89
RECENT ADVANCES Ir1 OPIOID
PHARMACOLOGY
A. L i v i n g s t o n D e p a r t m e n t of P h a r m a c o l o g y T h e h l e d i c a l S c h o o l , RRISTOL, RS8 1TD
I n some w a y s i t c a n be c o n s i d e r e d t h a t a l l r e s e a r c h o n o p i o i d r e c e p t o r s a n d e n d o g e n o u s o p i o i d s is r e c e n t , s i n c e i t
is j u s t o v e r a d e c a d e s i n c e t h e s t u d i e s o f 7 e r t a n d S n y d e r (1973)
and
Terenius
opioid
receptor
(1973)
existed
in
demonstrated nervous
a
that
tissue
and
specific
consquently
s t r e n g t h e n e d t h e e a r l i e r s u g g e s t i o n s oP n o t o n l y a s p e c i f i c
s i t e for m o r p h i n e - l i k e
receptor h o o d of
a n endogenous ligand
drues b u t also t h e l i k e l i -
for
thesc
receptors
in
brain
tissues. Opioid Receptors E a r l y s t u d i e s on t h e r e l a t i v e p o t e n c i e s o f o p i o i d s h a d s u g g e s t e d t h a t more C l a n o n e r e c e p t o r the e x p e r i m e n t s of
type night exist, but
l h r t i n e t a1 ( 1 9 7 6 ) f o r m e d t h e b a s i s o f
t h c c u r r e n t l y used c l a s s i f i c a t i o n .
T h e y f o u n d t h a t by u s i n g
a series of s u b s t i t i i t i o n tests on opioid-dependant
dogs t h e y
could c l a s s i f y t h e o p i o i d r e c e p t o r s i n t o t h r e e g r o u p s :
mu
recrptor
r?ceptor sigma
relating
relating
receptor
t o rnorhpine and a n a l g e s i a ;
to k e t o c y c l a z o c i n e a n d s e d a t i o n relating
to
SKF
10,047
the
t h e kappa ;and the
(n-allyl-nor-
n e t a z o c i n e ) and psychotomirnrtic e f f e c t s . This
clnssification
morphine-like
compounds
charaterises quite
the
satisfactorily.
majority
of
However,
90
a f t e r t h e d i s c o v e r y of t h e e n d o g e n o u s p e p t i d e s ,
it
lins,
was
receptor
t o be
found
the s m a l l p e p t i d e s
v i t y of
to propose
necessary
t h e d e l t a receptor, t o account
type,
t h e enkepha-
a
fourth
for t h e a c t i -
i n b i o a s s a y p r e p a r a t i o n s of t h e
mouse v a s d e f e r e n s ( d e l t a coming from " d e f e r e n s " )
(Lord et
a l , 1977). The c h a r a c t e r i s a t i o n of any r e c e p t o r type hinges on t h e
a speciPic ligand for that receptor.
a v a i l a b i l i t y of
such as morphine and fentanyl
Orugs
were P a i r l y s p e c i f i c f o r t h e
mu r e c e p t o r , w h i l s t compounds s u c h a s t h e e n d o g e n o u s p e p t i d e
or b e t t e r D - A l a
leu-enkephalin, fairly
specific
facilitated
et
(Chang
studies
of
al,
Nowever, on
lack of
by
ligands
sites
receptor Smith
and
and
provided
consequently in
the
Simon,
brain 1980).
a s p e c i f i c kappa ligand i n h i b i t e d t h e
Cillan
until
site
receptor
k a p p a a g o n i s t U50,488H. t h e u s e of
the
1979;
this
demonstrated
receptor
delta
mapping
P-Leu-enkephalin,
et
a1
its
(1983), u s i n g
existence the
was
specific
Receptor s t u d l e s also b e n e f i t
from
s p e c i f i c a n t a g o n i s t s a n d , w h i l s t n a l o x o n e c a n be
f a i r l y s p e c i f i c For
t h e mu r e c e p t o r and I C I
154139 f a i r l y
s p e c i f i c f o r t h e d e l t a receptor, t h e r e are no specilic a n t a gonists
for
Receptors siderable suggested
the for
the
attention that
they
in did
kappa
or
sigma
opioids
the not
last
sigma have
decade.
in
exist
sites.
