Chapter 6 REACTIONS OF H A L O P H O S P H A Z E N E S
WITH
A L K O X I D E S , A R Y L O X I D E S , A N D THIOLATES
A . Introduction T h e r e a c t i o n s t o b e d i s c u s s e d in t h i s c h a p t e r a r e t h e i n t e r a c t i o n s o f h a l o p h o s p h a z e n e s w i t h a w i d e v a r i e t y of a l k o x i d e s , a r y l o x i d e s , o r t h e i r m e r c a p t o a n a l o g u e s t o yield o r g a n o - s u b s t i t u t e d p h o s p h a z e n e s . T h e o v e r a l l g e n e r a l r e a c t i o n scheme can be formulated by the following e q u a t i o n s : 2/i ROH + (NPX )„ -> [NP(OR) ]„ + In HX 2
2
In RSH + (NPX )„ -> [NP(SR) ]„ + In HX 2
2
In practice, the nucleophile R O H or R S H can be varied to include almost any s t a b l e a l c o h o l , p h e n o l , m e r c a p t a n , o r even diol o r d i t h i o l . M a n y r e a c t i o n s use s o d i u m a l c o h o l a t e s , p h e n o l a t e s , o r s o d i u m t h i o l a t e s i n s t e a d of t h e free a l c o h o l o r p h e n o l . I n s u c h cases, as s h o w n b e l o w , s o d i u m c h l o r i d e is p r e c i p i t a t e d as a r e a c t i o n p r o d u c t . W h e n t h e free a l c o h o l , p h e n o l , o r t h i o l is u s e d , a In RONa + (NPX )„ -> [NP(OR) ]„ + In NaX 2
2
b a s e s u c h a s t r i e t h y l a m i n e o r s o d i u m c a r b o n a t e is u s u a l l y e m p l o y e d t o r e m o v e t h e h y d r o h a l i d e . T h e h a l o g e n a t o m , X , c a n b e fluorine, c h l o r i n e , o r b r o m i n e , a n d t h e r e a p p e a r t o b e n o limits t o t h e d e g r e e of p o l y m e r i z a t i o n , n, of t h e h a l o p h o s p h a z e n e u s e d . A r e a c t i o n s o l v e n t is n e a r l y a l w a y s e m p l o y e d . It s h o u l d b e n o t e d t h a t n u c l e o p h i l i c s u b s t i t u t i o n r e a c t i o n s of t h i s t y p e p r o v i d e o n e of t h e easiest r o u t e s t o t h e s y n t h e s i s of o r g a n o p h o s p h a z e n e s . T h e r e 150
B .
E X P E R I M E N T A L
151
C O N S I D E R A T I O N S
a c t i o n s a r e often c l e a n p r o c e s s e s w i t h few side r e a c t i o n s , a n d t h e p r o d u c t s u s u a l l y a r e s t a b l e s o l i d s w h i c h a r e easily purified a n d c h a r a c t e r i z e d .
Un
d o u b t e d l y , t h i s p r o v i d e s o n e r e a s o n for t h e i m p r e s s i v e n u m b e r o f a l k o x y , a r y l o x y , a n d o r g a n o t h i o p h o s p h a z e n e s r e p o r t e d in t h e l i t e r a t u r e . H o w e v e r , a n o t h e r c o n t r i b u t i n g f a c t o r is c o n n e c t e d w i t h t h e fact t h a t c e r t a i n a r y l o x y a n d fluoroalkoxycyclophosphazenes show very high t h e r m a l a n d hydrolytic stabil ities a n d t h i s h a s led t o a d e t a i l e d i n v e s t i g a t i o n o f s u c h d e r i v a t i v e s for a p p l i c a t i o n s in t h e h i g h - t e m p e r a t u r e m a t e r i a l s a n d p o l y m e r
fields.
B . Experimental Considerations T h e following three examples illustrate the techniques t h a t are c o m m o n l y used to prepare aryloxy- a n d alkoxycyclophosphazenes.
1.
S Y N T H E S I S
O F
H E X A P H E N O X Y C Y C L O T R I P H O S P H A Z E N E
1
-
3
T h e o v e r a l l r e a c t i o n s c h e m e is CL
Ρ
^Xl
CkJ C r
||^Cl+6PhONa P
V I
P
\ i
PhCX >
Ρ
PhO^ I
.OPh II^OPh+^NaCl
P h O ^ N ^ O P h II
A solution of s o d i u m p h e n o x i d e in t e t r a h y d r o f u r a n
( 5 0 0 m l ) is p r e p a r e d
f r o m p h e n o l (84.6 g, 0.91 m o l e ) a n d s o d i u m (20.7 g, 0.9 m o l e ) in a n a t m o s p h e r e o f d r y a r g o n . T o t h i s s t i r r e d s o l u t i o n is a d d e d a s o l u t i o n o f h e x a c h l o r o c y c l o t r i p h o s p h a z e n e (I) (52.2 g, 0.15 m o l e ) in t e t r a h y d r o f u r a n ( 5 0 0 m l ) . T h e m i x t u r e is t h e n b o i l e d a t reflux for 8 h o u r s a n d t h e n a l l o w e d t o s t a n d a t 2 5 ° C f o r 56 h o u r s . F i l t r a t i o n of t h e m i x t u r e yields s o d i u m c h l o r i d e (55 g, 1 0 0 % b a s e d o n I ) , a n d e v a p o r a t i o n of t h e filtrate, f o l l o w e d b y p r e c i p i t a t i o n o f t h e r e s i d u e f r o m a c e t o n e i n t o a l a r g e excess of w a t e r , yields 88.5 g o f a w h i t e s o l i d . T h i s is t h e n r e c r y s t a l l i z e d t w i c e f r o m ^ - h e p t a n e a n d w - h e p t a n e - b e n z e n e m i x t u r e s , a n d is e x h a u s t i v e l y d r i e d i n a v a c u u m o v e n a t 6 0 ° C t o yield h e x a p h e n o x y c y c l o t r i p h o s p h a z e n e ( I I ) (83.2 g, 9 3 % ) , m . p . 1 1 2 ° - 1 1 2 . 5 ° C . C h a r a c t e r i z a t i o n h a s b e e n effected b y C , H , N , a n d Ρ m i c r o a n a l y s i s , b y i n f r a r e d s p e c t r o s c o p y , a n d b y m a s s s p e c t r o m e t r y . C o m p o u n d I I is, in fact, a n e x c e l l e n t h i g h - t e m p e r a t u r e m a s s s p e c t r o m e t r y s t a n d a r d b e c a u s e o f its h i g h m a s s ( M W = 693) a n d its h i g h s t a b i l i t y . T h e c o m p o u n d is a w h i t e , c r y s t a l l i n e s o l i d w h i c h is s o l u b l e in b e n z e n e o r t e t r a h y d r o f u r a n . It is h i g h l y r e s i s t a n t t o h y d r o l y t i c d e g r a d a t i o n .
152
6.
2.
R E A C T I O N S
S Y N T H E S I S
O F
W I T H
A L K O X I D E S ,
A R Y L O X I D E S ,
A
N
D
T H I O L A T E S
H E X A K I S ( T R I F L U O R O E T H O X Y ) C Y C L O T R I P H O S P H A Z E N E
4
T h e following equation illustrates the reaction scheme: Cl^
CF CH 0^
^Cl
3
N ^ N CkJ IUC1 + 6 C F C H O N a 3
C K
P
2
2
^OCH CH 2
3
N ^ N >
^ N ^ c i
CF CH 0\ I 3
II^OCH CF
2
2
CF CH 0^ 3
I
^OCH CH
2
2
+ 6 NaCl
3
3
III
S o d i u m ( 2 3 . 8 g, 1 . 0 5 m o l e s ) is a d d e d t o a c o o l e d s o l u t i o n of t r i f l u o r o e t h a n o l ( 1 0 3 . 3 g, 1 . 0 3 3 m o l e s ) in a n h y d r o u s e t h e r ( 4 0 0 m l ) . T o t h i s s t i r r e d , c o o l e d solu t i o n is a d d e d d r o p w i s e a s o l u t i o n of h e x a c h l o r o c y c l o t r i p h o s p h a z e n e (I) ( 5 9 . 6 g, 0 . 1 7 2 m o l e ) in a n h y d r o u s e t h e r ( 4 0 0 m l ) . T h e m i x t u r e is t h e n s t i r r e d a t 2 5 ° C for 8 h o u r s , a n d t h e w h i t e p r e c i p i t a t e of s o d i u m c h l o r i d e is filtered off. T h e filtrate is w a s h e d t h o r o u g h l y w i t h w a t e r t o r e m o v e excess s o d i u m t r i f l u o r o e t h o x i d e a n d t h e e t h e r e a l l a y e r is distilled t o r e m o v e excess tri f l u o r o e t h a n o l a n d s o l v e n t . T h e r e s i d u e is a v i s c o u s oil w h i c h solidifies o n c o o l i n g . T h i s is s u b l i m e d a t 7 0 ° C / 2 m m t o give h e x a k i s ( t r i f l u o r o e t h o x y ) c y c l o t r i p h o s p h a z e n e ( I I I ) ( 9 6 . 0 g, 7 7 % ) , m . p . 4 9 ° C . I t s h o u l d b e n o t e d t h a t o m i s s i o n of t h e w a s h i n g s t e p for r e m o v a l of s o d i u m t r i f l u o r o e t h o x i d e i n t r o d u c e s t h e d a n g e r of a n e x p l o s i o n d u r i n g t h e s u b s e q u e n t d i s t i l l a t i o n a n d s u b l i m a t i o n s t e p s . T h e c y c l o p h o s p h a z e n e I I I is a w h i t e , w a x y , c r y s t a l l i n e s u b s t a n c e , r e a d i l y s o l u b l e in m a n y o r g a n i c s o l v e n t s . I t h a s a n u n u s u a l l y h i g h t h e r m a l stability a n d is q u i t e s t a b l e t o a t m o s p h e r i c m o i s t u r e o r n e u t r a l a q u e o u s solvents. 7
3.
S Y N T H E S I S
O F
T R I S ( O P H E N Y L E N E D I O X Y ) C Y C L O T R I P H O S P H A Z E N E
T h e o v e r a l l r e a c t i o n s c h e m e is a s follows : ^Cl CI J
t
,C1 + 3 [OT
+6Et3N
Cl
( Ç ^ / ^ vlQ)
+ 6Et3NHC1
C .
S C O P E
O F
T H E
153
R E A C T I O N
A s o l u t i o n o f c a t e c h o l (95 g, 0 . 8 6 4 m o l e ) a n d t r i e t h y l a m i n e (175 g, 1.728 m o l e s ) in t e t r a h y d r o f u r a n (500 m l ) is a d d e d d r o p w i s e t o a s t i r r e d s o l u t i o n o f h e x a c h l o r o c y c l o t r i p h o s p h a z e n e (100 g, 0.288 m o l e ) in t e t r a h y d r o f u r a n ( 1 0 0 0 m l ) a t 3 0 ° C . T h e m i x t u r e is t h e n b o i l e d a t reflux for 2 h o u r s a n d s t i r r e d a t 3 0 ° C f o r 4 8 h o u r s . T h e w h i t e p r e c i p i t a t e is filtered off, d r i e d (350 g ) , a n d t h e n washed thoroughly with water to remove triethylamine hydrochloride. T h e p o w d e r y r e s i d u e is t h e n e x t r a c t e d w i t h b o i l i n g b e n z e n e a n d t h e e x t r a c t s a r e c o o l e d t o yield w h i t e c r y s t a l s o f t r i s ( o - p h e n y l e n e d i o x y ) c y c l o t r i p h o s p h a z e n e (74 g, 5 0 % yield). S u b s e q u e n t r e c r y s t a l l i z a t i o n s f r o m b e n z e n e f o l l o w e d b y s u b l i m a t i o n a t 2 3 0 ° C / 0 . 0 5 m m give m a t e r i a l w i t h a m e l t i n g p o i n t o f 2 4 4 ° 245°C. This c o m p o u n d readily forms channel clathrates when b r o u g h t into c o n t a c t w i t h o r g a n i c l i q u i d s (see C h a p t e r 11). 4.
