Recurrence relations of the inclination function

Recurrence relations of the inclination function

C h i n e s e Astronomy 4 (1980) 17-24 Pergamon P r e s s . P r i n t e d i n Great B r i t a i n Acta Astr. Sinica 20 (1979) 17-24 RECURRENCE 01...

282KB Sizes 0 Downloads 68 Views

C h i n e s e Astronomy

4 (1980) 17-24

Pergamon P r e s s . P r i n t e d i n Great B r i t a i n

Acta Astr. Sinica 20 (1979) 17-24

RECURRENCE

0146-6364/80/0301-0017-$07.50/0

RELATIOk',S OF THE INCLINATIOI~!

T o n g Fu

I~.ru L i a n - d a

FUNCTION

Wang C h a n g - b i n

Purple Mountain Observatory, Academia Sinica (Received 1978 March 28)

ABSTRACT In t h i s p a p e r , t h e i n c l i n a t i o n f u n c t i o n i s e x p r e s s e d i n t e r m s o f t h e h y p e r g e o m e t r i c f u n c t i o n and t h i s has r e s u l t e d i n some s i m p l e r e c u r r e n c e r e l a t i o n s i n v o l v i n g no more t h a n t h r e e n e i g h b o u r i n g f u n c t i o n s . In d i s c u s s i n g t h e p e r t u r b a t i o n s it

by t h e E a r t h ' s g r a v i t a t i o n a l

f i e l d on a r t i f i c i a l

satellites,

i s o f t e n n e c e s s a r y t o d e v e l o p t h e p e r t u r b i n g f u n c t i o n as a P o i s s o n s e r i e s e x p r e s s e d i n t h e

orbital

elements of the satellite.

trigonometric functions.

Then, t h e o r b i t a l

More s p e c i f i c a l l y ,

inclination

I a p p e a r s as an argument i n

we have t o c o n s i d e r t h e f o l l o w i n g d e v e l o p m e n t : !

Pt.(~n~)e i'~ ~ % Fj.ect(z-ae)"

(1)

p~o

where

Plm(Z) i s

t h e a s s o c i a t e d Legendre p o l y n o m i a l , u i s t h e l a t i t u d e geocentric latitude

and X = a - £.

argument o f t h e

satellite,

~ is its

functions,

and t h e y can be e x p r e s s e d as p o l y n o m i a l s o f t r i g o n o m e t r i c f u n c t i o n s o f I .

have b e e n d i s c u s s e d by a number o f a u t h o r s Iszak

[7] and B. J e f f r e y s

[1-11].

The Flrnp i n (1) a r e t h e i n c l i n a t i o n

[8] o b t a i n e d t h e f o l l o w i n g r e s u l t

i l - " ( l 4- m ) ! F~,,,e == 2~p!(l - - p ) !

They

Using t h e method o£ t r a n s f o r m a t i o n group, i n t h e form o f a s i n g l e summation,

~i f l"~ir,21-~prw ,.3t-,,.-2p-~i~,,,-t+2p+~i . ,,---J ~i "l---i-

(2)

where

i = W--L c ~

c o s -I- , 2 C~ ~

s~

sin -~-I, 2

m!

.! (m -- .)!

max{O,l--m--2p} ~j~min{21--2p, The r e s u l t s

l--m}.

o b t a i n e d by o t h e r a u t h o r s a r e more c o m p l i c a t e d , f o r example, t h a t o f C h a l l e

a d o u b l e summation, w h i l e t h a t o f Kaula [12] i s a t r i p l e Besides the expressions for the inclination

summation.

f u n c t i o n s , many a u t h o r s have a l s o

[3] i s

18

Inclination Function

discussed

recurrence

Giacaglia

[11] d i s c u s s e d

apart

relations

f r o m some e r r o r s

neighbouring In this

hypergeometric

( i n some c a s e s

we p r o p o s e

functions relations

Giacaglia's

[5,

13,

recurrence

a s many a s 12) f o r

a method of expressing

10,

when b o t h l

14].

Recently,

andm vary.

relations

involve

them to be convenient

the inclination

However,

function

t o o many

in use. in terms of the

function. 1.