Tiowever,
Gillan
and
received
Some
the brain,
1 0 , 0 4 7 b i n d s t o mu a n d k a p p a s i t e s a s a c l l a s sig'na
receptors.
workers
s i n c e SKF
ttic
Yosterlitz
con-
so c a l l e d
(1982)
and
S n y d e r and G o o d n a n ( 1 9 8 0 ) d e m o n s t r a t e d t.!lat s t o r p l i i n ? , w h i c h has
high
affinity
for mu,
delta
and
kappa
r:ccptors,
wn:;
t o d i s p l a c e a l l t h e b i n d i n g of S K F 1 0 , 0 4 7 a n d t h a t
unable
t h e r e m a i n d e r was d i s p l a c e a b l e b y c o m p o u n d s s u c h a s c y c l a z o -
c i n e w h i c h a r e p r o p o s e d t o h a v e sigma a c t i v i t y .
The p i c t u r e
h a s b e e n c o m p l i c a t e d by s t u d i e s I n v o l v i n g t h e p s y c h o t o m i n e -
tic
agent
phencyclidine
to
(similar
ketamine
and
tiletamine).
was n o t e d
It
that
the psychotic
behaviour
i n d u c e d by
p h e n c y c l i d i n e (DCP) a n d S K F 1 0 , 0 4 7 was v e r y s i m i l a r a n d t h a t the
tissue. PC?
sites
binding
Indeed,
and
sigma
had
similar
R
receptor
in
brain
(1979) s u g g e s t e d t h a t
Zukin and Zukin
opioid
distribution
be
might
same
the
the
thing.
‘ { o w e v e r , more r e c e n t s t u d i e s ( T a m , 1983) h a v e s h o w n t h a t t h e b i n d i n g a f f i n i t i e s of PCP a n d ZKF 1 0 , 0 4 7 t o b r a i n t i s s u e a r e not
exactly
the
sites
binding
in
brain
suggest
that
similar properties
!!ore
differrnt. ag?nts
may
be
recentor
acid
SpiPFel t!it’
heink:
mu
AI
1.t
rvceptor opioid
tisauc
recent
actirlc
as
for
rt,spir?tclry
These
have
suggested
an
the
that
been
have
existencr
receptor.
put of
forward.
an
epsilon
t’le e n d o g e n o u s
t h r h i g h potency of
(19384) h a v e p r o p o s e d
witb
and
tile d r u g
both
e x c i t a t o r y amino
aspartate
i n t o T U I ;tnd 1x12 s i t e s ,
clcpri.:;sion,
some
binclllig s i t e s a r e p r o b a b l y
types
;?nal::rasia
dif-
findings
on t h e r a t v a s d c f e r e n s b i o a s s a y ,
c o n c t ? r r i t ~ ~ l si t h
these
10,047 share
SXF
N-nettiyl
proposed
Pasternaic
rr?cczptor
and
studies
receptor
(1979)
Prndorpiiin
compounds.
PCP
the
of
distribution
i n d e p e n d e n t l y on
known
t o itccoiint
:and
whilst
thr
s h o w s some s i g n i f i c a n t
their actual
opioid
Ot!ier
:Vustc=r
that
f o r t h e two g r o u p s of
ferences woulrl
same, a n d
sub-division
with
th?
whilst of
t h e mu1 s i t e
mu2
ricptazinol
site
with
s h o w i n g it
92
relative
affinity
for
the
site.
mu1
Both
of
these
s u g g e s t i o n s have t h e i r s u p p o r t e r s and d e t r a c t o r s and at the moment t h e r e is i n s u f f i c i e n t e v i d e n c e t o r e g a r d t h e t h e o r i e s
a s proven. Endogenous opioids F o l l o w i n g t h e d e m o n s t r a t i o n of
a n i n t e n s i v e s e a r c h was u n d e r t a k e n t o l o o k
sites i n b r a i n , for
the
endogenous
ligands
Hughes and co-workers tides
in
brain
specific opioid binding
showed
for
these
receptors.