V A R I A T I O N S
I N
T H E
E X P E R I M E N T A L
T E C H N I Q U E
T w o of t h e a b o v e e x a m p l e s u s e s o d i u m salts o f p h e n o l o r a n a l c o h o l a s t h e nucleophilic reagent, b u t a n u m b e r of modifications t o this process are p o s sible. F o r e x a m p l e , t h e r e a c t i o n o f s o d i u m h y d r i d e w i t h a n a l c o h o l h a s b e e n u s e d for p r e p a r a t i o n o f t h e s o d i u m a l k o x i d e . * D i r e c t r e a c t i o n o f a s o l u t i o n o f a n a l c o h o l o r p h e n o l w i t h t h e h a l o p h o s p h a z e n e in t h e p r e s e n c e o f a s u s p e n s i o n of a n h y d r o u s s o d i u m c a r b o n a t e h a s a l s o p r o v e d t o b e a c o n v e n i e n t t e c h nique. 6
8 ,
7
9
6 ROH + (NPC1 ) + 6 N a C 0 2
3
2
3
-* [NH(OR) ] + 6 NaCl + 6 N a H C 0 2
3
3
S o d i u m h y d r o x i d e pellets c a n b e u s e d w h e n a p h e n o l is a l l o w e d t o r e a c t w i t h a h a l o c y c l o p h o s p h a z e n e in a h i g h - b o i l i n g h y d r o p h o b i c s o l v e n t , s u c h as x y l e n e . Finally, a tertiary organic a m i n e , such as triethylamine or p y r i d i n e , m a y b e e m p l o y e d a s a h y d r o g e n c h l o r i d e a c c e p t o r , a s in t h e equation · · 1 0 - 1 2
2 , 8
9
1
3
-
1
9
6 ROH + (NPC1 ) + 6 Et N 2
3
3
[NP(OR) ] + 6 E t N H C l 2
3
3
N e a r l y a n y u n r e a c t i v e o r g a n i c s o l v e n t m a y b e used for t h e s e i n t e r a c t i o n s , b u t aliphatic ethers, such as diethyl ether or tetrahydrofuran, are particularly use ful. A l t h o u g h it is u s u a l t o p e r f o r m s u b s t i t u t i o n r e a c t i o n s of t h i s t y p e in s t a n d a r d g r o u n d glass e q u i p m e n t w i t h e x c l u s i o n o f m o i s t u r e b y d r y i n g t r a p s , it is often n e c e s s a r y t o u s e a glass h i g h - v a c u u m s y s t e m w h e n p y r i d i n e is u s e d a s a solvent. 15
C . S c o p e of the Reaction A w i d e v a r i e t y of a l k o x y - , a r y l o x y - , a l k y l t h i o - , a n d a r y l t h i o p h o s p h a z e n e s can be prepared by the techniques described above. F o r example, the following
154
6.
R E A C T I O N S
W I T H
A L K O X I D E S ,
A R Y L O X I D E S ,
A
N
D
T H I O L A T E S
alkoxy groups have been attached to the phosphazene skeleton: CH 0—, > * ~ C H 0—, > · ' > > w-C H 0—, > z-C H 0—, > n-C H 0—, · ' ' PhCH 0— CH =CHCH 0— Fluoroalkoxy groups can be substituted at p h o s p h o r u s with particular ease, a n d the following are some of t h e substituents t h a t have been u s e d : C F C H 0 — , ' ' C F C H 0 — 4-6,24,25,27,29-31.33 C F C H 0 - , - ' > ' ' ' ' H(CF ) 2
1 8
2
0
2
5
2
2
4
1 8
1 3
2
3
1 9
1 8
2 0
2 4
2
2 5
5
3
2 2
2 0
9
2
7
3
2
2
2
2
4 - 6
3
4
2
5
2
3
CH 0—, - ' - ' H(CF ) CH 0—, 5
6
2 9
3 5
3 6
2
4
2
2 9
2
7
'
3 0
6
2 4
2 4
2 5 t
3 5
1 0
2 7
2 9 - 3 1
3 3
3 4
2
2
6
2 7
2
2
3 6
2 9
2
2 7 - 3 2
2
2 5
H(CF ) CH O—, « H(CF ) CH 0—, ' ' « H(CF ) CH 0—, ' and (CF ) CHO—, 5
2
2 0
7
2 6
8
2
2 9
3 0
3 3
2
3 5
6
>
3 5
2 7
2
3
2
Hexachlorocyclotriphosphazene also reacts with a n e q u i m o l a r a m o u n t of a c e t o x i n e i n t h e p r e s e n c e o f t r i e t h y l a m i n e t o yield p e n t a c h l o r o - 7 V - i s o p r o p y l idenoximinocyclotriphosphazene. T h e p r o d u c t is a solid, m . p . 91 ° C . 3 6 a
CL -HCl
(NPC1 ) + H O N = C M e 2
3
>
2
.ON=CMe
N
2
N
I || C1 P^ /PC1 2
N
2
Aryloxy substitution h a s also been studied in detail a n d a wide range of phenols have been used as nucleophiles. T h e substituents include C H 0—,1-3.24,25,35,37-43 _ eC H 0—, /7-MeC H 0—, m-CF C H 0-, ' m-FC H 0-, m-ClC H 0-, /?-ClC H 0-, * m-CF OC H 0-, o,m,and/?-N0 C H 0-, ' « · V-BrC H 0-, >MeOC H 0-. ' 2 9
6
w
5
1 0
2 9
M
6
4
6
6
6
1 1
7
2
4
2 9
4
4
3 7
4
2 9
6
2 7
4
6
3 7
3
2 9
4
4
3
3
4
6
6
3 7
6
2
4
6
3 7
4
Fewer m e r c a p t o derivatives have been reported t h a n alkoxy o r aryloxy p h o s p h a z e n e s , b u t those which a r e k n o w n cover a wide range of alkyl- a n d a r y l t h i o g r o u p s , a s d e m o n s t r a t e d b y t h e f o l l o w i n g list: C H S - , ' C H S-, ' ' iso-C H S-, ' C H S-, ' ' iso-C H S-, ' t-C H S-, C H S-, ' C H S-, C H S-, C H S-, PhCH S-, ' ' C H S-. ' ' - ' 1 3
2
1 9
3
4 5
4 6
7
3
4 6
4 5
9
6
1 3
6
1 9
1 9
7
1 9
8
3 7
4 5
1 9
4
4 6
U
4 5 , 4 6
1 7
4 5
4 5
9
4
1 9
1 2
2 5
4 5 t
4 6
4 6
9
4
1 9
1 6
l 9 f
5
4 6
1 9
3 3
4 5
4 6
2
4 6
5
T h e a b o v e syntheses lead t o t h e formation of derivatives which possess t w o i n d e p e n d e n t s u b s t i t u e n t s a t e a c h p h o s p h o r u s . H o w e v e r , it is a l s o p o s s i b l e t o p e r f o r m s u b s t i t u t i o n r e a c t i o n s u s i n g d i o l s o r d i t h i o l s in s u c h a w a y t h a t cyclized units are formed at t h e p h o s p h o r u s a t o m s , as shown in t h e following equation ' : 7 , 8
ci
x
1 4 - 1 7
o(
^Cl
C l ^ N ^ C l
H
°
< 0 -
P
- N -
P
-
0
/
R
T h e s e d e r i v a t i v e s a r e especially i n t e r e s t i n g b e c a u s e o f t h e i r b e a r i n g o n s u b s t i t u t i o n m e c h a n i s m s . T h e y a r e c o n s i d e r e d in m o r e d e t a i l in S e c t i o n E 5 o f t h i s chapter. F i n a l l y , i t is p o s s i b l e t o c a r r y o u t s u b s t i t u t i o n r e a c t i o n s b e t w e e n a l k o x i d e s , a r y l o x i d e s , o r m e r c a p t a n s a n d fluoro o r b r o m o p h o s p h a z e n e s . T h e r e a c t i o n s
D .
G E N E R A L
P R O P E R T I E S
A
N
D
U S E S
O F
155
A M I N O P H O S P H A Z E N E S
a r e n o t r e s t r i c t e d t o cyclic t r i m e r s o r t e t r a m e r s . T h u s , a l t h o u g h m o s t o f t h e f o r e g o i n g e x a m p l e s h a v e r e f e r r e d t o r e a c t i o n s i n v o l v i n g cyclic t r i m e r s o r tetramers, ( N P X ) 3 2
ring-sized (NPX ) . 2
8
O R 4
, m o n o p h o s p h a z e n e s react similarly,
cyclic c o m p o u n d s 2 3
Even
very
such
high
as ( N P X ) , 2
molecular
5
43
(NPX ) , 2
weight
6
as d o m e d i u m (NPX ) , 2
and
7
chlorophosphazenes*
(NPCl ) ooo> readily u n d e r g o complete replacement of halogen w h e n treated 2
i5)
with methoxide, ethoxide, trifluoroethoxide, phenoxide, or other nucleophiles.
related
O n l y for t h e c y c l i z a t i o n p r o c e s s e s w i t h d i o l s a r e t h e r e
2 4 , 2 5
m a r k e d m e c h a n i s t i c differences b e t w e e n t h e s u b s t i t u t i o n of cyclic t r i m e r s a n d the higher h o m o l o g u e s .
7 , 2 5
D . General Properties of A l k o x y - , A r y l o x y - , Alkylthio-, and Arylthiophosphazenes In general, phosphazenes of structure [ N P ( O R ) ] „ or [NP(SR) ]„ are a m o n g the m o s t stable p h o s p h o r u s - n i t r o g e n derivatives k n o w n . H o w e v e r , the stabil ity t o h e a t a n d h y d r o l y s i s d e p e n d s o n t h e n a t u r e of t h e s u b s t i t u e n t O R o r S R a n d , a l t h o u g h t h i s subject is c o n s i d e r e d in m o r e d e t a i l in C h a p t e r s 5 a n d 12, some generalizations are a p p r o p r i a t e at this point. 2
2
M o s t fully s u b s t i t u t e d a l k o x y - , a r y l o x y - , a l k y l t h i o - , a n d a r y l t h i o p h o s p h a z e n e s a r e s t a b l e , w h i t e c r y s t a l l i n e solids w h i c h a r e r e a d i l y s o l u b l e in o r g a n i c m e d i a . H o w e v e r , s o m e of t h e a l k o x y - o r a l k y l t h i o - s u b s t i t u t e d species such as [ N P ( O E t ) ] , [ N P ( O B u " ) ] , [NP(OMe) ] , or [ N P ( S B r " ) ] a r e c o l o r l e s s l i q u i d s a t r o o m t e m p e r a t u r e . A c o m p r e h e n s i v e s t u d y of t h e effects of mixed substitution a r o u n d the p h o s p h a z e n e ring by K o b e r , Lederle, a n d Ottmann h a s s h o w n t h a t s u b s t i t u t i o n of t h e t r i m e r i c o r t e t r a m e r i c r i n g by both fluoroalkoxy and aryloxy groups lowers the melting point to such a d e g r e e t h a t t h e m a t e r i a l s h a v e useful p r o p e r t i e s a s fire-resistant, l o w - t e m p e r a t u r e h y d r a u l i c fluids o r l u b r i c a n t s . A l k o x y - o r a r y l o x y - s u b s t i t u t e d h i g h p o l y m e r s a r e e l a s t o m e r s o r flexible-film-forming m a t e r i a l s . I n s o m e c a s e s , t h e m a t e r i a l s d o n o t lose t h e i r flexible p r o p e r t i e s u n t i l c o o l e d b e l o w — 8 0 ° C (see C h a p t e r 16). 2
2
3
2 3
2
3 o r 4
2
4 6
5 o r 7
2
3
2 9 , 3 0 , 3 5
2 4 , 2 5 , 2 7
A s m e n t i o n e d e a r l i e r , h e x a p h e n o x y c y c l o t r i p h o s p h a z e n e , [ N P ( O P h ) ] , is e x c e e d i n g l y s t a b l e t o h e a t a n d h y d r o l y s i s , a n d t h i s b e h a v i o r is c h a r a c t e r i s t i c of m a n y aryloxyphosphazenes. A l k o x y p h o s p h a z e n e s (except fluoroalkoxy derivatives) rearrange to cyclophosphazanes when heated, a n d they are also m o r e sensitive t o h y d r o l y s i s t h a n a r y l o x y c o m p o u n d s . M o s t a l k o x y d e r i v a tives a r e q u i t e s t a b l e w h e n s t o r e d a t r o o m t e m p e r a t u r e in a m o i s t a t m o s p h e r e , and fluoroalkoxyphosphazenes are exceptionally stable to heat a n d neutral h y d r o l y s i s . W h e n five-membered cyclized g r o u p s a r e a t t a c h e d t o p h o s p h o r u s , h y d r o l y s i s t a k e s p l a c e r e a d i l y in s o l u t i o n , b u t m a r k e d h y d r o l y t i c s t a b i l i t y is 2
4 7
3
156
6.