Re-writing

recurrence

in the derivation,

functions paper,

among s u c c e s s i v e

in detail

INCLINATION FUNCTION EXPRESSED AS HYPERGEOMETRIC FUNCTION

(2),

and replacing

0 2 b y (1 + c o s 2 ) / 2 ,

;'--(t+~),.

(l+co,

a n d s 2 b y (1 - c o s I ) / 2 ,

l~-I-m

Ftmp =

21_=p!(l

-

p)!

-

O

I-m-2P

(1-cos1)

'

'

" n - ' l ' ,r. llp- m - i (, -1 + c ° s I ) ' l - i P - i ( 1 - - c ° ' l ) =p-u-=-i). .¢". - - -l ,"-l i g - I - m C~.;

~

we h a v e

(s)

i or

1 +ra

_

FIrap

;'-~(1 + m ) ! (1 + co, Z) ~ - v - ( 1 -- P)I

2atp!(l

• (_

l --ra_p

~o~X)

1)t_~

1 (1 - - m ) !

d l-~ d c o s l 1-* (I +

co, I)'/-"(l

-- cos/)".

(4)

Using the Jacobi polynomials in differential form, [15],

/~: B)(~) = F ( =

, . ~ + , . 8; x)

r(~) r @ + ~)

a._~ ~ [x~+.-,O (x1-B(1- xY-O ax"

_

xy+.-B].

(5)

and applying the substitution 1 --

COS I

x = - - 2

(6)

we h a v e F(--

n, a + n,/~; d~ d cos I ~

1 -- cos/)

=

r@) (1 - - co, O ' - " ( 1 + co, O a-2"F(n + #)

(_1).

2

i(1 -- cosI)a+'-t(1

c o s I ) "+'-a]

+

(7)

Let

n~l--m,~m+ we t h e n

2p+

1 --l,c~2m+

1,

have

F(ra-- I, I-4- m-4- 1, m 4- 2 p 4 - I --I; I -- cos/) 2 ffi ( - - 0 1 - "

r ( m + 2 p + 1 - - 1) ( 1 - - c o , 0 1 - ' - " Q 2t-~F(2p + 1)

+

cos/y'-'-"

dl-m

• dqo "P-'~ [ ( 1 - - c o s l ) ' P ( 1

+

cosl)at-'P].

(8)

Inclination Function

Substituting

19

(8) i n ( 4 ) , we have l+m_

r l . , = i ' - - (t + m)l ( 2 e ) t (1 -



inclination. properties

+ ~,z)

2'+'9!(l--p)l(l--m)t(m+2p--l)l F ( m - - l , t + m + 1, m + 2 p + 1--1;

E x p r e s s i o n (9) shows t h a t t h e i n c l i n a t i o n and a h y p e r g e o m e t r i c f u n c t i o n ,

¢o,Z)'-~7(1

'

'

1--eosI)

2

(9)

f u n c t i o n can be e x p r e s s e d i n t e r m s o f a p o l y n o m i a l

i n which t h e arguments a r e t h e s i n e and c o s i n e o f t h e h a l f

T h i s i s an i m p o r t a n t c o n c l u s i o n , f o r i t means t h a t we can now make u s e o f t h e of the hypergeometric function, in particular,

we can use t h e r e c u r r e n c e r e l a t i o n s

of the hypergeometric function to derive the recurrence relations I t s h o u l d be p o i n t e d out t h a t

of the inclination

(9) does n o t a p p l y when m + 2p - 1 < 0.

function.

But i f we s e t

F t = p ( 1 ) ffi I F ` ' ' ( l ) '

[( - - 1 ) l - - m l ~ l m ( l - - p ) ( ~

-- I).

(10)

then no difficulty will arise.

2. RECURRENCE RELATIONS OF THE INCLINATION FUNCTION Formula (9) r e l a t e s

the inclin

function to the hypergeometric function.

c l e a r about the r e c u r r e n c e r e l a t i o n s With

Lj M, N any

three integers,

of the latter,

is called a neighbouring function of F(a, are linearly

close

neighbours.

we can o b t a i n t h o s e among t h e f o r m e r .

the function

F(a+L,8+M, ± 1, we have t h e

v +N; x)

8, Y; z ) .