In
two p e n t a p e p -
t h e presence o f
T h e s e p e p t i d e s were named Flet a n d
tissue.
d e p e n d i n g o n w h e t h e r t h e r e was a m e t h i o n i n e
Leu-enkephalin,
or l e u c i n e r e s i d u e i n t h e f i f t h aminoacid p o s i t i o n . a f t e r w a r d s a much l e n g t h was
also
larger
isolated
peptide consisted of tide,
known
3s
tains
a
(Cox
Shortly
one m i n o acid This
l97G).
larger
an a l r e a d y d e s c r i b e d polypepfound
in
the
anterior
pendorphin.
to n o t e
sequence of
thirty
et al.
lipotrophin
is i n t e r e s t i n g
the
peptide of
p a r t of
p i t u i t a r y , a n d was named It
1975
that
amino a c i d s
a l s o con-
pendorphin found
in
!net-enkephalin
a n d t h i s l e d some sorlcers to s u S g e s t t h a t m P t - e n ! i r p h a l i n
w s
a
the
breakdown
case.
product
pendorphin,
of
Investigation
but
this
t h e b i n d i n g a c t i v i t y or
of
is
not
t’iesr p c p -
p rndorpliin
hail
s t r o n g mu b i n d i n C a f f i n i t y , m e t - P n k r p h a l i n
hail a f f i n i t y
lor
b o t h mu a n d d e l t a s i t e s ;ind l e u - e n ! c e p h a l i n
hnd , m a i n l y d e l t a
t i d e s to b r a i n o p i o i d
binding
activity.
sites describcd, the
three
A t
this
t h e mu,
endogenous
these sites,
r e c e p t o r s showed t 9 a t
stace
delta.
peptides
t:ic,r:?
w r e
four
rtacrtptor
4 a p p a ant1 FjiZfiia s i t e s , b u t
founti
nnly
t h e mu a n d t h e delta s i t e s .
n c t 4
on
two of
Cons(,:luc,ntly,
thr
93
i n v e s t i g a t i o n of
endogenous o p i o i d s continued and
t o t h e d e s c r i p t i o n o f X-neo-endorphin and
delta
activity
discovery
it
although
contained
enkephalin, ligand.
dynorphin
of
et a l ,
(Kaneawa
the
to
seemed
be
amino the
w h i c h a g a i n s h o w e d inu 1979) a n d
et
(Goldstein
al,
acid
a
finally
the
which,
1979)
sequence
elusive
Since these discoveries,
t h i s led
for
Leu-
endogenous
kappa
l a r g e n u m b e r of
other
p e p t i d e s h a v e b e e n d e s c r i b e d i n b r a i n t i s s u e , many o f w h i c h may i n t e r a c t w i t h o p i o i d r e c e p t o r s , b u t t o d a t e o n l y l i g a n d s
for
mu,
delta
and
kappa
sites
have
been
characterised
l e a v i n g t h e sigma b i n d i n g s i t e w i t h o u t a n e n d o g e n o u s l i g a n d . T h e s e q u e n c e h o m o l o g y of
these peptides
in
itself
led
T h e e s t i m a t i o n a n d l o c a l i s a t i o n of
t o a n u m b e r O P problems.
many p e p t i d e s h a d d e p e n d e d o n t h e u s e of a n t i b o d y t e c h n i q u e s s u c h a s r a d i o immun o a s s n y a n d immun o c y t o 1o g i c a 1 1oca 1i s a t i o n . Since both
t h e antibodies used,
i f
are raised
the antibodies
s h a r e s e q u e n c e s of
g e n s which
l i t y of
aminoacids
overlap i n antibody recognition
good e x a m p l e of
t h i s problem was w i t h
or
t h e radioimrnunoassay molecule
t h e s p e c i f i c i t y of
t h e s e t e c h n i q u e s depend upon
p lipotropin
of
c o n s i d c r a b l e cross
P
then
to anti-
the possibi-
is much g r e a t e r .