R E A C T I O N S
W I T H
A L K O X I D E S ,
A R Y L O X I D E S ,
A
N
D
T H I O L A T E S
d i s p l a y e d b y species w h i c h c o n t a i n six- o r s e v e n - m e m b e r e d r i n g s y s t e m s a t t a c h e d t o p h o s p h o r u s in a s p i r o a r r a n g e m e n t . T h e t r i m e r , [ N P ( O M e ) ] , is s o l u b l e in w a t e r . 7
2
3
A l k o x y p h o s p h a z e n e s h a v e b e e n d e v e l o p e d a s flame r e t a r d a n t s for r a y o n . Godfrey and Schappel reported that w-propoxycyclophosphazenes and trimert e t r a m e r - l i n e a r o l i g o m e r m i x t u r e s a r e p a r t i c u l a r l y effective flame r e t a r d a n t s , especially w h e n t h e p h o s p h a z e n e is e n c a p s u l a t e d in d i s c r e t e cavities w i t h i n e a c h fiber. A p p r o x i m a t e l y 15 wt. % o f t h e p h o s p h a z e n e is effective. 47a
E . Influence of the Nucleophile on Substitution T h e a b o v e i n f o r m a t i o n i l l u s t r a t e s t h e w i d e versatility o f t h i s g e n e r a l s u b s t i t u t i o n r e a c t i o n b u t it i n d i c a t e s v e r y little a b o u t t h e r e a c t i o n m e c h a n i s m . T o o b t a i n a d e e p e r i n s i g h t i n t o t h i s p r o c e s s it is n e c e s s a r y t o e x a m i n e t h e influence of a n u m b e r of f a c t o r s o n t h e s u b s t i t u t i o n . O n e of t h e m o s t i m p o r t a n t of t h e s e is t h e influence of t h e n u c l e o p h i l e , R O o r R S . Useful i n f o r m a t i o n a b o u t t h e r o l e of t h e n u c l e o p h i l e c a n b e o b t a i n e d b y a n e x a m i n a t i o n of i n s t a n c e s of incomplete substitution, evidence concerning the p a t t e r n of substitution, the effects o f c o m p e t i t i o n r e a c t i o n s , t h e influence of o t h e r s u b s t i t u e n t s o n t h e r e a c t i o n , a n d t h e r e s u l t s of c y c l i z a t i o n p r o c e s s e s a t p h o s p h o r u s . E a c h of t h e s e f a c t o r s will b e c o n s i d e r e d i n t u r n . e
1.
D E G R E E
O F
H A L O G E N
0
R E P L A C E M E N T
R e p l a c e m e n t of c h l o r i n e in c h l o r o c y c l o p h o s p h a z e n e s b y u n b r a n c h e d a l k o x y groups takes place m o r e readily t h a n replacement by phenoxy or branched a l k o x y g r o u p s . T h u s , c o m p l e t e r e p l a c e m e n t of c h l o r i n e in ( N P C 1 ) 3 , ( N P C 1 ) , or ( N P C l ) „ o o o occurs readily with methoxide, ethoxide, or «-propoxide, b u t m o r e drastic conditions are required t o achieve complete substitution with isopropoxide or phenoxide i o n s . ~ > I n fact, p a r t l y s u b s t i t u t e d phenoxychlorocyclophosphazenes, such as N P C l ( O P h ) , N P C l ( O P h ) , N P C l ( O P h ) , N P C l ( O P h ) , a n d N P C l ( O P h ) can be isolated from re actions which have n o t been forced to c o m p l e t i o n . T h e s a m e is t r u e for reactions between (NPC1 ) and the /7-bromophenoxide i o n . 2
2
4
2
2
1 5 j
2
1 , 2 > 2 5 , 3 7
4 2
4 8
3
3
3
3
3
3
3
4
2
3
3
3
5
3
3
2
4
5
2 , 3 8 - 4 1
3 9
2
3
However, partially substituted alkoxy derivatives, such as N P C l ( O C H C F ) , N P C l ( O C H C F ) , N P C l ( O C H C F ) , or N P C l ( O C H C F ) c a n b e p r e p a r e d if t h e r e a g e n t s t o i c h i o m e t r y is c o r r e c t a n d if t h e r e a c t i o n c o n d i t i o n s a r e sufficiently m i l d . Similarly, b u t o x y d e r i v a t i v e s o f t h e t y p e s N P C l ( O B u ) , N P C l ( O B u ) , a n d N P C l ( O B u ) can be isolated from the reaction of ( N P C 1 ) with butoxide ion at 2 0 ° C . A s i m i l a r p a t t e r n c a n b e d i s c e r n e d for t h e t h i o a l k y l a n d t h i o a r y l d é r i v a 3
3
5
3
3
2
2
3
4
3
3
3
2
3
3
3
4 , 2 8
3
3
5
3
3
4
2
3
3
3
3
2 1
2
3
3
3
2
2
3
4
E .
I N F L U E N C E
O F
T H E
N U C L E O P H I L E
O
N
157
S U B S T I T U T I O N
t i v e s . T h u s , in b o i l i n g b e n z e n e , t h e r e a c t i o n o f ( N P C 1 ) w i t h E t S , « - P r S , H - B U S , o r P h C H S gives h e x a t h i o a l k y l d e r i v a t i v e s , b u t b r a n c h e d r e a g e n t s , s u c h a s f - P r S o r c y c l o h e x y l - S yield o n l y t e t r a s u b s t i t u t e d p r o d u c t s . D r a s t i c r e a c t i o n c o n d i t i o n s a r e r e q u i r e d for t h e p r e p a r a t i o n of [ N P ( S P h ) ] in b o i l i n g b e n z e n e . I t s h o u l d b e n o t e d t h a t t h e r e a c t i o n s o l v e n t e x e r t s a p r o f o u n d effect o n t h e r e a c t i v i t y o f t h i o a l k y l o r t h i o a r y l n u c l e o p h i l e s in t h i s r e a c t i o n . T h e a b o v e r e s u l t s s u g g e s t t h a t t h e steric d i m e n s i o n s of t h e n u c l e o p h i l e in fluence t h e d e g r e e o f h a l o g e n r e p l a c e m e n t , w i t h b u l k y side g r o u p s b e i n g t h e m o s t difficult t o i n t r o d u c e a s s u b s t i t u e n t s o n t h e p h o s p h a z e n e s k e l e t o n . 4 6
0
2
0
e
3
0
2
0
0
2
2.
P A T T E R N
O F
H A L O G E N
3
R E P L A C E M E N T
S u b s t i t u t i o n a t p h o s p h o r u s in c y c l o - o r p o l y p h o s p h a z e n e s c a n t a k e p l a c e either by geminal or non-geminal routes (IV or V). F u r t h e r m o r e , non-geminal
Non-geminal s u b s t i t u t i o n c a n r e s u l t in t h e f o r m a t i o n o f b o t h cis ( V I ) a n d trans ( V I I ) i s o m e r s . OR RO/
X
VI
\
X RO
VII
158
6.
REACTIONS WITH ALKOXIDES, ARYLOXIDES, A N D THIOLATES
E x a m i n a t i o n o f t h e p a t t e r n a n d s t e r e o c h e m i s t r y of a l k o x i d e , a r y l o x i d e , o r mercaptide
substitution
has
helped
t o clarify
the
mechanisms
of
these
reactions. T h e r e a c t i o n of h e x a c h l o r o c y c l o t r i p h o s p h a z e n e , ( N P C 1 ) 3 , w i t h 2
sodium
p h e n o x i d e o r s o d i u m / ? - b r o m o p h e n o x i d e p r o c e e d s n o n - g e m i n a l l y in b e n z e n e , acetone, or t e t r a h y d r o f u r a n . ' * 3 8
3 9
Γη a c e t o n e s o l u t i o n , t h e cis s u b s t i t u t i o n
4 0
p r e d o m i n a t e s slightly o v e r t h e trans?* T h e s e c o n c l u s i o n s a r e b a s e d o n t h e w o r k of B e z m a n
McBee,
4 1
Shaw,
3 8
3 9 , 3 9 a
a n d t h e i r c o - w o r k e r s , w h o identified t h e
n o n - g e m i n a l p r o d u c t s b y c o n v e r s i o n of t h e p h e n o x y c h l o r o p r o d u c t s phenoxy dimethylamino * 3 9
4 1
or phenoxy amino derivatives,
38
followed
to by
structural identification by melting p o i n t s a n d p r o t o n N M R spectra. T h e re action schemes studied are Cl^
/XI
Cl\
N^ "N Cl
> ^
N
^P
/
O
P
Me N
h
2
N ^ N
P
K O p h
HNMe
> ^ /PC Cr NT ^ O P h
K C 1
Cl
^OPh
x
2
PhO^I P\ Me N^
h c 1
ll/NMe
2
^OPh
2
(Ref. 41)
CL
.OPh
H N.
NaOPh
X
X
PhCK
.OPh
2
Ρ N
^N^
NH
p
3
^OPh
PhO^
cis and trans
OPh
cis and trans (Ref. 38)
T h e partly substituted phenoxy chloro derivatives can be separated by column and thin-layer c h r o m a t o g r a p h y .
3 8 , 3 9
It w a s a l s o s u g g e s t e d t h a t i n v e r s i o n of
configuration probably does not occur during phenoxide a t t a c k .
3 8
T h e s i t u a t i o n is less c l e a r w h e n a l k o x y n u c l e o p h i l e s a r e e m p l o y e d .
For
example, sodium trifluoroethoxide reacts with hexachlorocyclotriphosphazene t o yield N P 3 C l 3 ( O C H C F 3 ) 3 . 3
2
2 8
This material can then be a m m o n o l y z e d and
t h r e e i s o m e r s of t h e c o m p o u n d N P 3 ( N H ) 3 ( O C H C F 3 ) 3
2
2
3
are isolated. T w o of
t h e s e species a r e p r o b a b l y n o n - g e m i n a l cis a n d trans i s o m e r s a n d t h e t h i r d is a geminal f o r m .
2 8
Sodium butylate reacts with hexachlorocyclotriphosphazene
t o give a d i b u t o x y d e r i v a t i v e , N P C l ( O B u ) . 3
3
4
It was suggested b u t n o t
2 1
2
p r o v e d t h a t t h i s c o m p o u n d is n o n - g e m i n a l . By c o n t r a s t , it h a s b e e n s h o w n t h a t t h e i n t e r a c t i o n of h e x a c h l o r o c y c l o t r i p h o s p h a z e n e with ethylthiolate or phenylthiolate ions leads to geminal substi tution.
4 6
This information was derived from
3 1
P and H l
N M R s p e c t r a of
N P C l ( S E t ) , N P C l ( S P h ) , a n d N P C l ( S E t ) . H o w e v e r , it s h o u l d b e 3
3
4
2
3
3
4
2
3
3
2
4
E.
