anorg. Allg. Chem. 320, 64 (1963). 59. Α. V. Kirsanov and I. N. Zhmurova, Zh. Obshch. Khim. 28, 2478 (1958). 60. V. I. Shevchenko, A. A. Koval, and Α. V. Kirsanov,/. Gen. Chem. USSR38, 541 (1968). 61. M. F. Sorokin and V. K. Latov, Kinet. Katal. 7, 42 (1966); Kinet. Catal. (USSR) p. 35 (1966). 62. H. R. Allcock and W. J. Birdsall, Inorg. Chem. (1971 ).