A
t h e carly s t u d i e s on
e n d o r p h i n ; s i n c e o n e t h i r d of
was r e p r e s e n t e d
reactivity existed.
hy
the
pendorphin
Since
a
Plipotropin
u a s o f t e n r e l e a s e d i n t o t h e c i r c u l a t i o n a t t h e same t i m e a s
p
endorphin,
endorphin
were
lipotropin.
in
of
the
fact
studies
measuring
measuring,
a t
circulating
least
in
M o s t a s s a y s a r e now d o n e i n p a r a l l r l
nntihody to t,ndorphin)
many
part,
p p
using one
P l i p o t r o p i n (which d o e s not cross react w i t h ( j
a n d one w h i c h r e a c t s t o b o t h a n d t h e n e s t i m a t i n g
94
the
i n t h e two r e s u l t s .
the d i f f e r e n c e
P e n d o r p h i n by
A
s i m i l a r p r o b l e m e x i s t e d f o r t h e e n k e p h a l i n s , s i n c e t h e y were very
s i m i l a r , a n d t h i s was c o m p o u n d e d b y t h e d i f f i c u l t y i n
e x t r a c t i n g t h e enkephalins due to rapid enzymatic hydroly-
sis.
e t a1 ( 1 9 8 0 )
T h i s p r o b l e m was s o l v e d b y C l e m e n t - J o n e s
A common b r e a k d o w n p r o d u c t o f met-
i n a v e r y neat m a n n e r .
e n k e p h a l i n is t h e s u l p h o x i d e w h i c h is much more s t a b l e . technique
invloved preparing
t h e problem of b r e a k d o w n
dised chemically during extraction,
T h i s a n t i b o d y t h u s showed a h i g h s p e c i f i c i t y for
is solved.
met-enkephalin With seen
t h u s excluding leu-
i n t h e t i s s u e is o x i -
Tf a l l t h e m e t - e n k e p h a l i n
enkephalin.
to t h e sulphoxide
a n antobody
is o n t h e m e t h i o n i n e c o m p o n e n t ) ,
(which
The
and
eliminated
hindsight,
to
exist
other
involved
problem
the
areas
where
apparent
of
breakdown.
problems
could
measurements
be
leu-
of
e n k e p h a l i n i n some t i s s u e s w h i c h were s u b s e q u e n t l y s h o w n t o c o n t a i n d y n o r p h i n w h i c h was i n f a c t c r o s s - r e a c t i n g
a n t i b o d y d u e t o i t s homology w i t h t h e smaller
leu-enkephalin peptide.
Yowever,
sequenced
these
as
more
are
problems
the
difficulty
Fortunately, becoming
the
less
likely
with
t h e precursor m o l t ~ c u l e sof identieied luatr3.d.
and
sequenced
more
-
identified
easily
unknown unknown
of
the
r e c o ~ n i s e d 2nd
peptides
opioid
isolation
and
thrsc pcptidrs. and
and
l e u e n k e p i i a l i n problea h i g h -
when
cxistence
:ire
pepttdes
d e a l t w i t h , b u t thc. d y n o r p h i n lights
with the
their
par-nt
exist.
peptifirs
is
sequencing of
Thr-v ?NA
i i a v ? bccri code
~ v n -
T h e s e t’lree p r e c u r s o r s a r e l o r t l l e i ~ n d o r p h i t l s , t h t ,
cnlcephalins
:ind
amino a c i d s a n d
the
dynorpliins.
Facii
contains
:ih>ut ?50
thc possible c l t > n v a l : c s i t e s Iiav*. b ~ c nirir.n-
95
tified, allowing the prediction of other potentially active peptide
It is interesting to note that the
sequences.
p lipotropin,
endorphin precursor is also the precursor f o r adrenocorticotrophic
hormone,
and
melanocyte
stimulating
hormone, whilst the enkephalin presursor contains both met and leu enkephalin sequences in the ratio of six to one as well as several other peptides.
The dynorphin precursor
also contains the sequence for leu-enkephalin and endorphin
amongst
others
The technique of
(Weber
et
neo-
al,
1983).
immunocytochemistry has allowed the
investigation of the localisation of the endogenous opioid peptides, their
which
has provided
function.
strongly
For instance,
localised
pituitary,
some
in
as well
the
as certain
strong
indications of
p endorphin
hypothalmus peripheral
seems and
to be
anterior
tissues.