159
I N F L U E N C E OF THE N U C L E O P H I L E O N S U B S T I T U T I O N
noted that a n u m b e r of these reactions are h e t e r o g e n e o u s a n d m a r k e d l y s o l v e n t - d e p e n d e n t , a n d s o m e c a r e m u s t b e exercised w h e n i n t e r p r e t i n g t h e data. 3 . E F F E C T OF O T H E R S U B S T I T U E N T S
A d d i t i o n a l i n f o r m a t i o n a b o u t the m e c h a n i s m of chlorine replacement c a n b e o b t a i n e d f r o m t h e influence o f s u b s t i t u e n t s a l r e a d y p r e s e n t o n t h e r i n g . F o r e x a m p l e , it w a s r e p o r t e d b y M c B e e , O k u h a r a , a n d M o r t o n t h a t 1,1-diphenyl3,3,5,5-tetrachlorocyclotriphosphazene (VIII) was phenoxylated and amm o n o l y z e d t o I X . T h e cis a n d trans n o n - g e m i n a l i s o m e r s o f I X w e r e i s o l a t e d in 3 8
Ph/
^Ph
Ph^ / P h
N ^ N
N a 0
CL I C
1
/
LCI
r> P
r>
^ / VIII
Ph
XT
„ >
—NaCl
P
N
C
1
N
^
PhO. I c
Ph/
N
NH
ll/OPh
p.
r
V
ρ
/Ph
N ^ N
3
ll/OPh
> PhO/ I
S
H
Ρ/
2
cis and trans
N -
^ρ
^ N ^ IX cis and trans F
/
P
N
H
2
3 9 . 4 % a n d 3 2 . 2 % yields, r e s p e c t i v e l y , a n d a g e m i n a l i s o m e r w a s a l s o r e c o v e r e d in 4 . 5 % yield. S i m i l a r r e s u l t s w e r e r e p o r t e d b y F o r d , B a r r , D i c k s o n , and Bezman b u t , in this c a s e , t h e b i s d i m e t h y l a m i n o a n d m e t h y l a m i n o d e r i v a t i v e s w e r e identified b y Ρ a n d Η N M R s p e c t r o s c o p y . T h u s , p h e n o x y l a t i o n is still p r e d o m i n a n t l y n o n - g e m i n a l in t h e p r e s e n c e o f a d j a c e n t g e m i n a l phenyl units. 4 2
3 1
1
F i t z s i m m o n s , Hewlett, Hills, a n d S h a w have reported the results of alcoholysis r e a c t i o n s of t h e g e m i n a l d e r i v a t i v e s , N3P3PIÎ2CI4 ( V I I I ) a n d N3P3PI14CI2 u s i n g a l k o x i d e i o n in a l c o h o l s o l v e n t s . M e t h o x i d e , e t h o x i d e , / z - p r o p o x i d e , a n d isopropoxide ions were used as nucleophiles. T h e results suggested t h a t t h e ease of s u b s t i t u t i o n d e c r e a s e s in t h e o r d e r ( N P C 1 ) > N3P3PI12CI4 > N3P3PI14CI2. Phenyl groups thus retard the substitution reaction at adjacent p h o s p h o r u s a t o m s . H o w e v e r , it s h o u l d b e n o t e d t h a t side p r o d u c t s o f t y p e s X o r X I w e r e a l s o f o r m e d in t h i s r e a c t i o n . 2 0
2
Ph/ N^
/Ph ? N
3
Ph/ /Ph
NH
RO/1
N^
? N
NH I / O
Ph/I
R O ^ N ^ O R X
P h ^ N '
P
< O R
XI
N o n - g e m i n a l d i a m i n o g r o u p s apparently d o n o t seriously interfere with t h e r e p l a c e m e n t o f a d j a c e n t c h l o r i n e a t o m s b y f l u o r o a l k o x y u n i t s . F o r e x a m p l e , it has been reported that l,3-diamino-l,3,5,5-tetrachlorocyclotriphosphazene ( X I I ) r e a c t s w i t h t h e s o d i u m salts o f t r i f l u o r o e t h a n o l , 2 , 2 , 4 , 4 - t e t r a f l u o r o - « -
160
6.
R E A C T I O N S
W
I
T
H
A L K O X I D E S ,
A R Y L O X I D E S ,
H N
H N.
2
2
NaOR
II/NH2 P
Cl
A
N
D
T H I O L A T E S
OR ll/NH
-NaCl
-ci
2
OR
RO
XII propanol,
2,2,4,4,4-pentafluoropropanol,
2,2,4,4,5,5,5-heptafluorobutanol,
a n d 2 , 2 , 4 , 4 , 5 , 5 - h e x a f l u o r o b u t a n o l t o r e p l a c e all t h e h a l o g e n a t o m s . 1,1,3,5-tetrakis(dimethylamino)-3,5-dichlorocyclotriphosphazene
3 3
a wide variety of nucleophiles, such as M e O , E t O , « - P r O , / - P r O , e
/ - B u O , *-BuO©, e
rt-C H O , e
5
and C H = C H — C H 2
4.
C O M P E T I T I O N
e 2
H
e
i-CsHnO© « - C H 6
e
Similarly,
reacts with 0
n-BuO , e
O , «-C H 0©, PhCH O , 0
1 3
e
7
1 5
to replace the two non-geminal chlorine a t o m s .
2
4 9
R E A C T I O N S
V e r y few e x a m p l e s h a v e b e e n r e p o r t e d in w h i c h t w o n u c l e o p h i l e s h a v e b e e n allowed to interact simultaneously with a halocyclophosphazene. However, e q u i m o l a r a m o u n t s o f t h e s o d i u m salts of w - f l u o r o p h e n o l a n d t r i f l u o r o e t h a n o l were simultaneously allowed to react with hexachlorocyclotriphosphazene. T h e final p r o d u c t c o n t a i n e d 3 t o 4 t i m e s a s m a n y a r y l o x y a s t r i f l u o r o e t h o x y groups, although the detailed molecular a r r a n g e m e n t was n o t established.
2 9
It has also been s h o w n t h a t the interaction of s o d i u m p h e n o x i d e with hexa c h l o r o c y c l o t r i p h o s p h a z e n e in b u t a n o l s o l v e n t r e a l l y c o n s t i t u t e s a c o m p e t i t i o n r e a c t i o n for t h e s u b s t r a t e b e t w e e n s o d i u m p h e n o x i d e a n d s o d i u m b u t o x i d e .
2 1
B o t h p h e n o x y a n d b u t o x y s u b s t i t u e n t s w e r e d e t e c t e d in t h e final p r o d u c t , a l t h o u g h the relative p r o p o r t i o n s of each were n o t reported.
5.
C Y C L I Z A T I O N
R E A C T I O N S
A T
P H O S P H O R U S
W h e n c a t e c h o l is a l l o w e d t o i n t e r a c t w i t h h e x a c h l o r o c y c l o t r i p h o s p h a z e n e in the presence of a solvent a n d a suitable base, cyclization takes place at each p h o s p h o r u s a t o m , t o yield X I I I .
I 4 , 1 5
Triethylamine or anhydrous sodium
XIII
E .
carbonate
are
I N F L U E N C E
O F
satisfactory
pyridine can also be u s e d .
T H E
N U C L E O P H I L E
hydrogen
O
N
chloride
S U B S T I T U T I O N
acceptors,
8 , 1 4 , 1 5
161
although
1 5 , 1 6
Similar high-yield reactions t a k e place between
hexachlorocyclotriphos-
p h a z e n e a n d 2 , 3 - d i h y d r o x y n a p h t h a l e n e o r t o l u e n e - 3 , 4 - d i t h i o l t o give X I V a n d XV.
8
I t is w o r t h w h i l e t o n o t e t h a t t h e cyclic t e t r a m e r i c a n a l o g u e o f X I I I is
XV e x t r e m e l y labile a n d difficult t o i s o l a t e . T h e p r i n c i p a l r e a c t i o n p r o d u c t w h e n t r i e t h y l a m i n e is u s e d a s a b a s e is a p h o s p h o r a n e ( X V I ) f o r m e d b y p h o s p h a z e n e r i n g c l e a v a g e . T h e s a m e p h o s p h o r a n e is a l s o p r o d u c e d d u r i n g f o r m a t i o n of X I I I , p a r t i c u l a r l y w h e n c a t e c h o l is in e x c e s s . 7
1 4 , 1 5
XVI
162
6.
R E A C T I O N S
W I T H
A L K O X I D E S ,
A R Y L O X I D E S ,
A
N
D
T H I O L A T E S
Six- a n d s e v e n - m e m b e r e d s p i r o - a r y l o x y s y s t e m s c a n a l s o b e i n t r o d u c e d a t phosphorus. F o r example, 1,8-dihydroxynaphthalene
and
2,2'-dihydroxy-
b i p h e n y l r e a c t w i t h h e x a c h l o r o c y c l o t r i p h o s p h a z e n e t o yield X V I I a n d X V I I I .
XVII
7
XVIII
C y c l o t e t r a p h o s p h a z e n e a n a l o g u e s of t h e s e t w o c o m p o u n d s h a v e a l s o b e e n prepared. 7
Cyclic derivatives such as X I I I - X V I I I are particularly interesting because of t h e u n e x p e c t e d ease of c y c l i z a t i o n . T h i s is especially so for X V I I I , w h e r e t o r sional m o t i o n s of the P h — P h b o n d m i g h t be expected t o reduce the probability o f c y c l i z a t i o n . H o w e v e r , m a n i f e s t a t i o n s o f r i n g s t r a i n in X I I I - X V apparent
during
hydrolysis
5 0
(see C h a p t e r
degradations to form p h o s p h o r a n e s .
9 , 5 1
5) a n d
during
become
phosphazene
F o r e x a m p l e , it h a s b e e n s h o w n t h a t
X I I I , X I V , and X V form p h o s p h o r a n e X I X when treated with 0 - a m i n o p h e n o l . C o m p o u n d s X V I I a n d X V I I I a r e i n e r t u n d e r t h e s e c o n d i t i o n s (see a l s o C h a p t e r 14).
C y c l i z a t i o n a t p h o s p h o r u s is sterically f a v o r e d b y t h e p r e s e n c e of ortho f u n c t i o n a l g r o u p s o n a rigid p h e n y l r i n g , b u t a l i p h a t i c d i o l s m i g h t b e e x p e c t e d t o cyclize less r e a d i l y b e c a u s e o f t h e g r e a t e r o p p o r t u n i t i e s for c r o s s - l i n k i n g between r i n g s w i t h t h e s e l i g a n d s . H o w e v e r , it h a s b e e n s h o w n t h a t s p i r o - t y p e
E .
I N F L U E N C E
O F
T H E
N U C L E O P H I L E
O
N
163
S U B S T I T U T I O N
derivatives are formed w h e n hexachlorocyclotriphosphazene reacts with the s o d i u m o r t r i e t h y l a m i n e salts o f H O C H ( C F ) C H O H 2
C H O H . Species such as X X are isolated.
2
CF —CF 2
CH
2
C F
2
— C H — C H
2
—
P
2
2
2
CH
^CH —Ο ) C ^ _ 2
2
2
C
H
2
- C F
P
C-(CH ON0 )
N O C H
3
\\^0—CU —CF
^ N ^ ^ 0 — C H XX
2
2
2
ο
H C
( 0
2
2
— I
2
HOCH (CF )
I
ο C F
or
2
2
CH
2
I
2
Similarly, 2,2-bis(nitroxymethyl)-
5
2
2
2
2
2
I | | ^ 0 - C H ^ - P ^ P ^ ^ C ( C H 2
O
O
C
H
O N 0
2
2
)
2
XXI
3 - n i t r o x y p r o p a n - l - o l r e a c t s w i t h h e x a c h l o r o c y c l o t r i p h o s p h a z e n e in p y r i d i n e to form derivative X X I . the
interaction
of
1 7
Experiments have also been reported which involve
hexachlorocyclotriphosphazene
with
ethylene
glycol,
p r o p a n e - 1 , 2 - d i o l , b u t a n e - 1,2-diol, a n d c y c l o h e x a n e - l , 2 - d i o l in t h e p r e s e n c e o f pyridine.