(11)

In p a r t i c u l a r ,

f o r L, /4, N e q u a l t o 0 o r

Gauss [16] p r o v e d t h a t any t h r e e n e i g h b o u r i n g f u n c t i o n s

dependent, with rational

f u n c t i o n s o f z as c o e f f i c i e n t s .

AFt + BF, 4- CF3 = i n which A, B, C a r e r a t i o n a l

Hence once we a r e

f u n c t i o n s o f x.

That i s ,

O.

(12)

Gauss a l s o gave 18 e x p l i c i t

among t h e c l o s e n e i g h b o u r s , from which t h e c o e f f i c i e n t s

linear relations

A, B, C f o r t h e l i n e a r r e l a t i o n

any t h r e e n e i g h b o u r i n g f u n c t i o n s can be d e r i v e d . To f a c i l i t a t e

d i s c u s s i o n , we r e - w r i t e

= G,.,.

(9) i n t h e form

(0, 8,

(13)

1 - oo, 5' /

where

t-M

(1 + m ) l ( 2 p ) ! (1 - - c o s I / - T ( 1

Glm9

2'+-r (l -

a~m--l, Hence we s e e t h a t ,

8=l+m+l,

p)!(l

-

m)!(m

+ co, I )

+ 2p -

Ot

y~m+2p+l--l.

I+m_~ , "

(14) (1S)

s i n c e any h y p e r g e o m e t r i c f u n c t i o n can be e x p r e s s e d i n t e r m s o f two

neighbouring functions,

any i n c l i n a t i o n

f u n c t i o n can l i k e w i s e be e x p r e s s e d ; t h u s t h e

recurrence relations. When a , 8, y and l , m, p s a t i s f y

(15), we s h a l l w r i t e

( l, m, P) O) 8 ) Y

(16)

among

20

According

Inclination

to

Function

(15), we have then

~ l,

, )L

m+l,

+I,

g+l.

--1,

g+l,

.,

l,

'

r+l

g--l,

+1,

g-l,

,)

P ) r--1

o,

r--1

(,,

(17)

,) (18)

r+l

°, ,-,)

t*, 8, 1--1,

m--l,

--1,

m+

(~+2

Y +2

1, , - - 1 ) ( 1 +

~

(1+I,

,8,

(19)

~'--2

1, m - - l ,

r

~--2,

m--b l, P ) ( I - - 1 ,

,+1)

~,

(20)

r

m--l,

(21)

P)

and 16 more such correspondences, which we s h a l l not d e t a i l here.

Expression (17) shows t h a t ,

i n order to f i n d the r e l a t i o n among Fl.rnpJ Fl, m÷l,p, Fl, m_l, p, we need only the r e l a t i o n among F(m., 8~, y~z)., E(e~+I, 8+1, y+l;x) and F(e~-I, 8-1, "y-1;x). S i m i l a r statements are implied by the other e x p r e s s i o n s .

However, the 5 l i n e a r r e l a t i o n s we r e q u i r e here are not among Gauss's 18

and must be derived anew.

After a complicated d e r i v a t i o n , we f i n d

a , V ( ~ - - 2, g, r ; z) + A , F ( ~ . 8, r ; z) + a , f ( ~ + 2, g, r ; z) - - 0

(22)

B,V(,~. # -- 2. r ; z) + B,V(,~, g, r ; . ) + g , V ( ~ , # + 2, r ; ~) ---- 0

(23)

CxF(~, ~', ~" - - 2; z) + CaF(~, g, ~'; z) "-b C3F(c% if, ~" + 2; z) = 0

(24)

D,F(g -- 1, ~ - - 1. r - 1; z) + DaV(cc, ~, r; . ) +D,F(e~+ 1 , 8 + 1, r + 1; z ) = O

(25)

E ~ F ( ~ - - 1, ~ + 1, r - - 1; z) + E,F(~, ~. r; z) + E,v(~

+ 1, # -

I , r + 1; z ) ---- 0

(26)

i n which the c o e f f i c i e n t s are Ca-

1-

r--2~+2

(~

,42

-

-- (r A3

Bl Ba '==

r)(~-

r)

+(~--fl--1)z' 1)(~-

r)(1

2~ + ( ~ -

.)