The
enklephalins have been demonstrated i n brain areas such as the periaquaductal grey matter, the spinal cord, the locus coeruleus and the pertventricular areas of the midbrain, all of which are associated by electrophysioloeical techniques
Thus, it would appear that the enkepha-
with pain pathways.
lins are much more likely to be involved with the modulafion of pain perception than the endorphins.
The dynorphins have
a different distribution to the enkephalins and endorphins, being found i n certain hypothalamic and amygdaloid nuclei and in different regions to met enkephalin in the spinal cord.
Enkephlins
and
dynorphins
are
also
found
in
peripheral tissues such as the adrenal medulla and gut wall. The question
of
interest is, of course, can we u s e
PndOgenOllS opioid peptides a s analgesics?
And a s usual in
t h e a n s w e r is y e s a n d n o .
science, render
the
peptides
converting
more s t a b l e t o e n z y m a t i c b r e a k d o w n b y
t o amides or b y p e r f o r m i n g o t h e r chemical
them
manipulations.
I t has been p o s s i b l e t o
i t has not p r o v e d p o s s i b l e t o admi-
However,
nister
them
t o p r o d u c e a n a l g e s i a by
direct
injection
any
totally
than
o r t h e spaces asso-
i n t o t h e CNS i t s e l f
c i a t e d w i t h i t , s u c h as t h e v e n t r i c l e s of obviously
other route
t h e brain.
This
l i m i t s t h e i r u s e as t h e r a p e u t i c a g e n t s .
An a l t e r n a t i v e a p p r o a c h h a s been t o f i n d w a y s oP i n h i b i t i n g the
enzymes
responsible
endrogenous peptides.
the
normal
Unfortunately,
best i n h i b i t o r s Pound, injected
of
the
t h e enzymes i n v o l v e d
directly
t i d e s and
their
into
the
dynorphin, interest
non-peptide
the
endogenous
to
brain
enzyme i n h i b i t o r s ,
to
turned
also have to
b e s t a t i n and thiorplian,
SO, a f t e r a n i n i t i a l s u r g e of
again
breakdown
b r e a k d o w n a r e n o t p a r t i c u l a r l y s p e c i f i c a n d t h e two
in this
be
for
interest the
effective.
i n o p i o i d pep-
i n v e s t i g a t i o n s have
analesics. kappa
be
The
discovery
agonist,
has
oP
directed
t h e k a p p a o p i o i d s s i n c e i t h a s b e e n shown
towards
t h a t opioids acting at
t h e s e r e c e p t o r s show g o o d a n a l g e s i a
under certain conditions.
If
t h e opioids are administered
i n t r a t h e c a l l y t o e x e r t t h e i r e f f e c t s on t h e s p i n a l c o r d , t h e mu
agonists
w i l l
produce
in
analgesia
both
thermal
and
v i s c e r a l chemical t e s t s , d e l t a a g o n i s t s w i l l produce annlge-
sia
i n thermal
analgesia 1984). the
chemical
whilst
visceral
kappa
tests
Consequently, s i n c e non-peptide
kappa
which,
in
tests o n l y ,
receptor,
unlike
t h e mu
such
as
agonists,
agoriists
( ~ c h m a i r s s and Y a k s h , o p i o i d s which act on
pentnzocine, do not
produce
are
produce
avai lablr respiratory
97
depression,
the
possibility
of
their
clinical
use
in
v e s c e r a l p a i n is c o m i n g c l o s e r . One f i e l d
of
o p i o i d pharmacology
which
still not
has
b e e n f u l l y e x p l a i n e d i s t h e r o l e o f t h e sigma r e c e p t o r . date,
no endogenous
ligand h a s been
a common e f f e c t o n t h e n - m e t h y l
a s p a r t a t e receptor.
a n a n t a g o n i s t f o r t h e receptor
of
a r e s t i l l areas w h e r e g r e a t a d v a n c e s n a y be m a d e . b e more
t h e s e d e v e l o p m e n t s would with
Another
Thus,
a n e n d o g e n o u s p s y c h o t o m i m e t i c compound a n d
t h e p o s s i b l e development
dealing
the
receptor now a p p e a r s t o be v i a
l i n k with t h e "phencyclidine"
t h e e x i s t e n c e of
demonstrated and
To
psycotic field
likely
conditions
which
has
not
However
concern
to
those
rather
than
analgesia.
fully
been
explained,
a l t h o u g h e a r l y r e s u l t s were e n c o u r a g i n g , is t h a t of a c u p u n c ture.