5 2 ,
5 3 , 5 3 a
Spirocyclic
phosphazenes
such
as
XXII
are
formed.
CH —CHR 2
I
I
RHC—ON**
Np__ H
x
C
H C—Ο
2
Ο—CHR
2
XXII
A n a l o g o u s cyclic t e t r a m e r s h a v e a l s o b e e n d e s c r i b e d .
5 2
Pornin
5 2
reported
t h a t spiro c o m p o u n d s were also formed when propane-1,3-diol or butane-1,4d i o l r e a c t e d w i t h h e x a c h l o r o c y c l o t r i p h o s p h a z e n e in p y r i d i n e a t — 10°C, b u t Matuszko and C h a n g
5 3
observed that at higher temperatures (200°-210°C) the
p r i n c i p a l p r o d u c t s w e r e cyclic e t h e r s f o r m e d b y d e h y d r a t i o n of t h e d i o l .
HO(CH ) OH 2
4
(NPCI ) 2
—
Ho 2
3
H C 2
H C 2
X
Q
CH
2
/ C H
2
164
6.
REACTIONS W I T H ALKOXIDES, ARYLOXIDES, A N D THIOLATES
2-Aminoethanol (NPCl ) .
has been reported
to form
spirocyclic derivatives
with
5 3 a
2
3
In a similar m a n n e r , t h i o a m i d e s such as d i t h i o o x a m i d e , a n d thiosemicarbazide apparently
react with hexachlorocyclotriphosphazene
c h l o r o e t h a n e t o yield t h e s p i r o d e r i v a t i v e s s h o w n b e l o w .
in d r y
tetra
T h i o u r e a reacts as
5 4
Ck
J
N*
. P /
^P^
Cl Cl HS—C=NH
I HS - C
NH
HN==C-
C=NH
I
NH
II
N H
NH
NH
C
I
S
NH
il
^N
/ N H - C — S .
I
S.
II / S — C — N H .
^ P ^
;NH
/ P ^
^ N H — C — N
S—C—NH'
NH
C—S
NH
S—C
NH
NH
t h e species H S — C ( N H ) = N H t o give h e x a - s u b s t i t u t e d p r o d u c t s o f s t r u c t u r e [NP(SC(NH )=NH) ] . 2
5 4
2
2
3
I t s h o u l d b e n o t e d t h a t s p i r o c y c l i c p h o s p h a z e n e s a r e of i n t e r e s t a s i n t e r m e d i a t e s for p o l y m e r s y n t h e s i s (see C h a p t e r s 15 a n d 16).
F . Influence of the H a l o g e n in Halophosphazenes M u c h of t h e w o r k w h i c h h a s b e e n r e p o r t e d f o r t h e a l c o h o l y s i s , p h e n o l y s i s , a n d m e r c a p t a n o l y s i s of c h l o r o p h o s p h a z e n e s is believed t o b e a p p l i c a b l e a l s o t o f l u o r o p h o s p h a z e n e s a n d b r o m o p h o s p h a z e n e s , b u t v e r y little e x p e r i m e n t a l w o r k h a s b e e n r e p o r t e d for t h e s e l a t t e r h a l o p h o s p h a z e n e s . H o w e v e r , M a o , Dresdner, and Y o u n g
3 6
showed that ( N P F ) 2
3
and ( N P F ) 2
s o d i u m salt o f 1 , 1 , 7 - t r i h y d r o d e c a f l u o r o h e p t a n o l in a
4
react with the
fluorocarbon
solvent to
yield t h e a p p r o p r i a t e f u l l y - s u b s t i t u t e d c y c l o p h o s p h a z e n e s . S i m i l a r l y , P a d d o c k and
co-workers
reported
2 3
that
species
of
structure
[NP(OMe) ] _ , 2
5
8
[ N P ( O C H C F ) ] _ , and [ N P ( O P h ) ] _ could be prepared from the a p p r o 2
3
2
5
8
priate fluorocyclophosphazenes.
2
5
8
Niecke, T h a m m , and Glemser have pre
pared mono-methoxy, ethoxy, phenoxy, and from ( N P F ) . 2
3
5 7 a
phenylthio-fluorophosphazenes
H .
E F F E C T
O F
T H E
165
S O L V E N T
G. Influence of Phosphazene Ring or Chain Size I n g e n e r a l , it a p p e a r s t h a t m a n y of t h e r e a c t i o n s t h a t h a v e b e e n d e s c r i b e d for hexachlorocyclotriphosphazene are equally applicable to cyclic tetramers, ~ h i g h e r cyclic o l i g o m e r s , ' a n d very h i g h polymers. However, some noticeable exceptions are also found. F o r i n s t a n c e , a l t h o u g h t h e cyclic t r i m e r ( N P C 1 ) 3 r e a c t s r e a d i l y w i t h c a t e c h o l in t h e p r e s e n c e of b a s e t o yield a s p i r o c y c l o p h o s p h a z e n e ( X I I I ) , t h e h i g h p o l y m e r ( N P C l ) degrades instead to p h o s p h o r a n e (XXVI) and a m m o n i a . The cyclic t e t r a m e r i c s p i r o p h o s p h a z e n e c a n p e r h a p s be i s o l a t e d u n d e r very critical c o n d i t i o n s b u t , h e r e t o o , t h e p r e d o m i n a n t r e a c t i o n is d e g r a d a t i o n t o p h o s p h o r a n e . E x p l a n a t i o n s for t h i s b e h a v i o r c a n b e f o r m u l a t e d in t e r m s of t h e g r e a t e r skeletal flexibility of t h e t e t r a m e r a n d h i g h e r h o m o l o g u e s . 2 - 6 , 2 9 , 3 0 , 3 1 , 3 5
3 7 , 4 8 , 5 2
2 4 , 3 3
5 5
2 4 , 2 5
2
1 5
2
n
5 2
1 5
1 5
Special p r o b l e m s a r e a l s o i n v o l v e d w h e n a l k o x i d e s o r a r y l o x i d e s i n t e r a c t w i t h very h i g h m o l e c u l a r w e i g h t p o l y ( d i c h l o r o p h o s p h a z e n e ) . In t h e first p l a c e , l o n g e r r e a c t i o n t i m e s a n d h i g h e r t e m p e r a t u r e s a r e r e q u i r e d t o effect complete substitution on a high molecular weight polymer. F o r example, total s u b s t i t u t i o n of ( N P C 1 ) b y m a n y a l k o x i d e s is c o m p l e t e in less t h a n 12 h o u r s i n e t h e r a t 2 5 ° C o r in 4 h o u r s in a b o i l i n g e t h e r - t o l u e n e s o l u t i o n . C o m p l e t e s u b s t i t u t i o n of t h e h i g h p o l y m e r r e q u i r e s a t least 16 h o u r s r e a c t i o n a t 7 0 ° 80°C. W h e n bulky substituents such as p h e n o x y are employed, m o r e d r a s t i c c o n d i t i o n s a r e r e q u i r e d for t o t a l p o l y m e r s u b s t i t u t i o n . T h i s r e s u l t s f r o m t h e fact t h a t p o l y m e r c h a i n s a r e often extensively c o i l e d in s o l u t i o n , a n d c o n s i d e r a b l e steric h i n d r a n c e m u s t b e s u r m o u n t e d b e f o r e a n u c l e o p h i l e c a n p e n e t r a t e sufficiently close t o t h e s k e l e t o n t o effect s u b s t i t u t i o n . A s e c o n d p r o b l e m e n c o u n t e r e d w i t h t h e s u b s t i t u t i o n of h i g h p o l y m e r s is t h a t t h e t e m p e r a t u r e m u s t n o t b e so h i g h t h a t d e p o l y m e r i z a t i o n t o cyclic o l i g o m e r s is i n d u c e d (see C h a p t e r 15). 2 4 , 2 5
2
3
4
5
2 4 , 2 5
2 5
H . Effect of the Solvent A v a r i e t y of a n h y d r o u s s o l v e n t s h a v e b e e n u s e d for s u b s t i t u t i o n r e a c t i o n s of t h i s t y p e . T h e s e i n c l u d e d i e t h y l e t h e r , tetrahydrofuran, ' dioxane, benzene, °toluene, xylene, "· 25,44,46,48 a c e t o n e , methyl ethyl k e t o n e , dimethylformamide, fluorocarbon-i-butylamine, pyridine, ~ a n d excess of t h e a l c o h o l s o r t h i o l s b e i n g used as r e a g e n t s for s u b s t i t u t i o n . A n u m b e r of p r a c t i c a l c o n s i d e r a t i o n s m u s t b e t a k e n i n t o a c c o u n t w h e n choosing a reaction solvent. T h u s , a n h y d r o u s conditions must be maintained d u r i n g s u b s t i t u t i o n t o a v o i d h y d r o l y s i s of t h e p h o s p h o r u s - h a l o g e n b o n d s , a n d 4 , 2 8 , 4 6 , 5 6
2 , 2 5 ,
4 3
2 , 2 3 , 2 5 ,
3 7 , 3 8 ,
4
4 2 , 4 6
8 , 1 5
5 , 3 0 , 4 0 ,
4 3
4 2 , 4 6 ,
4 8
1 0 ,
4 3
36
2 , 1 6
1 8 ,
2 5 , 3 9 , 4 2 , 4 6
4 3 ,
4 6 , 5 2 , 5 3
1 8 , 2 0 , 2 1 ,
4 6
4 6
166
6.