--

~(~-

r + 1)(1 -

z)

#)z),

a(g + I)(I -- z)' ~" - - 28 - - 2 + ( ~ - - 8 + l ) z ;

(~-

r)(#-

r -

I)

•y - - 2 , 8 + 2 + 4 8 - - a - -

(~-

r)(#-

l)z"

1)(1 -

z)

[r - 2# + 2 + ( # - ~ - 1)z] -

[r -

28 + ( 8 - - # ) z ] ,

~(8 + 1)(1

B3

It-

28-

--

.)'

2 + (g-~+

(r - 2)(r [r--2-(2r-a-8-

1)r(1

I).1 ' -

.)' 3)z]'

+

(#-

r -

28 -

r + 1)#(1 -

.)

2 + (8 - g + 1)z

Inclination Function

21

(27)

c,=_r(r-.-l)(r-a-1)O-.). [r--2--(2r--a--R--3)z]

+(r-a)(r-~)r(~-1)'_r[r_l_(er_~_#-D~], [r--(2r--a--#+ 1)z] c, = (r -

~ + 1)(r -

(r + 1)[r

- -

~ + 1)(r -

(2r

- -

~)(r -

~),'.

a-- # + l)z]

'

D,~l--7, D,----[(1--a--~)z--(1--r)], D3=~--~z(1--z); Y __

Et

~(r-1)O-~)

#+(~--#--l)z'

--(r--#)(#--1)(1--,)_ E'ffi[(ff--l)--(:--a--l)z

]

(r-#-l)g(1-z) [ff--(ff--~+l)z]

+ [r-2P+(P-~)z], ~(r-#)(r-#+l)~

E'=-~-[(~_I)-(~-~-I),1" Using the formulas (22)- (27) and (13)-(15),

it is not difficult to obtain

A, Ft,,.-l,v + 2aFt.=.p + A3Ft,.,+t,p == O, BxFl-i,,n.p 4- naFt, m.v 4- BsFt+t.'s.p ~ O, C,Ft...,p-* 4- C3FI.,..p 4- C3Ft. m.p+* ~ O,

D,F/-,.,,,+t,,,-, + D, Ft.r..p+D~FI+,.~.-,,v+, == O, F.iFt-l,.,-hp 4- EaFt.m,¢, 4- EsF/+b..+t,t, == O.

}

in which the coefficients are 2, = i(l + m)O -

m + 1),`.,

A2 =" m + 2 p - - l - -

2ms ~,

23 = ~,

-

=

-

is`.,

i,`.(l + ,.)(2t

2p - l )

(l + m -- 2Is2) ~ , = 2,.' ( l - - p ) ( t + ~ ) ( l + m - - 2t,')

+ `.,

(2l - 2p + 1 ) ( 1 + ra + 1) It + m + 1 - - 2(l + 1),']

+ [ 2 p - - m - - 31-- 1 + ( 2 1 + B3~--2hc ~, = 2 : :

(l--p+

1)s*],

l)(l--m+l)

[l+ra+l--2(l+l)sq' .(2/, -

1)(1 - / ,

+ 1)(,, -

1 + 21, + 1)

[m--t+2p--l--2(2,o--l--1)sq ~, .= 2s'`.2p(21 -- 2p + l ) ( m -- l + 2p + 1)

[m--l+2p--

1--2(2p--l--

1)sa]

+ 2sa`.a(2p + 1)(l -- p)(m. ,,--, l + 2p + 1) Ira-- I + 2 p + 1 -- 2(2p-- 14- l)s']

'

(2s)

22

Inclination Function

-- (m--

l +2p

l)sO,

+ 1)(m -- 1 + 2p-- 2(2p--

- 2 , ' , K ¢ + 1)(2p - 2l + 1)(m + 2p + 1 - O [m - - l + 2/, + 1 - - 2 ( 2 p - t + 1)rq '

(29)

- - c 2 ( 2 1 0 - 1)

DI == ( I - - m + 2 p - - 1 - - 21sO"