The
initial
suggestions
that
oversimplification.
However,
process
p endorphin
release e n d o g e n o u s o p i o i d s s u c h as an
the
might
are p r o b a b l y
t h e understanding
of
the
e x i s t e n c e of
endogenous s u b s t a n c e s which c a n modulate p a i n
transmission
certainly provides a s c i e n t i f i c basis f o r t h e
explanation
how
of
the
technique
might
operate.
Tn summary t h e n , t h e e n d o g e n o u s o p i o i d s a n d t h e i r m a n i pulation
provide
analgesics,
a
basis
for
the
rational
b u t w e m u s t a l w a y s reinember
t h e only neurotransmitter agents involved
development
that
they
of
are n o t
i n p a i n pathways
and o t h e r d r u g s which modify b o t h c h o l i n e r g i c and a d r e n e r g i c transmission
can
S p e n c e r , 1976).
act
as
adequate
analgesics
(Sewell
and
98 REPRRENCES
Chang,
K.J.,
B.R.,
Cooper,
Mol. Phanmcol.
(1979)
(1980) J . Rndocr.
R.M.,
and Cuatrecasus,
P.
91-104.
V., L w r y , P . J . ,
Clement-Jones,
cox
Aazum, E.
Rees, L.
and Rorsor, G . Y .
231-243. and L i ,
Goldstein, A . ,
C.H.
(1978) P.N.A.S.
73
1821-1823.
G i l an,
Jln,
Y.G.C.,
Kosterlitz, ll.1. and Peterson,
l.Q.,
S.J. (1B83) B r . J . Pharmacol. I 9 275P. G i l l a n , V.G.C.
and K o s t e r l i t x , l l . W .
(1982) nr. J . Dharmacol.
71 481-460. Goldstein, A . ,
Tachibana, S., Lovncy, L . I . ,
and Ilood. L.
(1079) P . 3 . A .S. 6660-6670.
Hughes, J . , Smith, T.W., Uorgan. R . A . Kangava,
Yatsuo,
niophys. RPS. Lord, J . A . I l . ,
H.1.
Kostcrlitz, H . l . ,
and Morris, H , R .
K.,
II.
and
Pothergill, L.A.,
(1975) Nature 2 5 8 577-579. Igarrshl,
Y.
(1979)
Riochrm.
Comm. 88 153-100.
Waterfield, A . A . ,
(1977) Nature
Ifartin, l . R . ,
Hunkapillcr, M.
2R7
Eades, C . G . ,
Hughem, J .
rnd Kosterlitx,
4A5-490.
Thompson, J . A . ,
Hupplcr, L.
rnrl
G i l b e r t , P. (1976) J . Phermac. Sxp. I h c r . 197 517-532. P e r t , C. and Snyder, S. (1973) Scinncr! ?79 1011-1014. S c h m u a s , C. 228 1-12.
r n d Yaksh, T.L.
(1984) J . nharmec.
Kxp. Thvr.
99
Sewell, R.D. E .
and S p e n c e r , P . S . J .
(1976) Neurophamacol.
15
683-688. Smith, J . R .
and Simon, E . J .
Snyder, S . H .
and Goodman, R . R .
Speigal,
and
K.
22R
Ther. Tam, S.W.
E.,
35
5-15.
Dharmac.
Exp.
(1980) J . Neurochem. G.W.
(1984)
J.
414-419.
(1983) P . N . A . S .
Terenius, L. Yeber,
Pasternak,
77 281-284.
(1980) P . N . A . S .
3
6703-6707.
(1973) Acta Dharmacol. T o x i c o l . Evans,
C.J.
and
Harchas,
.J.D.
32
317-320.
(1983) Trends
in
Neurosci. 6 333-336. Wuster, 15 -
M.,
Schulz, R .
and I l e r z ,
A.
(1979) N c u r o s c i .
J,ett.
193-198.
Z u k i n , S.R. and Zukin, R . S .
(1979) P.N.A.S.
7s 5372-5367.