R E A C T I O N S
W I T H
A L K O X I D E S ,
A R Y L O X I D E S ,
A
N
D
T H I O L A T E S
hydrophilic solvents such as tetrahydrofuran, dioxane, d i m e t h y l f o r m a m i d e , a n d p y r i d i n e m u s t b e e x h a u s t i v e l y d r i e d b e f o r e u s e . T h e s a m e is, of c o u r s e , t r u e for t h e a l c o h o l s o r m e r c a p t a n s u s e d as r e a g e n t s a n d s o l v e n t s . B o i l i n g x y l e n e , b e n z e n e , o r t o l u e n e is u s e d a s r e a c t i o n m e d i u m w h e n solid p o t a s s i u m o r s o d i u m h y d r o x i d e is e m p l o y e d a s a b a s e , since w a t e r f o r m e d d u r i n g t h e r e a c t i o n is r a p i d l y r e m o v e d b y d i s t i l l a t i o n . T h i s c a n influence t h e r e a c t i o n in c u r i o u s w a y s . T h u s , w h e n p h e n o x y l a t i o n of N3P3CI4PI12 t a k e s p l a c e in b e n z e n e , the râ-non-geminal i s o m e r of N j P j C ^ P l h i O P h ^ is f o r m e d . I n t e t r a h y d r o f u r a n , f r o m w h i c h w a t e r is n o t r e m o v e d by a z e o t r o p i n g , b o t h cis a n d trans isomers are f o r m e d . 4 2
A s e c o n d i m p o r t a n t s o l v e n t influence is c o n n e c t e d w i t h s o l v e n t p o l a r i t y a n d w i t h t h e solubility of s o d i u m salts in t h e m e d i u m . F o r e x a m p l e , a p r e f e r r e d sol v e n t is o n e in w h i c h t h e s o d i u m a l k o x i d e , a r y l o x i d e , o r m e r c a p t i d e is s o l u b l e , b u t in w h i c h s o d i u m c h l o r i d e is i n s o l u b l e . E t h e r s often fall i n t o t h i s c a t e g o r y . T h e influence of t h e s o l v e n t o n t h e r e a c t i o n r a t e o r m e c h a n i s m is less easy t o determine. It seems reasonable to assume that the m o r e polar solvents should a c c e l e r a t e t h e r a t e of s u b s t i t u t i o n b y f a c i l i t a t i n g i o n i z a t i o n of a l k o x i d e , a r y l o x i d e , o r m e r c a p t i d e i o n s . S o m e e v i d e n c e in f a v o r of t h i s view h a s b e e n p r o v i d e d b y t h e r e s u l t s of C a r r o l l a n d S h a w for t h e a l k y l t h i o l y s i s a n d a r y l t h i o l y s i s of h e x a c h l o r o c y c l o t r i p h o s p h a z e n e . T h u s , fully m e r c a p t a l a t e d i s o p r o p y l thio-substituted p r o d u c t s were obtained when the solvent was dimethyl f o r m a m i d e , f o u r c h l o r i n e a t o m s w e r e r e p l a c e d in t e t r a h y d r o f u r a n , b u t o n l y t w o w e r e r e p l a c e d in b e n z e n e . In g e n e r a l , t h e e a s e of s u b s t i t u t i o n falls off w i t h sol v e n t c h a n g e s in t h e o r d e r : d i m e t h y l f o r m a m i d e a t 100°C > b o i l i n g d i g l y m e > boiling tetrahydrofuran > boiling benzene > boiling diethyl ether. This order r o u g h l y p a r a l l e l s t h e e x p e c t e d d e c r e a s i n g s o l v a t i o n of Na® in t h e r e a g e n t , b u t it s h o u l d b e r e m e m b e r e d t h a t t h e r e a c t i o n s a r e h e t e r o g e n e o u s in all o f t h e s e m e d i a e x c e p t d i m e t h y l f o r m a m i d e , a n d r e a g e n t solubility effects m a y t h u s b e r e s p o n s i b l e for t h e differences. It is i n t e r e s t i n g t o n o t e t h a t t h e s e s o l v e n t effects b e c o m e m a n i f e s t as a n influence o n t h e number of h a l o g e n a t o m s r e p l a c e d a n d n o t s i m p l y as a n effect o n t h e r e a c t i o n r a t e . F o r i n s t a n c e , in d i e t h y l e t h e r a t room temperature, ethane-, propane-, butane-, or isobutanethiol bring about r e p l a c e m e n t of t w o c h l o r i n e a t o m s o n l y , a n d f u r t h e r s u b s t i t u t i o n d o e s n o t n o r m a l l y o c c u r if t h e r e a c t i o n t i m e o r r e a g e n t c o n c e n t r a t i o n is i n c r e a s e d . H o w ever, after 7 d a y s in b o i l i n g e t h e r , a t e t r a k i s ( e t h y l t h i o ) d e r i v a t i v e c a n b e i s o l a t e d . I n b o i l i n g t e t r a h y d r o f u r a n , fully s u b s t i t u t e d e t h a n e - , « - p r o p a n e - , « - b u t a n e - , a n d b e n z y l t h i o l d e r i v a t i v e s w e r e f o r m e d , b u t b r a n c h e d a l k a n e t h i o l a t e s (isopropyl or cyclohexyl) gave only tetrakis derivatives. O t h e r nucleophilic substi t u t i o n s , s u c h a s a l c o h o l y s i s o r a m i n o l y s i s , d o n o t s h o w t h i s s t r i k i n g sensitivity t o different s o l v e n t s . 45,
4 6
4 6
Z h i v u k h i n , T o l s t o g u z o v , a n d L u k a s h e v s k i h a v e e x a m i n e d t h e initial r a t e of t h e r e a c t i o n b e t w e e n h e x a c h l o r o c y c l o t r i p h o s p h a z e n e a n d sodium 2 2
I.
I N F L U E N C E
O F
T H E
167
B A S E
m e t h o x i d e in several different s o l v e n t s u s i n g a p o t e n t i o m e t r i c t e c h n i q u e . T h e initial r a t e in d i m e t h y l f o r m a m i d e w a s f o u n d t o b e m u c h m o r e r a p i d t h a n in acetone, dioxane, butanol, d i o x a n e - a c e t o n e , or d i o x a n e - m e t h y l ethyl ketone mixtures. H o w e v e r , the almost i n s t a n t a n e o u s replacement of u p to
four
c h l o r i n e a t o m s w h i c h o c c u r r e d in d i m e t h y l f o r m a m i d e m u s t b e c o n t r a s t e d w i t h t h e u l t i m a t e b u t s l o w e r r e p l a c e m e n t o f all six h a l o g e n a t o m s in t h e o t h e r sol vent systems.
I. Influence of the B a s e I n t h e m a j o r i t y o f r e a c t i o n s , a b a s e o r s o d i u m salt m u s t b e p r e s e n t b e f o r e a n a l c o h o l , p h e n o l , o r t h i o l will i n t e r a c t c l e a n l y w i t h a c h l o r o p h o s p h a z e n e . O n l y w h e n r e a c t i o n s of t h i s t y p e a r e e m p l o y e d for t h e h i g h - t e m p e r a t u r e c u r i n g o f cross-linked p o l y p h o s p h a z e n e resins m a y a base be absent, b u t even here t h e p r e s e n c e of a h y d r o g e n c h l o r i d e a c c e p t o r m a r k e d l y facilitates t h e p r o c e s s . I n t h e a b s e n c e of a b a s e , a l k a n e t h i o l s o r p h e n y l t h i o l d o n o t u n d e r g o s u b s t i t u t i o n w h e n heated with chloro- or a l k o x y c y c l o p h o s p h a z e n e s . Benzyl alcohol reacts w i t h ( N P C 1 ) in d i o x a n e in t h e a b s e n c e of a b a s e t o yield a h y d r o x y p h o s p h a zane a n d benzyl c h l o r i d e . 4 6
2
3
5 6 3
T h e u s e of s o d i u m salts of a l k o x i d e s , a r y l o x i d e s , o r t h i o l s h a s b e e n m e n tioned t h r o u g h o u t this chapter. Reactions involving such reagents are usually c l e a n a n d r a p i d , a n d t h e y yield s o d i u m c h l o r i d e a s a n easily r e m o v e d side p r o d u c t . S o d i u m salts of a l c o h o l s , p h e n o l s , o r t h i o l s c a n b e p r e p a r e d b y t h e a d d i t i o n of m e t a l l i c s o d i u m t o a s o l u t i o n of t h e r e a g e n t in e t h e r o r t e t r a h y d r o f u r a n . W h e n strongly acidic alcohols or phenols are employed, p o t a s s i u m or s o d i u m h y d r o x i d e s c a n b e u s e d in situ for salt f o r m a t i o n . H o w e v e r , t h e s e m e t h o d s a r e u n s u i t a b l e w h e n t h e a l c o h o l o r p h e n o l u n d e r g o e s side r e a c t i o n s w i t h s o d i u m o r caustic alkali. U n d e r these circumstances, milder conditions are employed, w i t h t h e u s e of s o d i u m c a r b o n a t e , p y r i d i n e , o r t r i e t h y l a m i n e a s t h e h y d r o g e n c h l o r i d e a c c e p t o r . T h i s is e s p e c i a l l y s o f o r t h e f o r m a t i o n o f s p i r o c y c l i c p h o s phazenes such as as X I I I , X I V , X V I I , X V I I I , a n d X X I . T h e d e s i g n a t i o n o f t h e b a s e a s a " h y d r o h a l i d e a c c e p t o r " in t h e s e r e a c t i o n s is n o t strictly v a l i d , since few r e a c t i o n s of t h i s t y p e t a k e p l a c e a t all in t h e a b s e n c e of a b a s e . I t is m o r e r e a s o n a b l e t o view t h e b a s e a s a c a t a l y s t f o r f a c i l i t a t i n g i o n i z a t i o n of t h e a l c o h o l o r p h e n o l t o a l k o x i d e o r a r y l o x i d e i o n ( X X I I I ) . ROH + Et N ^ R O + Et NH 0
3
3
XXIII S o d i u m c a r b o n a t e p r o b a b l y functions partly as a h y d r o h a l i d e acceptor t o re m o v e hydrohalide liberated d u r i n g a very slow direct phenolysis process
168
6.
R E A C T I O N
S
W I T
H
A L K O X I D E S
,
A R Y L O X I D E S
,
A
N
D
T H I O L A T E
S
6 RO H + (NPC1 ) - > [NP(OR) ] + 6 HC l 2
3
2
3
HCl + N a C 0 - » NaC l + N a H C 0 2
3
3
XXIV ( X X I V ) . H o w e v e r , i t i s a l s o likel y t h a t t h e i n t e r a c t i o n o f a p h e n o l w i t h s o d i u m c a r b o n a t e result s i n th e f o r m a t i o n o f smal l a m o u n t s o f s o d i u m p h e n o l a t e , which the n reac t b y th e conventiona l r o u t e : ROH + N a C 0 ^ RON a + N a H C 0 2
3
3
R e a c t i o n s p e r f o r m e d wit h pyridin e a s a bas e ar e especiall y sensitiv e t o trace s of m o i s t u r e .
1 5
F u r t h e r m o r e , pyridin e apparentl y form s a n isolabl e crystallin e
complex wit h hexachlorocyclotriphosphazene.
5 2
J . Influenc e o f Temperatur e The interactio n o f som e nonfluorinate d alcohol s o r alkoxide s wit h chloro phosphazenes m u s t b e carrie d ou t a t th e lowes t practicabl e temperatur e t o avoid rearrangemen t o f th e alkoxycyclophosphazen e t o a n oxophosphazan e (XXV).
5 7
(se e C h a p t e r 13) . R e a r r a n g e m e n t s o f t h i s k i n d o c c u r s l o w l y e v e n a t [NP(OR) ] 2
-ï^ >
3
[N(R)—P(0)O R]
3
XXV r o o m temperature , whe n O R i s methox y o r e t h o x y . F o r thi s reason , th e reac 7
tion o f sodiu m methoxid e wit h hexachlorocyclotriphosphazen e i n b e n z e n e methanol solutio n i s carrie d ou t a t 0 ° C . Th e interactio n o f ethanol , pyridine , 2
and
hexachlorocyclotriphosphazene s
fl-butanol
i s conducte d
at
0°-5°C.
2
Whe n
replace s ethanol , th e reactio n take s plac e a t r o o m t e m p e r a t u r e .
2
M i l d r e a c t i o n c o n d i t i o n s a r e a l s o p r e f e r r e d fo r t h e f o r m a t i o n o f s o m e s p i r o cyclophosphazenes, suc h a sX I I I ,
1 4
-
1 5
XXI,
1 7
o rX X I I
5 2
t o a v o i d sid e r e a c t i o n s .
F o r example , th e reactio n o f ( N P C l ) r 4 wit h catecho l i n pyridin e solutio n i s 2
conducted a t - 8 ° t o 3 0 ° C . * 1 5
3 o
5 2
However, mor e drasti ctemperatur e condition s ca n b euse d whe n th e nucleo p h i l e i s i s o p r o p o x y , b e n z y l o x y , p h e n o x y , o r fluoroalkoxy,
an d temperature s i n
the 30°-120° C rang e m a y b e used . Aryloxy - an d
fluoroalkoxyphosphazenes
do no t rearrang e thermall y t o oxophosphazanes . I t shoul d b e note d tha t a t 2 5 0 °C fluoroalkoxy
group s ca n b e exchange d fro m on e molecul e t o a n o t h e r .
5 7 1 3
W h e n d i m e t h y l f o r m a m i d e i s u s e d a s a s o l v e n t fo r t h e i n t e r a c t i o n o f m e r c a p t a n s o r t h e i r s o d i u m s a l t s , t h e t e m p e r a t u r e m u s t b e k e p t b e l o w 100° C t o a v o i d degradation reactions.
4 6
L .