2c2p(1- m) ¢2(1 -- ra + 1)(2iO + 1) + [ 1 - - m + 2p-- 1--2Is 2] [l--m+2p+ 3--2(1+ 1)s ~] -- [ l - - m + 2 p + 1--(21+ 1)s a] D~==_ 2c'(p+l)(l--m+2)(l--m+ 1)

~ , ,=,

_

[l--

m + 2p + 3 - - 2 ( I +

~ , .= c ' ( l + m ) ( 1 + m - - 1 ) ( 2 1 [2iO~ m ~ 3 1 +

1)

~] + (1 + ra + [2p-

- -

3l--

l ) s 2]

2p-

1+21s

2c2(l - - p)(l + m) [2p- m 31 + 1 + 2Is2]

-- [2p-- m--

_

1 + (2l+

m

- -

1)(21 - - 2p + 1)c a 31 3 + 2(1 + 1)s ~] - -

l)s2],

2c~(l-- p + l) [2p--m--31--S+2(l+l)s2]"

A number o f r e c u r r e n c e r e l a t i o n s and ( 2 9 ) .

we s h a l l omit h e r e . set,

f u n c t i o n s have now b e e n g i v e n a t

(28)

which can be d e r i v e d i n t h e same manner and which

I t can be s e e n t h a t a l l t h e r e l a t i o n s

neighbouring f u n c t i o n s each. first

among t h e i n c l i n a t i o n

There a r e o t h e r s i m i l a r r e l a t i o n s

Of c o u r s e , t h e c o e f f i c i e n t s

given involve only three i n (28) and (29), a p a r t from t h e

a r e somewhat c o m p l i c a t e d . 3. THE RECURSION PROCESS

Of t h e e x p r e s s i o n s a t

(28) and ( 2 9 ) , t h e f i r s t

set,

r e c u r r e n c e i n m, h a s t h e s i m p l e s t c o e f f i c i e n t s , computations. initial starting

values.

that is,

t h e one r e l a t i n g

to

and i s t h e most c o n v e n i e n t f o r p r a c t i c a l

B e s i d e s t h e r e c u r r e n c e f o r m u l a e g i v e n i n t h e p r e c e d i n g s e c t i o n , we r e q u i r e t h e For r e c u r s i o n a l o n g m, we can t a k e t h e s e c t o r a l harmonic t e r m s

Fzl p

as t h e

point.

From ( 2 ) , we s e e t h a t ,

when

l = m, we can o n l y have d = 0.

(2l)!

Flip ~ ~tp!(l From ( 3 0 ) , t h e f o l l o w i n g r e c u r r e n c e r e l a t i o n s

c,1_2ps2p P)!'

_

"

(30)

among t h e s e c t o r a l harmonic t e r m s a r e d e r i v e d :

1)

c~Fl_z,z_t,p '

Flit, m l ( 2 l P

1)

$2F I - - I , l--I~p--ll

(32)

Ft:p = (~l +

1)c2

Fl.l.t,+l,

(33)

F.p =

l(2l-

_

Hence we have

( l ' - - p)

(31)

- - t,)s2

Ftlp -----

l(1-

1)(21-

p(l

-

1)(2l-

-

p)

3)

s*c'Ft-,,,-2., ....

(34)

Inclination

For recursion in m, we still need F1, Z-l, p"

Function

23

an expression for the inclination function of the type

From (2), we find

F,.,_,,, = 2'p1(li(2l--_1)p)! [2pc"-'P+'; ' p - ' - ( 2 l - 2p)caz-'P-'s'P+'].

(35)

Noting (30), we have Fl, l-t,p *=" los

(36)

(p -- Is')F,,p.

or Ft, z-l,p ": ; ( 2 1 A c o m p a r i s o n o f (36) and t h e f i r s t FZ, l+I, p=0, t h e n t h e l a t t e r Fl, l,p and Fl, l+1,p, then by recurrence relations

1)cs[ F~-,,t-l,p-i-

Ft-l,t-,,p]

f o r m u l a o f (28) shows t h a t ,

also holds for m = l.