T H E
R E A C T I O N
169
M E C H A N I S M
K. Monophosphazenes and Related Compounds All of the foregoing analysis has centered a r o u n d the nucleophilic substitu tions of halocyclophosphazenes or their linear high polymers. However, m o n o p h o s p h a z e n e s are k n o w n to u n d e r g o similar reactions. F o r example, Zhmurova, Voitsekhovskaya, and Kirsanov have shown that P-trichloro-Narylmonophosphazenes (phosphinimines) (XXVI) react with sodium pheno x i d e t o yield t h e a p p r o p r i a t e t r i p h e n o x y d e r i v a t i v e s ( X X V I I ) . Such tri4 3
A r N = P C l + 3 PhONa
ArN=P(OPh) + 3 NaCl
3
3
XXVI
XXVII
phenoxymonophosphazenes are formed from both the m o n o m e r i c trichlorom o n o p h o s p h a z e n e , as shown above, or from the dimeric (cyclodiphosphazane) f o r m . H o w e v e r , t h e t r i p h e n o x y d e r i v a t i v e s exist o n l y a s m o n o m e r s a n d n o t a s cyclic d i m e r s , p o s s i b l y for s t e r i c r e a s o n s . T h i s r e a c t i o n h a s b e e n c a r r i e d o u t for a n u m b e r o f P - t r i c h l o r o m o n o p h o s p h a z e n e s ( X X V I ) in w h i c h t h e g r o u p A r is P h ; o , m-, / ? - M e C H ; 3 , 5 - M e C H ; o-, m-, / ? - C l C H ; 2 , 4 - C l C H ; 3 , 5 - C l C H ; 2 , 4 , 6 - C l C H ; o-, m-, / ? - B r C H ; 2 , 4 - B r C H ; 2 , 4 , 6 - B r C H ; / ? - M e O C H ; / ? - E t O C H ; o, m-, / 7 - N 0 C H ; 2 , 4 - ( N 0 ) C H ; 2 , 6 - C l - 4 - N 0 C H . T h e c o m p o u n d s in w h i c h A r is 2 , 4 , 6 - C l C H ; 2 , 4 , 6 - B r C H ; / ? - N 0 - C H ; 2 , 4 - ( N 0 ) C H ; o r 2 , 6 - C l - 4 - N 0 C H a r e c r y s t a l l i n e s o l i d s , b u t t h e rest a r e v i s c o u s l i q u i d s . E x c e p t in t h e c a s e w h e r e A r is p h e n y l , t h e y c a n n o t b e distilled a t r e d u c e d p r e s s u r e w i t h o u t d e c o m p o s i t i o n . All t h e s e m a t e r i a l s a r e h y d r o l y z e d r a p i d l y b y w a t e r o r m o i s t a i r t o f o r m d i p h e n y l e s t e r s of a r y l a m i d o p h o s p h o r i c a c i d s , b y t h e reaction 6
6
3
6
6
2
4
6
2
6
4
2
6
6
2
3
2
3
2
4
2
6
6
3
3
6
3
3
6
6
3
2
2
2
2
6
2
2
6
4
3
2
6
4
2
6
4
2
2
6
4
2
2
6
4
2
ArN=P(OPh) + H 0 -> ArNH—PO(OPh) + PhOH 3
The compounds
2
SC1 P—N=PC1 2
2
3
and S P ( O P h ) — N = P C 1
sodium phenoxide according to the s c h e m e s
2
3
react
with
5 8 , 5 9
S=PC1 —N=PC1 + 5 NaOPh -> S=P(OPh) —N=P(OPh) + 5 NaCl 2
3
2
3
S=P(OPh )—N=PC1 + NaOPh -> S = P ( O P h — N = P ( O P h ) + 3 NaCl 2
3
2
3
I t h a s b e e n s h o w n t h a t m o n o p h o s p h a z e n e s of s t r u c t u r e C 1 C — C 1 C — N = P C 1 r e a c t w i t h p r i m a r y a l c o h o l s a t 2 0 ° - 2 5 ° C t o yield c o m p o u n d s of s t r u c t u r e C1 C—C1 C—N=PCl (OAlk). However, these materials are unstable and d e c o m p o s e with elimination of alkyl halide. 3
2
3
6 0
3
2
2
L . T h e Reaction M e c h a n i s m T h e n a t u r e of the reaction m e c h a n i s m d u r i n g alcoholysis, phenolysis, or thiolysis is i n t i m a t e l y c o n n e c t e d w i t h q u e s t i o n s a b o u t t h e m e c h a n i s m s o f t h e
170
6.
R E A C T I O N S
W I T H
A L K O X I D E S ,
A R Y L O X I D E S ,
A
N
D
T H I O L A T E S
h y d r o l y s i s , a m i n o l y s i s , m e t a t h e t i c a l e x c h a n g e , a n d s k e l e t a l d e g r a d a t i o n of h a l o p h o s p h a z e n e s . T h e s e l a t t e r m e c h a n i s m s a r e c o n s i d e r e d in C h a p t e r s 5 , 7 , 8, a n d 14. T h e a v a i l a b l e e v i d e n c e a b o u t t h e m e c h a n i s m o f a l c o h o l y s i s , p h e n o l y s i s , a n d t h i o l y s i s is i n c o m p l e t e a n d f r a g m e n t a r y , b u t several p e r t i n e n t facts c a n b e d i s c e r n e d a n d t h e s e a r e listed b e l o w . (a) T h e d i r e c t r e a c t i o n b e t w e e n a h a l o p h o s p h a z e n e a n d a n a l c o h o l , p h e n o l , o r t h i o l in t h e a b s e n c e of a b a s e is a s l o w r e a c t i o n w h i c h often yields side p r o d u c t s o r d e c o m p o s i t i o n species r a t h e r t h a n s u b s t i t u t e d p h o s p h a z e n e s . H o w ever, w h e n s o d i u m alkoxides, aryloxides, or thiolates are used, o r w h e n a s t r o n g b a s e is e m p l o y e d w i t h t h e a l c o h o l o r p h e n o l , t h e r e a c t i o n is r a p i d . T h i s s u g g e s t s t h a t a l k o x i d e , a r y l o x i d e , o r t h i o l a t e i o n s a r e t h e r e a c t i v e species d u r i n g " n o r m a l " substitution. This has been confirmed by the kinetic studies of S o r o k i n and Latov,
6 1
w h o showed that, when sodium ethoxide reacts with ( N P C 1 ) 2
N P C l 4 ( O B u ) 2 , t h e n u c l e o p h i l e is E t O 3
3
0
3
or
and not E t O N a . The ionization to
e t h o x i d e i o n is e n h a n c e d in h i g h d i e l e c t r i c c o n s t a n t s o l v e n t s a n d t h i s l e a d s t o i n c r e a s e d s u b s t i t u t i o n r a t e s in s u c h m e d i a . (b) B o t h t h e d e g r e e of s u b s t i t u t i o n a n d t h e p a t t e r n of h a l o g e n r e p l a c e m e n t a r e sensitive t o t h e steric c h a r a c t e r i s t i c s of t h e n u c l e o p h i l e . T h u s , b r a n c h e d alkoxides, branched alkylthiolates, or phenoxides cause total substitution only w i t h difficulty. P h e n o x i d e i o n s u b s t i t u t e s n o n - g e m i n a l l y , p o s s i b l y b e c a u s e of steric i n f l u e n c e s . (c) T h e p o s s i b i l i t y a l s o exists t h a t t h e n o n - g e m i n a l r e p l a c e m e n t p a t t e r n observed with phenoxide and some alkoxides m a y result from electron supply from alkoxide or aryloxide to p h o s p h o r u s , which lowers the reactivity of a C l — Ρ — O R u n i t b e l o w t h a t of a C l — Ρ — C l u n i t . I n v i e w of t h e r e s u l t s o f polarographic experiments with alkoxy- and a r y l o x y p h o s p h a z e n e s ,
6 2
it s e e m s
u n l i k e l y t h a t r e s o n a n c e effects i n v o l v i n g t h e p h e n y l g r o u p s a r e r e s p o n s i b l e f o r t h e e l e c t r o n s u p p l y . H o w e v e r , d o n a t i o n of t h e o x y g e n l o n e - p a i r e l e c t r o n s t o w a r d p h o s p h o r u s is p o s s i b l e . ( d ) A l k y l t h i o l a t e i o n s s u b s t i t u t e g e m i n a l l y , r a t h e r t h a n n o n - g e m i n a l l y , in s p i t e of t h e l o w e r e l e c t r o n e g a t i v i t y of a l k y l t h i o s u b s t i t u e n t s t h a n groups.
4 6
It has been s u g g e s t e d
4 6
chloro
t h a t the high polarizability of the C l — Ρ — S R
u n i t c o m p a r e d w i t h t h a t of t h e C l — Ρ — C l g r o u p i n g m a y b e t h e r e a s o n for t h i s behavior. (e) G e m i n a l cyclization
to form
spirocyclophosphazenes
occurs
w h e n five-, six-, o r s e v e n - m e m b e r e d r i n g s a t p h o s p h o r u s a r e i n v o l v e d .
readily 8 , 1 5
This
i m p l i e s t h a t , w h e n g e m i n a l s u b s t i t u t i o n is not r e t a r d e d b y steric effects, t h e r e a r e n o s e r i o u s e l e c t r o n i c influences w h i c h i n h i b i t t h e g e m i n a l p r o c e s s . S o m e c o n firmation
of t h i s view is p r o v i d e d b y t h e fact t h a t w h e n ( N P C 1 ) r e a c t s w i t h 2
catechol, 2,3-dihydroxynaphthalene, 2,2'-dihydroxybiphenyl,
3
1,8-dihydroxy-
n a p h t h a l e n e , o r t o l u e n e - 3 , 4 - d i t h i o l , n o n o n - g e m i n a l , u n c y c l i z e d species, s u c h as X X V I I I , are i s o l a t e d . * 8
1 5
L .
T H E
R E A C T I O N
171
M E C H A N I S M
XXVIII (f ) W h e n b u t o x i d e i o n r e p l a c e s c h l o r i n e in h e x a c h l o r o c y c l o t r i p h o s p h a z e n e , t h e r e a c t i o n r a t e d e c r e a s e s in t h e o r d e r ( N P C 1 ) > N P C l ( O B u ) > l N P C l ( O B u ) > N P C l ( O B u ) , w i t h t h e a c t i v a t i o n e n e r g y i n c r e a s i n g in t h e o r d e r 10.0, 11.3, 14.5, a n d 17.2 k c a l / m o l e , r e s p e c t i v e l y . If t h i s r a t e d e c r e a s e is t h e result of electron supply from b u t o x y g r o u p s to the ring, an S l - t y p e mecha n i s m is p r e c l u d e d since e l e c t r o n s u p p l y w o u l d e n h a n c e t h e i o n i z a t i o n of Ρ — C l t o P ® C l a n d , t h u s , i n c r e a s e t h e r a t e . S e c o n d - o r d e r k i n e t i c s (first o r d e r in b o t h p h o s p h a z e n e a n d a l k o x i d e ) a r e , in fact, o b s e r v e d a n d t h i s s u g g e s t s a n S 2 t y p e of mechanism. (g) If t h e m e c h a n i s m d o e s p r o c e e d b y a n S 2 - t y p e p r o c e s s , t h e r e a r e t w o possibilities for t h e a p p r o a c h of t h e n u c l e o p h i l e t o p h o s p h o r u s p r i o r t o a t t a i n m e n t of t h e t r a n s i t i o n s t a t e . T h e first m e c h a n i s m is o n e i n v o l v i n g a side a t t a c k o n p h o s p h o r u s in t h e p l a n e of t h e r i n g , a s s h o w n in X X I X . E i t h e r r e t e n t i o n o r 2
2
3
3
3
3
3
3
5
3
3
4
3
61
N
e
N
N
Cl = N
X
/Cl
+
Θ OR
•
θ n > — O R
>
= N \
Cl
/Cl
Cl
e
XXIX i n v e r s i o n of c o n f i g u r a t i o n c o u l d , t h u s , o c c u r d e p e n d i n g o n t h e c h a r a c t e r o f t h e l e a v i n g g r o u p . T h e l o w e n t r o p y of a c t i v a t i o n v a l u e for b u t o x i d e i o n a t t a c k o n h e x a c h l o r o c y c l o t r i p h o s p h a z e n e h a s b e e n cited a s e v i d e n c e for t h i s t y p e of process. 6 1
A second, a n d m o r e logical, a p p r o a c h to a trigonal b i p y r a m i d a l transition s t a t e is via a b a c k s i d e a t t a c k , l e a d i n g t o i n v e r s i o n of c o n f i g u r a t i o n , a s s h o w n in XXX. OR' OR' e
=Nci
-Λ^Υ
ι---Cl
XXX
O K
—
: "OR eci
172
6.
R E A C T I O N S
W I T H
A L K O X I D E S ,
A R Y L O X I D E S ,
A
N
D
T H I O L A T E S
N o u n a m b i g u o u s e v i d e n c e for o r a g a i n s t i n v e r s i o n of c o n f i g u r a t i o n h a s y e t been p r o d u c e d . H o w e v e r , this type of m e c h a n i s m seems reasonable o n theor etical g r o u n d s since t h e a t t a c k i n g n u c l e o p h i l e c o u l d a p p r o a c h p h o s p h o r u s a l o n g t h e ζ axis o f a n unfilled d o r b i t a l . A d d i t i o n a l e v i d e n c e f o r t h i s t y p e of m e c h a n i s m is p r o v i d e d b y t h e r e s u l t s o f r e a c t i o n s b e t w e e n n u c l e o p h i l e s s u c h a s H O " or M e O a n d spirocyclic aryloxyphosphazenes. T h u s , attack by R O ~ o n a u n i t s u c h a s X X X I c a n n o t t a k e p l a c e b y a n y r o u t e w h i c h forces t h e t w o 2
z
-
-
XXXI
XXXII
Ρ — Ο — P h u n i t s t o m o v e t o a x i a l p o s i t i o n s in t h e t r a n s i t i o n s t a t e ( X X X I I ) , a n d t h e side a t t a c k m e c h a n i s m is, t h u s , p r o h i b i t e d . A s d i s c u s s e d e a r l i e r in
OR
OR
XXXIII
XXXIV
C h a p t e r 4, n u c l e o p h i l i c a t t a c k b y H O ~ ( a n d R O " ) o n s p i r o a r y l o x y p h o s p h a z e n e s w i t h five-membered r i n g s a t p h o s p h o r u s , a s in X X X I I I , is m u c h m o r e rapid than attack on molecules with seven-membered rings or two i n d e p e n d e n t s u b s t i t u e n t s a t p h o s p h o r u s . T h i s is c o n s i s t e n t w i t h t h e e a s e w i t h w h i c h t h e five-membered r i n g c a n a s s u m e t h e a x i a l a n d e q u a t o r i a l p o s i t i o n s ( X X X I V ) , thus allowing the Ο — Ρ — Ο b o n d angle to a p p r o x i m a t e to 90°-95°. T h u s , t h e e n e r g y of t h e t r a n s i t i o n s t a t e w o u l d b e l o w e r e d b y t h e p r e s e n c e of a five-membered ring at p h o s p h o r u s a n d the rate would be enhanced. In the a b s e n c e of e v i d e n c e t o t h e c o n t r a r y it m u s t b e a s s u m e d t h a t a t t a c k b y R O ~ fol l o w s t h e s a m e p a t h w a y a s a t t a c k b y H O , i.e., b y a n S 2 b a c k s i d e a t t a c k . T h e m a i n differences b e t w e e n s u b s t i t u t i o n b y H O a n d R O ~ w o u l d b e e x p e c t e d w h e n t h e g r o u p , R, is b u l k y o r h i g h l y p o l a r i z a b l e . 5 0
-
N
-
R E F E R E N C E S
173
REFERENCES
1. H. R. Allcock and R. J. Best, Can. J. Chem. 42, 447 (1964). 2. B. W. Fitzsimmons and R. A. Shaw, Chem. Ind. (London) p. 109 (1961); / . Chem. Soc. London?. 1735 (1964). 3. M. Yokoyamaand F. Yamada,/. Chem. Soc. Jap., Ind. Chem. Sect. 66,613(1963). 4. É. T. McBee, H. R. Allcock, R. Caputo, A. Kalmus, and C. W. Roberts, U.S. Govt. Astia Rep. AD 209,669 (1959). 5. R. Râtz, H. Schroeder, H. Ulrich, Ε. Kober, and C. Grundmann, / . Amer. Chem. Soc. 84, 551 (1962). 6. R. F. Ràtzand C. Grundmann, U.S. Pat. 2,876,247 (1959). 7. H. R. Allcock and E. J. Walsh, unpublished information (1969). 8. H. R. Allcock and R. L. Kugel, Inorg. Chem. 5, 1016 (1966). 9. H. R. Allcock and R. L. Kugel, J. Amer. Chem. Soc. 91, 5452 (1969). 10. G. M. Nichols, Ger. Pat. 1,182,660 (1964). 11. G.M.Nichols,U.S.Pat. 3,316,330(1967); U.S. Govt. Res. Rep. ASD-TDR62-372(1962). 12. E. Kober, H. Lederle, and G. Ottmann, Inorg. Chem. 5, 2239 (1966). 13. B. W. Fitzsimmons and R. A. Shaw, Inorg. Synt. 8, 77 (1966). 14. H. R. Allcock, / . Amer. Chem. Soc. 85, 4050 (1963). 15. H. R. Allcock, / . Amer. Chem. Soc. 86, 2591 (1964). 16. J. Parrod and R. Pornin, C. R. Acad. Sci. 258, 3022 (1964). 17. M. S. Chang and A. J. Matuszko, Chem. Ind. (London) p. 410 (1962). 18. B. Dishon, / . Amer. Chem. Soc. 71, 2251 (1949). 19. M. Yokoyama, / . Chem. Soc. Jap., Pure Chem. Sect. 81, 158 (1960). 20. B. W. Fitzsimmons, C. Hewlett, K. Hills, and R. A. Shaw,/. Chem. Soc, A p. 679 (1967) 21. M. F. Sorokin and V. K. Latov, Zh. Obshch. Khim. 35, 1471 (1965). 22. S. M. Zhivukhin, V. B. Tolstoguzov, and Z. Lukashevski, Russ. J. Inorg. Chem. 10, 901 (1965). 23. G. Allen, D. J. Oldfield, N. L. Paddock, F. Rallo, J. Serregi, and S. M. Todd, Chem. Ind. (London) p. 1032 (1965). 24. H. R. Allcock and R. L. Kugel, / . Amer. Chem. Soc. 87, 4216 (1965). 25. H. R. Allcock, R. L. Kugel, and K. J. Valan, Inorg. Chem. 5, 1709 (1966). 26. C. Hamalainen, W. A. Reeves, and J. D. Guthrie, Text. Res. J. 26, 145 (1956). 27. H. R. Allcock and G. Konopski, unpublished work (1969). 28. Ε. T. McBee, L. Brinkmann, and H. P. Braendlin, U.S. Govt. Res. Rep. AD 254,982 (1960). 29. H. Lederle, E. Kober, and G. Ottmann, / . Chem. Eng. Data 11, 221 (1966). 30. G. Ottmann, H. Lederle, and E. Kober, Ind. Eng. Chem., Prod. Res. Develop. 5 , 202 (1966). 31. E. Kober, H. Lederle, and G. F. Ottmann, U.S. Govt. Res. Rep. AD 430,861 (1964). 32. M. V. Lenton, B. Lewis, and C. A. Pearce, Chem. Ind. (London) p. 1387 (1964). 33. M. V. Lenton and B. Lewis, / . Chem. Soc, A p. 665 (1966). 34. S. H. Rose, / . Polym. Sci., Part Β 6, 837 (1968). 35. Ε. Kober, Η. Lederle, and G. Ottmann, Amer. Soc. Lubric. Eng. Trans. 7, 389 (1964). 36. T. J. Mao, R. D. Dresdner, and J. A. Young, / . Inorg. Nucl. Chem. 24, 53 (1962). 36a. M. R. Pitina, T. M. Ivanova, and Ν. I. Shvetsov-Shilovskii, / . Gen. Chem. USSR 37, 1968 (1967). 37. Ε. T. McBee, P. Johncock, and H. P. Braendlin, U.S. Govt. Res. Rep. AD 254,984 (1960). 38. Ε. T. McBee, K. Okuhara, and C. J. Morton, Inorg. Chem. 5, 450 (1966). 39. D. Dell, B. W. Fitzsimmons, and R. A. Shaw,/. Chem. Soc,London p. 4070 (1965).
174
6.
R E A C T I O N S
W I T H
A L K O X I D E S ,
A R Y L O X I D E S ,
A
N
D
T H I O L A T E S
39a. D. Dell, B. W. Fitzsimmons, R. Keat, and R. A. Shaw, / . Chem. Soc., A p. 1680 (1966). 40. V. B. Tolstoguzov, V. V. Pisarenko, and V. V. Kireev, Russ. J. Inorg. Chem. 10, 382 (1965). 41. C. T. Ford, F. E. Dickson, and I. I. Bezman, Inorg. Chem. 4, 419 (1965). 42. C. T. Ford, J. M. Barr, F. E. Dickson, and 1.1. Bezman, Inorg. Chem. 5, 351 (1966). 43. I. N. Zhmurova, I. Yu. Voitsekhovskaya, and Α. V. Kirsanov, Zh. Obshch. Khim. 31, 3741 (1961). 44. E. Kober, H. Lederle, and G. Ottmann, Inorg. Chem. 5, 2239 (1966). 45. A. P. Carroll and R. A. Shaw, Chem. Ind. (London) p. 1908 (1962). 46. A. P. Carroll and R. A. Shaw, / . Chem. Soc, A p. 914 (1966). 47. H. R. Allcock and E. J. Walsh, / . Amer. Chem. Soc 91, 3102 (1969). 47a. L. E . A. Godfrey and J. W. Schappel, Ind. Eng. Chem., Prod. Res. Develop., 9,426 (1970). 48. E . Kober, H. Lederle, and G. T. Ottmann, U.S. Navy Res. Rep. Nobs-90092 (1964). 49. M. R. Pitina and Ν. I. Shvetsov-Shilovskii, / . Gen. Chem. USSR 36, 517 (1966). 50. H. R. Allcock and E. J. Walsh, J. Amer. Chem. Soc 91, 3102 (1969). 51. H. R. Allcock and R. L. Kugel, unpublished work (1969). 52. R. Pornin, Bull. Soc. Chim. Fr. [5] 258, No. 9, 2861 (1966). 53. A. J. Matuszko and M. S. Chang, / . Org. Chem. 31, 2004 (1966). 53a. A. Wende and D. Joel, Z. Chem. 3, 467 (1963). 54. B. Yanik, V. Zheshutko, and T. Pel'char, / . Gen. Chem. USSR 36, 1451 (1966). 55. F. Rallo, Ric Sci. Chim. 8, 1134 (1965). 56. M. R. Pitina, T. M. Ivanova, and Ν. I. Shvetsov-Shilovskii, / . Gen. Chem. USSR 37, 1968 (1967). 56a. M. Kajiwara and H. Saito, Kogyo Kagaku Zasshi, 74, 619 (1971). 57. B. W. Fitzsimmons, C. Hewlett, and R. A. Shaw, / . Chem. Soc, London p. 4459 (1964). 57a. E. N. Niecke, H. Thamm, and O. Glemser, Z. Naturforsch. 26B, 366 (1971). 57b. V. N. Prons, M. P. Grinblat, A. L. Klebanskii, and G. A. Nikolaev, / . Gen. Chem. USSR, 40, 2109 (1970). 58. E. Fluck, Z. Anorg. Allg. Chem. 320, 64 (1963). 59. Α. V. Kirsanov and I. N. Zhmurova, Zh. Obshch. Khim. 28, 2478 (1958). 60. V. I. Shevchenko, A. A. Koval, and Α. V. Kirsanov,/. Gen. Chem. USSR38, 541 (1968). 61. M. F. Sorokin and V. K. Latov, Kinet. Katal. 7, 42 (1966); Kinet. Catal. (USSR) p. 35 (1966). 62. H. R. Allcock and W. J. Birdsall, Inorg. Chem. (1971 ).