(37)

provided it

includes

Once we have t h e two i n i t i a l

values

applying the first formula of (28) and combining with the

of the sectoral

harmonic terms, all

the inclination

functions

Flmp

can be

found. When I = 0, s i n g u l a r i t i e s

w i l l a p p e a r i n (33) and ( 3 6 ) , b u t t h i s h a s no b e a r i n g on o u r

discussion.

For, an e x a m i n a t i o n o f t h e Lagranges e q u a t i o n s o f p e r t u r b a t i o n

that in this

c a s e , u s i n g I as an e l e m e n t i s i n a p p r o p r i a t e

[18] w i l l t e l l

anyway.

4. DERIVATIVE OF THE INCLINATION FUNCTION In perturbation calculations, we often require the derivative with respect to the inclination I of the inclination function.

From (13) and (14), we have

d F , . £ .= d G t . p F ( m - - l , l + m + l m + 2p + 1 - - l ; 1 - - c o s I ~ dI dI " 2

+

dI

1,.+

\

I

2

I

(38)

Because d__ F ( a , ? , r , dx

x ) ~ ~-~ F(c~ + 1 , # + r

1, r + 1" x ) . "

(39)

and ez

= G,~,,

+(,

2

- p (1 + c o s Z ) - ' ( - sinD

' 2 ") (, -

cos')-' ~ i - ' ]

(40)

we have

dFtmp ~ dl

- - 1 [1 - - 2 p -

m c o s l ] F l , , , p - - iFt,.,+1,p.

sin !

(41)

When I = m, a direct differentiation of (30) gives

dF.p

dI

~

(20 ! 2 t # ! ( / - - p)!

c'Z-2P-ls 3 p - 1 [ - (1 - - p ) s 2 + p c ' ] .

(42)

us

24

Inclination

Function

or

dFut, .ffi F~ e [ p _ dI cs Noting (36),

we

IP]. (43)

have

dFne dl

: --

iIF:,

~-~, p.

(44)

Comparing (41) and (43), we have o n l y to set F i j l + i j p = O, t h e n (41) i s a l s o a p p l i c a b l e c a s e 1 = m.

in the

REFERENCES

[ 1 ] It. R. Allan, l~rov. Itoy. 8oo., ,~288 (1965), 60. [ 2 ] G. Balmino, Teoh. [email protected]/GRGS, " S u r Certains Probl~mes et Fonctions Sp6ciales Recontr~s en G~od6ale Spatiale", Bretigny-sur-Prge, France, (1973). Challe, A. & Laeiaverie, J. J., ~stro,. Astrophys., 3 (1969), 15--28. Kaula, W. M., "Theory of Satellite Geodesy", Blalsdcll Publ. Co., Waltham, Mass, (1966), 30. [ 5 ] H. Kinoshita et al., Aaa. Tokyo Astron. Obs., 14 (1974), 14--35. [ 6 ] H. E. TxMomeaKosa, A. Mr., 49 (1972), 879--885. [ 7 ] I. G. Izsak, J. @cophy#. lies.. 69 (1964), 2621. [ 8 ] B. Jeffreys, Geophys. J., 10 (1965), 141. [ 9 ] E. Stiefel, Mathcmatische Methodcr der Himmelsmechanik und Astronautik, (1965), 341. [10] It. It. Gooding, Celcst Mech., 4 (1971), 91. [11] G. E. O. Giacaglia, Celest. Mevh., 13 (1976), 503--509. [12] W. M. Kaula, Geophysical J., 5 (1961). 104. [13] G. E. O. Giacaglia, SAO Special Iteport 352, 1973. [14] J. A. Campbell, CeIest. Mech., 6 (1972), 187--197. [3] [4]

[15] Wang Z h u - x i and Guo D u n - r e n , "Teshu Hanshu Lun" (Theory o f S p e c i a l F u n c t i o n s ) , Kexue P u b l i c a t i o n s (1965) 190. [16] Riemann, Abh. d. K. Ges. d. Wiss. zu G ~ t t i n g e n (1875). [17] Wang Z h u - x i and Guo D u n - t e n , I b i d . , 227. []8] D. Brouwer and G.M. Clemence, ' ~ e t h o d s o f C e l e s t i a l M e c h a n i c s " , Academic P r e s s , (1961), 229.